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Abstract

In the past five decades, constant research has been directed towards yield

improvement in pigeonpea resulting in the deployment of several commercially

acceptable cultivars in India. Though, the genesis of hybrid technology, the biggest

breakthrough, enigma of stagnant productivity still remains unsolved. To sort this

productivity disparity, genomic research along with conventional breeding was suc-

cessfully initiated at ICRISAT. It endowed ample genomic resource providing insight

in the pigeonpea genome combating production constraints in a precise and speedy

manner. The availability of the draft genome sequence with a large‐scale marker

resource, oriented the research towards trait mapping for flowering time, determi-

nacy, fertility restoration, yield attributing traits and photo‐insensitivity. Defined

core and mini‐core collection, still eased the pigeonpea breeding being accessible

for existing genetic diversity and developing stress resistance. Modern genomic

tools like next‐generation sequencing, genome‐wide selection helping in the apprai-

sal of selection efficiency is leading towards next‐generation breeding, an awaited

milestone in pigeonpea genetic enhancement. This paper emphasizes the ongoing

genetic improvement in pigeonpea with an amalgam of conventional breeding as

well as genomic research.
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1 | INTRODUCTION

The neglected crop of previous years, to core commercial crop of

today, pigeonpea (Cajanus cajan [L.] Millspaugh) is a multipurpose

food legume, serving as a lifeline to resource‐poor farmers in tropical

and subtropical regions of Asia, Africa, and Latin America. Globally,

pigeonpea is cultivated in an area of 6.97 mha with a production

and yield of 5.05 mt and 724 kg/ha, respectively (FAO STAT, 2016).

The complexity of yield enhancement in pigeonpea has lessened the

scope of breeding high‐yielding cultivars. However, the cytoplasmic

male‐sterile system has evolved as a game changer in breaking the

yield plateau by exploiting potential “Heterosis”. Along with hybrid

breeding, efforts of restructuring the plant type by emphasizing on

short duration, determinant, photo and thermo insensitive lines aided

in introducing the crop to newer niches. Genomic intervention in the

past gave an insight of structural and functional aspects of pigeon-

pea genome complementing the conventional breeding. Availability

of the draft genome sequence and enormous molecular markers

helped in locating quantitative trait loci (QTLs) in a speedy manner.

The recent development of modern genomic tools comprising of

next‐generation sequencing technologies, genomic selections, gen-

ome‐assisted breeding has opened new avenues in pigeonpea breed-

ing. In this review, efforts have been made to throw an insight on

the status of pigeonpea breeding accosting parallel conventional and

genomic research.

2 | ASCENDANTS OF CULTIVATED
PIGEONPEA

Todays cultivated form, C. cajan has evolved from an inter‐specific
hybridization event between Cajanus scarabaeoides and Cajanus

cajanifolius (Pundir and Singh, 1985). The whole genome re‐sequen-
cing studies also confirm the close relationships between C. cajani-

folius and cultivated pigeonpea (Saxena et al., 2014; Varshney,

Saxena, & Jackson, 2017; Varshney, Saxena, Upadhaya, et al., 2017).

The genus Cajanus comprises of 32 species and belongs to the sub‐
tribe Cajaninae (Bohra et al., 2010; Pazhamala et al., 2015; Van der

Maesen, 1990), of which only C. cajan is the domesticated species

(Bohra et al., 2010; Pazhamala et al., 2015; Rao, Phillips, Mayeux, &

Phatak, 2003). Cajanus cajan occupies the primary gene pool,

whereas the wild progenitors are placed in the secondary and the

tertiary gene pool based on their cross‐compatibility with the culti-

vated species (Bohra et al., 2010; Pazhamala et al., 2015).

3 | GENETIC RESOURCES: CORE AND
MINI ‐CORE COLLECTION

Pigeonpea germplasm resource comprises of 13,771 accessions

deposited at the ICRISAT genebank, India (Gowda, Upadhyaya,

Sharma, Varshney, & Dwivedi, 2013; Pazhamala et al., 2015), 11,221

accessions collected at National Bureau of Plant Genetic Resources

(NBPGR), India (Pazhamala et al., 2015; Singh et al., 2014), 4,116

accessions at U.S. Department of Agriculture (USDA), USA, 1,288

accessions at Kenya Agricultural Research Institute's National Gene-

bank of Kenya (KARI‐NGBK), Kenya (Singh, Tyagi, & Pandey, 2013;

Pazhamala et al.,2015) and 433 accessions at National Plant Genetic

Resources Laboratory, Philippines (Upadhyaya et al.,2016).

Unfortunately, in spite of the rich germplasm reserve, its utiliza-

tion in pigeonpea improvement is very limited and remained unex-

plored (Majumder & Singh, 2005; Pazhamala et al., 2015). To accost

these issues, ICRISAT has defined a representative sub‐sets of

pigeonpea germplasm in the form of core collection comprised of

1,290 accessions, mini‐core collection of 146 accessions (Gowda et

al., 2013; Pazhamala et al., 2015) and genotype‐based reference set

(Upadhyaya, Reddy, Gowda, Reddy, & Singh, 2006; Upadhyaya et al.,

2016). These collections represent more than 80% of the diversity

existing in the entire germplasm collection and are ideal resources

for studying genetic diversity, population structure and association

mapping (Reddy, Upadhyaya, Gowda, & Singh, 2005; Upadhyaya et

al., 2006; Gowda et al., 2013; Pazhamala et al., 2015). Extensive

multidisciplinary evaluation of core /mini‐core collection at ICRISAT

has led to the identification of promising accessions for sterility

mosaic disease (24), wilt (6), wilt + SMD (5), pod borer (10), salinity

(16), water logging (23), high yield (54), high zinc (15) and iron (15)

content, whereas NARS identified trait‐specific germplasm for early

maturity (8), high seed yield (2), wilt (39), SMD + wilt (24) from mini‐
core collection (Upadhyaya et al., 2016). The ICRISAT genebank has

maintained 555 accessions representing 67 wild species from six

genera (Upadhyaya et al., 2011). Thus, wealth from the wild has

been extensively utilized by the researchers to develop need based

varieties and hybrids in pigeonpea (Kumar, Priyanka, Lall, & Lal,

2011; Sharma, Upadhyaya, Varshney, & Gowda, 2013; Upadhyaya et

al., 2013; : Pazhamala et al., 2015).

4 | CURRENT LIMITATIONS

Breeding in pigeonpea has always been the biggest bet for breeders.

The inherent crop specific constraints are detailed below:

4.1 | Lack of genetic diversity

The polymorphic survey of sampled Cajanus accessions indicated the

lack of genetic diversity within the primary gene pool. This has left

no option for breeders, rather than utilizing the wild relatives from

secondary, tertiary and quaternary gene pools using appropriate

gene transfer techniques. Despite the high genetic diversity in the

wild relatives, its use has been limited as no proper information on

the presence of useful traits is easily available and an extended per-

iod of research is needed whenever utilized (Goodman, 1990). The

combination of poor agronomic traits, incomplete characterization

and limited collections (Saxena et al., 2014) adds on to the lagging

genetic enhancement with the intervention of wild relatives.
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4.2 | Photosensitivity

Pigeonpea requires shorter days and long hours of darkness for

flower induction (Silim, Coe, Omanga, & Gwata, 2006; Vales et al.,

2012). Interaction of day and night temperature with prevailing pho-

toperiod has a pivotal role in flower induction. This restricts pigeon-

pea adoption beyond 30°northern and southern latitudes (Saxena,

2008). Wallis, Byth, and Saxena (1981) showed an inverse correla-

tion between earliness and photosensitivity whereas Saxena (1981)

confirmed no possibility of breeding late maturing photo‐insensitive
cultivars in pigeonpea. Both photoperiod and low‐temperature sensi-

tivity (Turnbull, Whiteman, & Byth, 1981) has limited the expansion

of pigeonpea across higher altitudes and latitudes, narrowing its use

in alternative cropping system (Vales et al., 2012).

4.3 | Linkage drag

A tight association between desirable traits with undesirable plant/

seed characters often comes in the way of transferring the target

genes into cultivated types. For instance, transferring the high pro-

tein genes from C. scarabaeoides and Cajanus albicans to the culti-

vated type took 12–14 generations for selecting a high protein,

productive phenology and high yield (Saxena & Sawargaonkar,

2016).

4.4 | Lack of funds

Lack of systematic public and minimal or no industrial funding sup-

port to pigeonpea research and development is the major reason for

the sluggish development of varieties with the limited genetic gains

in past. The principal founder of Microsoft Corporation, Mr. Bill

Gates also highlighted on funding and support of private sector for

research and development in pigeonpea during his visit to ICRISAT

(Varshney, Saxena, Upadhaya, et al., 2017; Varshney, Saxena, & Jack-

son, 2017).

5 | RECENT BREEDING APPROACHES

5.1 | Stress resistance

5.1.1 | Disease resistance

The major diseases in pigeonpea are fusarium wilt, sterility mosaic

and phytophthora blight. Fusarium wilt resistance is governed by a

single dominant gene (Pawar & Mayee, 1986) and accounts for yield

loss ranging from 30%–100%. ICP 8863 (Maruti), the first released

wilt resistant variety and ICPL 87119 (Asha), till today, are widely

cultivated for wilt resistance in India. Recently, ICRISAT identified

ICPL 20109, ICPL 20096, ICPL 20115, ICPL 20116, ICPL 20102 and

ICPL 20094 as resistant genotypes (Sharma et al., 2016) after an

extensive screening of 976 breeding as well as germplasm lines in

wilt‐sick plots. On contrary to conventional breeding, Saxena, Kale,

et al. (2017) identified 3 QTLs qFW11.1,qFW11.2 and qFW11.3 for

FW resistance by using a genotyping‐by‐sequencing approach from

3 RIL population (PRIL B, PRIL C, and F2 Population), respectively.

Phenotyping of hundreds of lines in wilt‐sick plots across various

location yielded in two RAPD markers (Kotresh et al., 2006), four

SCAR markers (Prasanthi, Reddy, Rekha Rani, & Naidu, 2009) and six

SSR markers (Singh et al., 2013; : Pazhamala et al., 2015) for FW

resistance.

Fusarium wilt is one of the major diseases, inflicting pigeonpea

productivity in Eastern and Southern Africa (ESA) too. The virulence

pattern existing in ESA is entirely different from that of Asia. The

germplasm/cultivars from ESA are offering greater resistance to

fusarium wilt. After years of screening for wilt resistance in ESA at

wilt‐sick plots in Kenya, Malawi and Tanzania a number of germ-

plasm lines were identified with FW resistance.

Sterility mosaic disease (SMD) is caused by Pigeonpea sterility

mosaic virus (PPSMV), transmitted by a mite (Aceria cajani) owing to

100% crop yield loss if infested severely. Four independent loci, two

duplicate dominant genes (Sv1 and Sv2) and two duplicate recessive

genes (sv3 and sv4) are responsible for the inheritance of resistance

for sterility mosaic disease (Saxena, 2008). SMD is expressed only

when one dominant allele at locus 1 or 2 and homozygous recessive

genes at locus 3 or 4 are present (Saxena, 2008). Although, the

application of sprays in order to control mite populations can limit

the spread of the disease, identification, and introgression of geno-

mic segments attributing disease resistance through genomics‐
assisted breeding (GAB) programme would be an important strategy

for the development of disease‐resistant pigeonpea varieties (Saxena,

Kale, et al., 2017). Genotyping‐by‐sequencing approach was used for

simultaneous identification and genotyping of SNPs, and the candi-

date genomic region identified on CcLG11 was the promising QTL

for molecular breeding in developing superior lines with enhanced

resistance to SMD (Saxena, Kale, et al., 2017). Six QTLs explaining

phenotypic variation were identified on LG7 and LG9 after extensive

phenotyping for SMD resistance (Gnanesh et al., 2011).

Phytophthora drechsleri f.sp. cajani is a soil‐borne fungus which

survives as dormant mycelium in soil and infected plant debris. It is

controlled by a single dominant gene Pd1 (Saxena, 2008). Phytoph-

thora blight of pigeonpea is sporadic in nature, but occasionally

assumes epidemic proportions in places of heavy and frequent rain-

fall. High incidence is usually associated with poor surface drainage

(Bisht, Kannaiyan, & Nene, 1988). Pal, Gerewal, and Sarbhoy (1970)

estimated yield losses due to phytophthora blight to be 98% since

the affected plants dry up rapidly. Several screening methods have

been developed, but screening in sick plots emerged as the best

accounting for large‐scale screening of germplasm (Singh & Chauhan,

1992). Cajanus platycarpus and Cajanus sericeus found to be resistant

to P2 isolate but found susceptible to P3 isolate (Reddy, Sarkar,

Nene, & Raju, 1991). BDN 627, Sehore 1971, ICPL 1871, ICPL

84052, ICPL 84023 and ICPL 88009 emerged as resistant lines after

an extensive screening of 258 genotypes (Gupta, Singh, Reddy, &

Bajpai, 1997). Recently at ICRISAT, ICP 11376‐5, ICP 12730, ICP

12751, ICP 12755, ICPL 20093, ICPL 20100, ICPL 20101, ICPL

20104, ICPL 20105, ICPL 20109 were identified as resistant lines
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for phytophthora (Pande, Sharma, Mangla, Ghosh, & Sundaresan,

2012). Gupta et al. (1997) reported the monogenic dominant nature

of resistance and the involvement of minor genes in the resistance

against phytophthora. Genomic intervention to identify the resistant

gene and associated marker for phytophthora blight has been initi-

ated at ICRISAT.

5.1.2 | Insect resistance

Helicoverpa armigera is the most devastating pest of pigeonpea for

ages. Hence developing a resistant source for this pest is an ideal

seed borne solution to enhance its productivity. However, the resis-

tant source of Helicoverpa is not available among the cultivated spe-

cies. Gene pyramiding with two different insecticidal genes and

tissue‐specific expression to reduce the risk of developing insect

resistance is another attractive option to combat this pest for dur-

able resistance. Expression of a chimeric cry1AcF (encoding cry1Ac

and cry1F domains) gene in transgenic pigeonpea has been demon-

strated towards resistance to H. armigera (Ramu et al., 2012). Apart

from this, an advanced generation population from the cross utilizing

“Cajanus acutifolius” a wild relative from the secondary gene pool as

the pollen parent has shown considerable resistance for pod borer

damage (Jadhav, Mallikarjuna, Sharma, & Saxena, 2012; Mallikarjuna,

Sharma, & Upadhyaya, 1997).

The bruchid (Callosobruchus maculatus F.) resistance is another

important trait for pigeonpea seeds under storage as resistance to

pest has not been observed in cultivated pigeonpea. F1 hybrids

developed from the cross involving Cajanus lanceolatus showed

delayed bruchid lifecycle owing to the antibiosis mechanism of resis-

tance to bruchids (Mallikarjuna, Saxena, Byre Gowda, & Varshney,

2017; Srikanth, Marri, Kollipara, Rao, & Mallikarjuna, 2017).

Pod trichomes too play a pivotal role in the plant defence sys-

tem. The orientation, density, type and length of wild pigeonpea spe-

cies were dominant over trichome characteristics of the released

cultivars (Aruna, Manohar Rao, Reddy, Upadhyaya, & Sharma, 2005).

5.1.3 | Terminal drought tolerance

Though efforts are made to understand the mechanism of drought tol-

erance in pigeonpea, the influence of seasonal variation on occurrence

and intensity of drought has not yet been clearly defined (Saxena, Hin-

gane, Choudhary, & Bharathi, 2015). The severe moisture stress not

only limits the productivity but also restricts the symbiotic N fixation

in pigeonpea (Kumar et al., 2014). Apart from yield and yield‐related
traits, physiological parameters like leaf area, dehydration tolerance,

relative water content and osmotic adjustments too play a vital role in

combating drought stress. Hence, while breeding for drought resis-

tance in pigeonpea, agronomic traits such as pods/plant, seeds/pod,

seed size, seed yield/plant (Choudary, Sultana, Pratap, Nadarajan, &

Jha, 2011) coupled with the deep root system are primely focused.

In tune with conventional breeding, Sinha et al. (2016) identified

candidate drought tolerant genes from the available genomic

resources. The expression analysis of 51 drought‐responsive genes

has provided a set of 10 genes that belong to U‐box proteins, Cation

/ H (+) antiporter proteins, uncharacterized proteins and universal

stress proteins A‐(uspA) like protein. The identified genes pave way

for understanding the molecular mechanism involved in drought tol-

erance (Sinha et al., 2016). Varshney et al. (2012) identified 111 pro-

teins which were homologous to drought‐responsive universal stress

proteins (Pazhamala et al., 2015). CcCYP is the candidate gene iden-

tified for drought stress coupled with salinity (Sekhar, Priyanka,

Reddy, & Rao, 2010; Pazhamala et al., 2015).

5.1.4 | Water logging

ICRISAT has developed an excellent screening technology for water‐
logging tolerance and identified a number of genotypes which exhi-

bit high levels of tolerance to the extended periods of water logging

(Sultana et al., 2012). Among the tolerant genotypes ICPB 2043,

ICPB 2039 and ICPB 2047 are known male‐sterility maintainers and

ICPL 87119, ICPL 149 and ICPL 20125 are known fertility restorers.

This has made breeder's job easy. However, before using the toler-

ant lines in a hybrid breeding programme, their assessment for other

agronomic traits is essential. Since the resistance to water logging is

governed by a single dominant gene (Perera, Pooni, & Saxena, 2001;

Sarode, Singh, & Singh, 2007) its incorporation in the productive A/B

lines will be resource efficient and allows the development of water‐
logging hybrids with greater frequency. Advanced generation lines

developed from the cross employing C. acutifolius when screened

under the water‐logging condition reported the formation of lenticels

in the region above the water surface. This special character

increases the survival rate of pigeonpea lines prone to water logging

(Hingane et al., 2015; Mallikarjuna et al., 2017).

5.1.5 | Salinity

Soil salinity hampers the growth and development of crop due to

the accumulation of salts on the soil surface, mostly under irrigated

and dryland agriculture (Choudary et al., 2011). Higher NaCl /Na2SO4

content in the soil affect crop yield by adversely affecting physiologi-

cal as well as a biochemical pathway. Salinity delays days to 50%

flowering by 1–2 weeks and prolongs the peak period of flowering

and reduces the number and weight of the seeds (Promila & Kumar,

2000).

The wild relatives of pigeonpea, C. scarabaeoides, C. albicans and

C. platycarpus showed a wide range of variation in their salinity tol-

erance. The transfer of salinity tolerance from C. albicans to C. cajan

would be feasible as the high level of salinity tolerance in this wild

species is expressed as a dominant genetic trait (Choudary et al.,

2011).

5.2 | Game changer: cytoplasmic male‐sterility
systems

Reddy and Faris (1981) were the first to make an attempt to breed a

CMS line in pigeonpea using cytoplasm of a wild relative of
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pigeonpea (C. scarabaeoides). Intensive selection and subsequent

backcrossing resulted in the identification of a promising CMS line

(Saxena, Rao, Singh, & Remanandan, 1996). It was believed that the

interaction of wild cytoplasm with cultivated nuclear genome would

produce male sterility. So far, nine such systems namely C. sericeus

(A1), C. scarabaeoides (A2), Cajanus volubilis (A3), C. cajanifolius (A4),

C. cajan (A5), Cajanus lineatus (A6), C. platycarpus (A7), Cajanus reticu-

latus (A8) and C. lanceolatus (A9) have been reported in pigeonpea

with varying degree of success (Singh, Saxena, & Varshney, 2017;

Singh, Sameer Kumar, et al., 2017). Out of these, A4 cytoplasm has

been promising because of its stability under various agro‐climate

zones and availability of good maintainers and restores. The F1

hybrids developed from this CMS produce excellent pollen load and

pod set.

5.2.1 | Criteria in CMS system

The purity of parents and hybrids

The grow out test is the only way so far used to test the purity. But,

the time lapse to grow out test due to the long duration of the crop

is bothersome in pigeonpea. Hence, SSR base purity assessment kit

has been developed for assessing the purity of the hybrids (Saxena,

Ravikoti, & Sultana, 2010; Saxena, Saxena, & Varshney, 2010). Ini-

tially, a set of two simple sequence repeat (SSR) markers was identi-

fied for testing the hybridity of ICPH 2438. Subsequently, after the

screening of 3072 SSR markers on the parental lines, a set of 42

diagnostic markers were identified for purity assessment of the

hybrid ICPH 2671. In order to save time and costs, the set of 42

markers has been grouped into eight multiplexes. With the help of

these markers, reliable detection of off‐types in the commercial

hybrid seed lots can now be undertaken by the public and private

seed companies (Kumar, Singh, et al., 2016).

Naked Eye Polymorphism (NEP) a phenotypic marker, aiding in

the identification of pure hybrid seed, has been developed at ICRI-

SAT. Saxena, Sultana, et al. (2011) identified “obcordate leaf” as a

polymorphic marker and incorporated it into A and B lines. This mar-

ker, controlled by a single recessive gene, can be easily recognized

within a month from sowing. The hybrids developed by crossing the

parents involving normal and obcordate leaf types will always have

normal leaves and the unwanted sibs will have obcordate leaves.

Such off‐types can be detected within a month from sowing. This

approach of hybrid breeding should be promoted to help in main-

taining seed quality of female parents and hybrids.

Identification of stable restorers and maintainers

Fertility restoration in pigeonpea is governed by two dominant

genes. Presence of these two dominant genes makes a hybrid fully

fertile or stable across the environment. The advances made in the

fields of genomics and marker‐assisted plant breeding (Varshney et

al., 2012) can hasten the process of transferring Fr gene into non‐
restorers economically. In this direction, a significant progress has

been made by constructing a consensus genetic map derived from

six inter‐specific mapping populations, involving three mapping

populations segregating for Fr genes. The consensus map comprised

of 339 simple sequence repeat (SSR) loci spanning a distance of

1,059 cM. In three mapping populations, a total of four major QTLs

namely QTL‐RF‐1, QTL‐RF‐2, QTL‐RF‐3 and QTL‐RF‐4 for fertility

restoration were identified showing up to 24% of phenotypic varia-

tion. This consensus genetic map can be used as a reference for

developing new genetic maps to facilitate marker‐assisted selection

to accelerate hybrid breeding (Bohra et al., 2012).

5.2.2 | CMS based hybrids

GTH1 is the world's first CMS‐(A2 cytoplasm) based hybrid devel-

oped at SDAU (Sardarkrushinagar Dantiwada Agricultural University),

S K Nagar, Gujarat in 2004. But, this hybrid failed to gain its stake

hold due to the problems associated with the stability of fertility

restoration caused by high G x E interactions. Thus, world's first

commercial pigeonpea hybrid is ICPH 2671(A4) released in 2010 by

the government of Madhya Pradesh which had 47% yield advantage

over national check Maruti (Kumar, Wani, et al., 2016). Later in

2014, OUAT (Odisha University of Agriculture and Technology)

released ICPH 3762(A4) which registered 20%–67% yield advantage

over local checks owing to FW and SMD resistance. In 2015, Profes-

sor Jayashankar Telangana State Agriculture University, Hyderabad

released ICPH 2740 which showed a superiority of 42% over

national check Asha (Kumar, Wani, et al., 2016). Highly vigorous, dis-

ease‐resistant pigeonpea hybrids had led to a renaissance in pigeon-

pea cultivation.

5.3 | Future breeding thrust

5.3.1 | Temperature‐sensitive male‐sterility system

The reversion of male sterility to fertility and the vice versa has been

reported in a number of crop species (Kaul, 1988). Various environ-

mental factors such as photoperiod, temperature and specific stres-

ses alter the expression of genes controlling male sterility/fertility.

The recent success in two line breeding in hybrid rice triggered the

latter in breeding a temperature‐sensitive male‐sterility system in

pigeonpea (Saxena, 2014). Such genotypes when grown under

<24°C, turn male fertile to produce self‐pollinated seeds; hence,

such male‐sterile lines will not require any maintainer line. The same

line, when grown under high (>25°C) temperature regime, will

remain male sterile; and hence can be used for large‐scale F1 hybrid

seed production when cross‐pollinated by insects (Saxena, 2014).

5.3.2 | Earliness & photo‐insensitivity

Prevailing cultivars of pigeonpea cannot fit in preceding or proceed-

ing cropping systems due to extended duration and photo‐sensitivity.
Hence, photo‐insensitivity coupled with earliness is the desired trait

of interest for the breeders. In this regard, super‐early pigeonpea

with defined traits of earliness, photo‐insensitivity, impressive per

day productivity, stress escape mechanism, niche to fit well in
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wheat–pulse cropping pattern as well as rice fallows emerged as a

new intervener in pigeonpea breeding (Shruthi et al., 2017). Faster

generation turn over, with faster introgression of traits eases the

study on the genetics of biotic and abiotic stress by developing map-

ping population within the short span of time (Vales et al., 2012).

Extensive test crosses and backcrosses are carried out at ICRISAT to

explore the conceivable heterosis for greater and stable yield at

newer niches.

5.3.3 | Plant type

The two plant types Determinate (DT) and Indeterminate (IDT) exist

in pigeonpea (Mir et al., 2013). Short‐statured DT types cease their

growth once they reach flowering. Whereas, vigorous IDT types con-

tinue the growth even after flowering. Though IDT is a dominant

trait preferred by pigeonpea growers, continuous flowering followed

by non‐synchronous harvesting draws the attention on DT type

breeding. High initial vigour, tolerance to drought & water logging

and ease in mechanical harvesting in DT type are found advanta-

geous over IDT type. Thus, to avoid this ambiguity, Saxena, Obala, et

al. (2017) studied the inheritance of IDT growth habit over DT

growth habit. They used Indel‐derived markers to differentiate DT/

IDT lines and reported that CcTFL1 is a candidate gene for growth

habit in pigeonpea. These efforts will be useful in marker‐assisted
backcross breeding programme and allow early generation selection

efficiency in crossing programme to select both DT and IDT lines.

Mir et al. (2014) reported CcTFLI as a candidate gene for deter-

minacy explaining 45%–60% phenotypic variation for determinacy.

Whole‐genome scanning approach using SNP and DArT assays has

been used to unravel the mechanism of transition from indetermi-

nate growth habit to determinate growth habit in pigeonpea (Mir et

al., 2013; : Mir et al., 2014). This helps in understanding the pigeon-

pea domestication process. Further, faster manipulation in growth

habit and flowering time will be favored in this climate‐smart breed-

ing era.

5.3.4 | Protein content

The protein content of pigeonpea, in general, varies around 20%–
22%. Protein content is mainly controlled by additive genetic action

(Saxena, 2008). Extension of hybrid parent research in the direction

of breeding high protein A‐lines can help in developing hybrids with

25%–30% yield advantage and high (26%–27%) protein content. Sax-

ena and Sawargaonkar (2016) reported that newly bred pigeonpea

lines have protein between 28%–30% and yield good as cultivars. An

estimate of protein yield showed that the cultivation of high protein

lines in one hectare will yield an additional 100,000 g protein for the

farming families living under subsistence level.

5.3.5 | Cleistogamous flower

“Natural out‐crossing” considered as a boon in hybrid breeding, is

also considered as a genetic contaminant in varietal breeding. The

outcrossing extent in pigeonpea is up to 25%–30% (Saxena &

Sharma, 1990). To maintain the true to type especially in partially

out‐crossed species, it needs a lot of resources in terms of isola-

tion distance, installation of insect‐proof cages and labour charges

for rouging and seed cleaning operations. In this context, a novel

flower trait called cleistogamy is identified at ICRISAT. Genetic

purity of a variety can be maintained through the incorporation of

partial cleistogamy into desirable cultivars. Considering these facts

attention was paid to a natural mutant with wrapped flower

morphology or cleistogamy (Saxena et al., 1994). Cleistogamy

trait is governed by a single recessive gene and very easy to

transfer in the background of commercial lines. A partial cleistoga-

mous line ICPL 87154 was developed earlier with low natural

outcrossing (<1%) (Kumar, Singh, et al., 2016; Kumar, Wani, et al.,

2016).

6 | GENOMIC INTERVENTION

ICRISAT in collaboration with national/international partners is lead-

ing the world in pigeonpea genomic studies. In 2012, pigonpea

became the first orphan and non‐industrial legume crop to have a

draft genome sequence. Unraveled genomic resources are currently

utilized for trait mapping and molecular breeding making pigeonpea

a resource‐rich legume crop. A large set of Simple Sequence Repeat

markers (Bohra et al., 2011; Dutta et al., 2011; Mir, Rather, Bhat,

Parray, & Varshney, 2017; Saxena, Ravikoti, & Sultana, 2010; Saxena,

Saxena, & Varshney, 2010), Diversity Array Technology markers

(Yang et al., 2006, 2011), Single Feature Polymorphism (Saxena, Sul-

tana, et al. (2011); Saxena, Cui, et al. (2011)) and Single Nucleotide

Polymorphism Genotyping platforms (Saxena et al., 2014; Varshney

et al., 2012) have been developed for generating low,moderate and

high density genetic maps in pigeonpea. These molecular markers

and genetic maps provide greater opportunity to discover genes/

QTLs responsible for important targeted traits leading to genetic

improvement of the crop. In addition to this, association mapping,

marker‐based QTL mapping, candidate gene‐based association map-

ping, transcriptomics and whole‐genome sequencing has been used

to identify markers and candidate genes responsible for traits like

flowering time, fertility restoration Wilt and SMD resistance, deter-

mancy (Mir et al., 2013), yield as well as phenology in pigeonpea

(Mir et al., 2017).

Modern genomic tools like next‐generation sequencing (NGS)

technology, genome‐wide‐genetic‐markers, transcriptome/genome

assemblies enabled to establish a wide range of genomic resources

supporting pigeonpea breeding. Whole mitochondrial genome

sequence paved new avenue for a better understanding of cytoplas-

mic male‐sterility systems and hybrid breeding in pigeonpea. New

generation mapping populations like multiparent advanced genera-

tion intercross (MAGIC) and nested association mapping (NAM) pop-

ulation not only ensures the best utilization of high‐throughput
genotyping/sequencing platforms, but also offers several advantages

over conventional (biparental) mapping populations in terms of
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greater resolution and allelic richness aiding in family‐based QTL

study and Linkage‐linkage disequilibrium analysis (Bohra et al., 2017).

6.1 | Genomic research: future prospects

6.1.1 | Genetic diversity via sequencing/
re‐sequencing

Limited genetic diversity is the impending danger in genetic improve-

ment of pigeonpea. It is high time to introduce novel genetic varia-

tion through the intervening mutation, landraces and wild relative in

today's systematic breeding programmes. However, the linkage drag

associated with favourable alleles restricts the satisfactory gene

transfer from wild to cultivated forms. In this context, the available

NGS technology and draft genome sequence in pigeonpea provide a

great opportunity for exploring nucleotide‐level diversity in culti-

vated, landraces and wild species accessions and its relationship with

phenotypic diversity (Varshney et al., 2012). Re‐sequencing of germ-

plasm accessions will provide a better understanding of existing

genetic diversity, associating gene(s) with phenotypes and exploiting

natural genetic diversity to develop superior genotypes (Varshney,

Saxena, Upadhaya, et al., 2017; Varshney, Saxena, & Jackson, 2017).

6.1.2 | Advanced trait mapping approaches

The traditional QTL mapping approach involves identification of par-

ental polymorphisms and genotyping of the populations with the

polymorphic markers in a time consuming and resource intensive

manner (Abe et al., 2012). On the other hand is bulked segregant

analysis (BSA), where marker screening on the extreme bulks and

parents provides trait‐associated markers. Thus, NGS‐based BSA

approaches would be anticipated in future for rapid and accurate

trait mapping.

6.1.3 | Next‐generation breeding

Currently, in pigeonpea, very few genomic inputs like marker‐based
purity testing in hybrids and parents, DNA fingerprinting, genome‐
assisted breeding for introgression of SMD and FW resistance in

elite varieties is employed at ICRISAT (Singh, Sameer Kumar, et al.,

2017; Singh, Saxena, & Varshney, 2017). The available draft genome,

re‐sequencing data, NGS bio‐informatics advances, phenotyping plat-

forms coupled with a recent drop in marker genotyping cost enables

breeders to select appropriate allele combination at an early stage

and facilitate successful introgression from wild to elite cultivars

without the hindrance of linkage drag (Singh, Sameer Kumar, et al.,

2017; Singh, Saxena, & Varshney, 2017). Genomic selection in the

pigeonpea hybrid breeding programme would improve the chances

of breeding high‐yielding hybrids and parental lines. A faith of leap

comprising conventional breeding with genomic inputs of NGS,high‐
throughput genotyping for early generation screening, marker‐
assisted backcrossing (MABC) and marker‐assisted selection (MAS) is

anticipated in coming days to take pigeonpea breeding a step ahead.

7 | SUMMARY

Enormous variability and plasticity of the pigeonpea crop, provided

an opportunity for breeding varieties and hybrids for reducing crop

duration, improving seed quality and overcoming the constraints of

major diseases like fusarium wilt and sterility mosaic. These mile-

stones have helped to increase the production and area of pigeon-

pea, in spite of stagnant yield/ha. Exploitation of heterosis for yield,

breeding for agro‐ecological adaptation and restructuring plant type

for increased harvest index are major possible ways for achieving a

breakthrough in yielding ability. The development of the A4 CMS

system has provided the opportunity for the commercialization of

pigeonpea hybrids. High levels (30%–60%) of hybrid vigour observed

over the standard cultivars and easy methods for producing hybrid

seed have attracted a number of private and public seed companies.

Larger emphasis on development of TGMS lines, short duration

hybrids, early and photo‐insensitive types, determinate plant types is

an added advantage to secure substantial productivity. Complemen-

tary support via genomic interference with next‐generation sequenc-

ing, genome‐wide selection, trait mapping is a reason behind the

renaissance in pigeonpea breeding in today's climate‐smart breeding.

Thus, this paper summarized the key role of conventional as well as

genomic research in pigeonpea breeding.
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