Assessment of Cassava Retting Ability of produced in different regions of Cameroon: Foumbot and Mbalmayo

Identification of contrasted varieties

Wakem G., Tizé I., Tonfack B.L., Youmbi E., Ndjouenkeu R., Dufour D., Fliedel G., Tran T. and Mbéguié-A-Mbéguié D.

J A N U A R Y 2 0 1 9

Published by the CGIAR Research Program on Roots, Tubers and Bananas

The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is an alliance led by the International Potato Center implemented jointly with Bioversity International, the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), that includes a growing number of research and development partners. RTB brings together research on its mandate crops: bananas and plantains, cassava, potato, sweetpotato, yams, and minor roots and tubers, to improve nutrition and food security and foster greater gender equity especially among some of the world’s poorest and most vulnerable populations.

www.rtb.cgiar.org

Contact:
RTB Program Management Unit
International Potato Center (CIP)
Apartado 1558, Lima 12, Peru
rtb@cgiar.org • www.rtb.cgiar.org

ISSN 2309-6586
DOI+ISBN

© International Potato Center on behalf of RTB

Creative Commons License

This working paper is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/.

Disclaimer:
This RTB Working Paper is intended to disseminate research and practices about production and utilization of roots, tubers
and bananas and to encourage debate and exchange of ideas. The views expressed in the papers are those of the author(s) and do not necessarily reflect the official position of RTB, CGIAR or the publishing institution.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>Erreur ! Signet non défini.</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>ii</td>
</tr>
<tr>
<td>Introduction</td>
<td>Erreur ! Signet non défini.</td>
</tr>
<tr>
<td>Material and Methods</td>
<td>Erreur ! Signet non défini.</td>
</tr>
<tr>
<td>Results and Discussion</td>
<td>Erreur ! Signet non défini.</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Erreur ! Signet non défini.</td>
</tr>
<tr>
<td>Reference</td>
<td>Erreur ! Signet non défini.</td>
</tr>
<tr>
<td>Figures</td>
<td>Erreur ! Signet non défini.</td>
</tr>
</tbody>
</table>
Abstract

We examined here the effect of genotype and grown area on retting ability of different cassava varieties. To this end, 17 cassava varieties were harvested from two agro ecological regions from Cameroon and subjected to retting process in the field and in the laboratory. Using a texture analyzer, root softening was measured daily during retting in order to monitor the process. Our preliminary data indicated some interesting trends with a putative effect of growing area. They also led us to point out some putative contrasted varieties displaying different retting properties. These tendencies need however to be confirmed by statistical data analysis before using the putative contrast varieties as model for comparative study of the physiological bases that govern retting and related biophysical indicators.
Acknowledgments

This research was undertaken as part of CRP-RTB 2018 project Cluster CC4.2 of Flagship 4, and funded by the CGIAR Research Program on Roots, Tubers and Bananas (RTB) and supported by CGIAR Trust Fund contributors (https://www.cgiar.org/funders). We would like to thank the IITA station of Nkolbisson, Cameroon for providing us with cassava root and the traditional processors from Bertoua, Mbalmayo, and Foumbot for their support.
Assessment of retting properties of Cassava Varieties from different agropedoclimal regions from Cameroon: Identification of contrasted varieties

Wakem G.a, Tizé I.b, Tonfack B.L.a, Youmbi E.a, Ndjonouenkeu R.c, Dufour D.d, Fliedel G.d, Tran T.f and Mbéguié-A-Mbéguié D.d\

a) Université de Yaoundé I. Faculté des Sciences. Département de Biologie et Écologie végétale. BP 812 Yaoundé Cameroon
b) International Institute of Tropical Agriculture – Cameroon, BP 2008 Messa, Yaoundé, Cameroon
c) Department of Food Science and Nutrition, University of Ngaoundéré, P.O.Box 455 Ngaoundéré, Cameroon
d) CIRAD, UMR QUALISUD, F-3400 Montpellier
e) CIRAD, UMR QUALISUD, Cali, Colombia
f) CIAT, CGIAR Research Program on Roots Tubers and Bananas, Cali AA6713, Colombia

*corresponding author: didier.mbeguie-a-mbeguie@cirad.fr

INTRODUCTION

Cassava retting process is a traditional fermentation that occurs spontaneously during root soaking leading to a roots softening. It is the critical step in the preparation of most traditional cassava-based food in central and West African countries (Ampe et al., 1994). Therefore retting ability of cassava root is considered as one of the most important traits determining the consumer preference.

As other quality traits, retting ability is complex and influenced by both genetic and environmental factors. However, the part of each them in the expression of retting as well as the root’s physiological (biophysical and biochemical) bases that govern this trait of quality remain known. This lack of physiological indicators makes it difficult to take into account this quality trait into account earlier in breeding programs and marker assisted selection. Consequently, the quality traits of cassava hybrids varieties do not meet the end-user expectations and are little or not adopted.

In this study, we attempt to determine the biophysical indicators associated with cassava retting through comparative biophysical and physiological studies of contrasted cassava varieties with respect to this trait. We report here the partial results of the first step of this work, whose objective is to identify, in a varied environmental and genotype context, cassava varieties with contrasting retting ability.

MATERIAL AND METHODS

All experiments were carried out on a working collection of 17 varieties of cassava (Figure 1) grown under conventional practices in two agro ecological zones of Cameroon Foumbot and Mbalmayo. Agrpédoclimactic features of each of them (Kana 1993, https://fr.climate-data.org/africa/cameroon/west/foumbot-894723/viewed on 01/31/2019) are described in figure 2.

Retting experiment of mature roots was done both in the field by the processors and in the laboratory. The assessment of the retting process in the field was evaluated by roots’ palpation. The measurement of root firmness using a method described by Mbéguié-A-Mbéguié et al (2019) was used to monitor retting performed in the laboratory.
RESULTS AND DISCUSSION

Evolution during retting of cassava root softening harvested at Foumbot and Mbalmayo is described in figure 3. Preliminary data analysis indicated that Cassava varieties displayed a different softening rate according to their harvest area. But all varieties soften completely after 50 hours. A marked softening contrast was observed at 24h after retting initiation.

The varieties grown at Foumbot globally showed a higher firmness level compared to that produced at Mbalmayo suggesting a production zone effect in the development of retting. At this time, a contrast in terms of softening also emerges between varieties. Some varieties kept a high level of firmness (I090616 and local to Foumbot and 01-1797 and the local to Mbalmayo) while others (01-1797 to Foumbot and 01-0040-27) are strongly softened.

CONCLUSION

Preliminary data processing has shown some interesting trends. However, they need to be confirmed by extensive statistical analysis in order to (i) quantify the genotype and production area effect on retting ability and (ii) confirm the contrasting retting ability between identified varieties before using them as model for studying the physiological bases that govern retting and related biophysical indicators.

REFERENCES

Cassava varieties used in this study are IITA’s hybrids, are composed of white-fleshed varieties (A), bio-fortified and Yellow-Fleshed varieties (B), and white-fleshed varieties (A) including the LMR included as control in the trial. Zai ebome ze in the local variety produced and provided by the processor who participate in the study.

Figure 1: Collection of different cassava varieties used in this study

Figure 2: Geographical localization (A) and agropedoclimatic parameters (B) of agro ecological regions target in this study.
Cassava roots harvested at maturity and stored at 4°C were peeled, rinsed with water and kept retting at room temperature. Root softening was measured using a TA-XT2 textural analyzer as described in material and method section. The area under the texture evolution curve (AUTC) was calculate to express root softening in Newton per second (N.s⁻¹).

Figure 3: Root softening measurement during retting process of different cassava varieties from Foumbot (A) and Mbalmayo (B)
The CGIAR Research Program on Roots, Tubers and Bananas (RTB) is an alliance led by the International Potato Center implemented jointly with Bioversity International, the International Center for Tropical Agriculture (CIAT), the International Institute of Tropical Agriculture (IITA), and the Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), that includes a growing number of research and development partners. RTB brings together research on its mandate crops: bananas and plantains, cassava, potato, sweetpotato, yams, and minor roots and tubers, to improve nutrition and food security and foster greater gender equity especially among some of the world’s poorest and most vulnerable populations. www.rtb.cgiar.org