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Abstract 19 

Precision phenotyping is evaluation of the genotype’s expression in a given environment with 20 

minimum influence of the experimental error. This chapter presents the basic principles of 21 

experimental designs and lists commonly used experimental designs for phenotyping crop 22 

genotypes. Experimental designs include unreplicated designs, incomplete block designs and 23 

variable replication block designs along with some selected software that can be used to generate 24 

the designs. Some illustrations experimental designs and key directives of the software have also 25 

been included. 26 

 27 

Key words: phenotyping, experimental designs, statistical analysis 28 

 29 

 30 

Introduction 31 

Phenotyping stands for observing or evaluating a genotype(s) in an environment, with least effect 32 

due to experimental error, while genotyping stands for observing and describing primarily the 33 

genetic make-up of the genotype which is done in terms of using various molecular markers such 34 

as amplified fragment length polymorphism (AFLP), simple sequence repeats (SSR) and single 35 

nucleotide polymorphism (SNP). A phenotype is an expression of the molecular construct of a 36 

genotype in a given environment and depends on the various sources that govern the expression. 37 

Thus, if a genotype is to be phenotypically evaluated in a specified-factor controlled/designated 38 

environment, for example a drought-stressed environment, effort should be made to eliminate the 39 
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effects of all the other factors which influence the phenotypic expression. We will discuss 40 

designs commonly used for phenotyping in grain legumes or for crop variety evaluation in 41 

general. The experimental designs may depend on the nature of genetic material and its 42 

availability. 43 

 44 

The selection of the traits for phenotyping is important from various perspectives. Tuberossa 45 

(2011) has discussed key concepts, issues and approaches for phenotyping for drought-stressed 46 

crops. The role of phenotyping of drought-adaptive traits and use of germplasm resources and 47 

genomics methods has been emphasized to improve drought-resistance, and important elements 48 

of field plot techniques for obtaining phenotypic data under water-limited conditions have been 49 

listed. Recent interests have been found in identifying traits that can be used to identify genotype 50 

for climate change using climatic ad agro-ecological information (Bari et al. 2012). The field-51 

based precision phenotyping may be used to generate high-quality and large-scale datasets under 52 

managed stressed environments providing valuable guidance for drought screening (Campos et 53 

al. 2011). Depending on the trait, the mechanism of phenotyping could vary. The phenotyping 54 

can take place in petri dishes in a temperature controlled room, pots in a green house or plots in a 55 

field at a location with known biotic, abiotic and edaphic conditions/factors. The phenotypic 56 

expression of the traits of interest of what is being phenotyped, for example the genetic material, 57 

requires the identification of the population of the responding units, for example the field plots 58 

under an environment with known stress levels. 59 

 60 
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The objective of this chapter is to briefly discuss basic principles of experimental designs and 61 

provide examples of various experiment designs used in phenotyping the crop genotypes at 62 

various stages of plant growth. We give main features of statistical analysis of data generated 63 

using such designs. We also overview some main statistical software which are used to generate 64 

these designs.  65 

 66 

Design of Experiments  67 

 68 

Experimental design for phenotyping will depend on the experimental material and sources of 69 

variation there in which are likely to distort the genotypic value of the genotypes. Experimental 70 

design is a mechanism to generate scientific evidences for collecting statistically valid and 71 

reliable pieces of evidence on the phenotype of the underlying genotype and is guided by the 72 

level of variability within the experimental material, size and shape of the experimental unit (e.g. 73 

a pot in a greenhouse and a plot in a field), operational convenience and cost. The experimental 74 

material may be seeds of a genotypes kept in petri-dishes for dormancy and germination is the 75 

trait for phenotyping;  seedlings grown in tubes for tolerant to salinity levels;  plants in pots kept 76 

in the green-house response to controlled application of stress—moisture stress, insect, disease 77 

infection, or field plots for yield and yield components evaluation.  78 

 79 

An experimental unit is smallest division of the experimental material to which a genotype is 80 

assigned recognizing the fact that any neighbouring experimental units may be assigned to a 81 
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different genotypes. Set of all the experimental units form the experimental material. In simplest 82 

terms, an experimental design is an assignment of treatments to the experimental units and is 83 

implemented using the principles of randomization, replications and local control of 84 

experimental error or reduction of errors with a view to obtain valid and precise evaluation of the 85 

treatments under investigation. These three basic principles of experimental designs are also 86 

known as 3Rs of Sir R.A. Fisher (1990). Randomization is a random assignment of genotypes 87 

(treatments) to the experimental unit. It is a key element for assigning validity to the information 88 

on phenotype and forms the basis for describing the phenotype using a statistical model. 89 

Replication, the number of experimental units assigned to a given genotype, is essential for 90 

estimating the experimental error or experimental error variance which is variation arising from 91 

the responses of the same genotypes on homogeneous experimental units. In reality experimental 92 

material is not homogenous, the effort is made to eliminate the effect of any systematic factor 93 

using proper field plot management techniques and or by accounting for these systematic factors, 94 

which helps in reducing the experimental error variance. The experimental error variance also 95 

depends on the size and shape of the experimental units determined by the nature of the 96 

experimental material required for phenotyping and the treatments applied.  97 

 98 

The precision of the treatment performance or effect depends on the variability in the 99 

experimental material and number of replications, and can be increased by reducing the error 100 

variability and or by increasing the replication. When the error variability cannot be reduced 101 

further, the number replications (r) can be chosen to achieve estimates with a given precision of 102 
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the treatment estimates using the following commonly used expression 103 

 
2

2

4
r




 , where   is the coefficient of variation of the trait of interest for the population or the 104 

experimental material after eliminating the effects of every systematic factors, and   is the 105 

relative absolute difference in the observed treatment mean from the r  replications and the true 106 

treatment mean.  The basics of the principles of experimental designs are described in standard 107 

texts Federer (1955), Cochran and Cox (1957), Kempthorne (1983), Cox and Reid (2000), Mead 108 

et al (2002), Hinkelmann and Kempthorne (2005, 2008) among others. A number of specific 109 

situations related experimental designs are given in Hinkelmann and Kempthorne (2012). We 110 

also refer to a checklist of questions experimenters are advised to answer, were provided by 111 

Jeffers (1978).  112 

 113 

There are primarily two types of effects assumed for the treatments (genotypes) which form the 114 

basis for developing the criterion for which the designs are constructed. Under genotypes effects 115 

assumed as fixed, designs are developed by minimizing the average variance of estimated 116 

difference between effects of pairwise treatments and the resulting designs are called A-optimal 117 

(Kiefer, 1959). Under this set-up one evaluates the phenotypes in form of best linear unbiased 118 

estimates (BLUEs).  The crop variety trial process comprises of selecting a number of desired 119 

genotypes from a much larger number under evaluation and, therefore, the genotypes keep 120 

varying with time and the prediction of future performance of a genotype is needed. In this 121 

situation genotypes are seen to have been randomly drawn from a population or a process 122 

resulting from a breeding strategy, and the genotype effects may more appropriately could be 123 
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assumed as random. Maximization of genetic gain or heritability are the parameters of interest. 124 

These lead to developing experimental designs which could optimize for average variance of 125 

predicted difference between the best linear unbiased predictors (BLUPs) (Cullis et al. 2006). 126 

 127 

At various stages during plant development, observations are recorded on the expressions or 128 

responses in the field-books or in an electronic form using a hand-held palmtop or other 129 

electronic devices. The data are then subjected to transformation, e.g. yields recorded at plot 130 

basis are transformed to yield per hectare, before using them in statistical analysis. 131 

 132 

Software for generating experimental designs 133 

There are several statistical packages such as GenStat (Payne 2011), SAS (SAS Institute Inc. 134 

1989), CycDesigN (Whitaker et al 2002), Agrobase (Agronomix Software, Inc. 1999) etc. that 135 

can be used to generate randomized plans. Design for partial replications can be generated using 136 

codes of DiGGer, an R-package (Coombes 2009). 137 

 138 

Data Analysis Procedures 139 

Statistical analysis is a procedure to draw inference on the genotypes by searching pattern in the 140 

phenotypic evidences and assessing the strength of the pattern relative to the noise arising from 141 

experimental errors. Power of the evidence on the genotype effects can be enhanced by 142 

incorporating any features inherited in the experimental material at the design and analysis 143 

stages. The data or response values are generally modelled using the following representation: 144 
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 Data or function of (Data) = Pattern (experimental factors, environmental patters, any 145 

other systematic feature in the experimental material) + random error,  146 

 147 

The total variability in the data is then partitioned into that due to various components of the 148 

pattern and errors. The error variance, measured by error mean-squares, is used to assess the 149 

significance or contribution of the components of interest in the pattern. Often we use analysis of 150 

variance (ANOVA) and estimate means with standard errors, perform multiple comparisons and 151 

residual plot analysis is used to examine the validity of assumptions underlying the ANOVA. We 152 

will now discuss a number of commonly used experimental designs for phenotyping in a wide 153 

range of disciplines, such as plan breeding and genetics, physiology, pathology and entomology. 154 

 155 

Experimental Designs for Phenotyping of Crop Genotypes 156 

For phenotyping of improved genetic material, resistant to biotic and abiotic stress factors, through 157 

collection-selection missions, crossing, and evaluation in field conditions, the experimental designs 158 

are needed for preliminary screening, advanced yield trials, multi-locational trials, international 159 

nurseries, as given in the following. The necessary codes and steps for using GenStat menus and R-160 

package DiGGer are given in the Appendix. 161 

 162 

Preliminary screening/unreplicated trials 163 

At the preliminary stage of genetic material development or the early generation variety trials, the 164 

number of genotypes is reasonably large with seeds limited to one two replications. Further, seeds 165 



 9 

 

 
 

of a number of genotypes, called checks with similar maturity level, are available in sufficient 166 

number for required number replications for evaluation of experimental errors. A number of 167 

experimental designs that are available include reinforced block designs (Das 1958), augmented 168 

designs of Federer (1961) in one-way blocks, and those due to Federer and Raghavarao (1975), and 169 

Lin and Poshinsky (1983) in two-way blocks. A randomized plan for 45 unreplicated test genotypes 170 

in total in 9 incomplete blocks of size 8 and comprising 3 checks and 5 test entries each is given in 171 

Table 1.  172 

[Insert Table 1 here] 173 

 174 

The statistical analysis model accounts for the effects of incomplete blocks, or row and column 175 

effects, and genotype effects. Interest lies in estimates of adjusted means for the genotypes and their 176 

standard errors, along with  estimate of error variance, coefficient of variation CV%, standard errors 177 

of comparisons of two test entries, test and check entries, two check entries. The software that could 178 

be used includes GenStat (REML command), SAS (PROC MIXED) and ICARDA programs using 179 

GenStat software codes. 180 

 181 

Advanced yield trials/replicated trials 182 

Majority of research has gone into developing experimental designs for situations in crop variety 183 

evaluations where seeds are available to implement replicated trials. Designs with high efficiency 184 

factor are available for almost any number of genotypes evaluated in practices.  Our experience 185 

indicates that the following types of designs have been found to be used frequently. However, these 186 
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are not our recommendations. 187 

 188 

Small number of genotypes (V<8) 189 

Often the experimental units within small sized blocks can be expected to be homogeneous.  190 

Phenotyping a relatively small number of genotypes in tubes or pots in green house or in plots in 191 

the field one may use Randomized Complete Block (RCB) designs with larger number of 192 

replications resulting into error degrees of freedom around 30. For controlling experimental error 193 

variation in two directions, for example in the field, Latin Square (LS) designs and Youden Square 194 

designs are found suitable. LS designs, the number of replications is equal to the number of 195 

genotypes while in RCB designs they can be chosen at will. An example is given in Table 2. 196 

[Insert Table 2 here] 197 

  198 
Moderate number of genotypes (V≤15) 199 

While scope lies in having a better control of variability, with moderate number of genotypes 200 

frequent use of randomized complete block (RCB) designs can be found with three or more 201 

replications. An example is given in Table 3. 202 

[Insert Table 3 here] 203 

 204 
 Large number of genotypes (V>15) 205 

In field trials, the plot-to-plot variability within block increases with size of the block. If a large 206 

number of genotypes are experimented using complete blocks then plot-to-plot variability within 207 

the large sized blocks could be perceived to be considerably high and thus RCB design may not 208 
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give precise estimates unless replications are increased at added cost. Experimentation in relatively 209 

smaller sized blocks i.e. use of an incomplete block design seems to be a favorable alternative. 210 

Further, it is possible to find designs in incomplete blocks such that if we rearrange/position the 211 

incomplete blocks in such a way that the group of incomplete blocks placed physically together on 212 

the layout also form full replicates. Such designs are called resolvable block designs. An advantage 213 

of resolvable block design is that effectiveness of incomplete blocks can be assessed in relation to 214 

complete blocks. Literature contains several classes of resolvable incomplete block designs:  215 

balanced incomplete block designs, square lattice designs, rectangular lattices, α-designs, also 216 

called α- lattices, in one-dimension; these designs are based on the structure of number of 217 

genotypes, e.g. it may be a square number or a rectangular number. The α- designs (Patterson and 218 

Williams 1976) are available for almost every practical number of genotypes, with a small 219 

difference in block sizes, and suit most of the field configuration. The number of replications can 220 

also be chosen at will.  221 

 222 

α -Designs: A class of Resolvable Incomplete Block Designs 223 

Patterson and Williams (1976) introduced a class of resolvable incomplete block designs 224 

for any number of varieties v and block size k such that v is a multiple of k, i.e., v=ks 225 

where s is the number of incomplete blocks of the same size k. Thus the square lattices, 226 

rectangular lattices, and resolvable cyclic designs are the special cases of    - designs. 227 

Construction of these designs required knowledge of generation array, a combinatorics 228 

concept and the methods are given in Patterson and Williams (1976), Patterson et al 229 
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(1978), and John and Williams (1995). However, these can be obtained by using 230 

CycDesigN software (Whitaker et al 2002) and GenStat (Payne 2011) for number of 231 

genotypes less than 100. These computer generated methods have shown to provide high 232 

efficiency factors within their comparable class of designs for a wide range of parameter 233 

values. There may also be situation where the number of genotypes is not a multiple of 234 

block size, i.e v ≠ ks. Suppose the number of treatments v is represented by 1 1 2 2s sv k k ; 235 

1k  , 2k  , 1s  , 2s  being positive integers. Every replication has 1s  blocks of size 1k  each 236 

and 2s blocks of size 2k  each. In such situations, it is possible to develop designs with 237 

two block sizes 1k  and 2k  where 1k  and 2k  are very close, say have a difference | 1k - 2k | 238 

equal to 1 or 2. The small difference in the block size may still support the homogeneity 239 

of experimental error variances within such blocks. For example for evaluating v = 23 240 

genotypes, one may use 
1 1 2 2v = 23= 4 5 + 3 1 =  + k s k s    , thus using 5 blocks of size 4 241 

and 1 block of size 3 in each replicate. Such designs are derived by omitting one or more 242 

varieties of the   - designs with  v k s . Two examples of α designs are given in Table 4 243 

and Table 5. In case of the designs in Table 5, the empty cell need not be retained or if 244 

required for keeping the planting machinery or any other logistics then it could be filled 245 

by a filler check genotype.  246 

[insert Table 4 here] 247 

 248 
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[insert Table 5 here] 249 

 250 

Designs Eliminating Heterogeneity in Two Directions 251 

When  the  direction  of  soil fertility  is  unknown  or  if variability exists in two 252 

perpendicular directions in the field it is often helpful to use two-way  blocks in the field 253 

to reduce the experimental  error.  There are several   designs   controlling variability in 254 

two directions.  Some  of  the frequently discussed designs  are  row-columns  (Pearce, 255 

1975), Youden-squares  (Youden 1940),  lattice squares, (Yates,  1940;  Cochran  and  256 

Cox  1957), lattice rectangles (Federer and Raktoe, 1965),  row-column  -designs (John 257 

and Eccleston, 1986), incomplete block designs  with  nested  rows and columns (Singh 258 

and Dey, 1979). 259 

 260 

In recent years, a more realistic approach has been suggested for searching experimental designs 261 

using a criterion which maximizes genetic gain due to selection (Kempton 1984). Another related 262 

criterion, minimize average pairwise prediction error variance is presented in Cullis et al (2006). 263 

These designs were obtained for an early generation variety trials (EGVTs), called p-rep designs 264 

are alternative to augment designs in blocks (referred as grid-plots). Simulation studies, based on 265 

1000 runs and 12 different combinations of genetic variance ratio and spatial autocorrelation 266 

parameters along rows & columns, have shown that p-rep designs resulted in higher genetic gain. 267 

In variety evaluation, a more practical situation shows that different sets of genotypes could have 268 
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seeds available for varying replications. Further, in the field layout the spatial variability exists and 269 

the plot errors are generally correlated (Singh et al 2003). To generate experimental designs 270 

incorporating the need of variable replications and correlated errors, Coombes (2009) has 271 

developed an R-program package called, DiGGeR.  An example of p-rep design is in Table 6 for 272 

20 test genotype with no replications and 10 test genotypes with 2 replications and 3 check 273 

genotypes. To generate randomized plans for p-rep designs, DiGGeR package in R- language 274 

programs has been developed  by Coombe (2009).  275 

[Insert Table 6 here] 276 

 277 

Multi-environment Trials 278 

Multi-environment trials (MET), normally designed in replicated designs, e.g., RCB or α-design, 279 

are conducted over multi-locations and multi-years to obtain information on the variety response to 280 

the environments and study the nature of the genotype x environment (GxE) interaction. Main 281 

objectives of METs are selection of varieties for high and stable yield, and their adaptability to 282 

specific zones (clusters) of the environments. The number of and variability due to the locations, 283 

years and experimental error may be used to determine the number of replications per trial. 284 

However, for moderately large number of locations and years, two replications per trial have been 285 

found to be optimal (Kempthorne 1983). A large list of methods of analyses can been found in 286 

literatures and in several review papers (Lin et al 1986, Westcott 1986, Smith et al 2005). The 287 

methods for analysis of GxE interaction studies have used based on extracted patterns in form of 288 

multiplicative models for GxE interaction (Gauch 1988), multiplicative model for G+GxE 289 
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interactions (Weikai and Hunt, 2001), factor analytic representations of GxE interactions using 290 

fixed genotype effects and random environmental effects (Piepho 1997) and fixed environment 291 

effects and random variety effects (Smith et al 2001biometrics). See Smith et al (2005) for a review 292 

of mixed models used in multi-environment variety trials. Singh et al. (1996) using information on 293 

genotype means and standard errors in multi-location trials assessed thee varieties using indices 294 

measuring inter-site transferability of varieties.  The combined analysis at plot levels used to be 295 

under similar designs and under the assumption of homogeneous error variances, primarily due to 296 

limitations of computational software, but in the recent years, a much more complex models can be 297 

fitted at the plot level data with complex structures of variance-covariance matrices using GenStat, 298 

ICARDA modules in GenStat,  SAS, AGROBASE and ASReml (Gilmour et al., 2009). 299 

 300 

A large number of phenotyped data are obtained through the International Nurseries, with specific 301 

purposes, which facilitate screening and evaluation of genetic material across a wide range of 302 

environments. Experimental designs such as RCB, α- designs, augmented designs are used. Trials 303 

should have independent randomizations. CGIAR (Consultative Group for International 304 

Agricultural Research) centers use an ICIS (International Crop Information System) for generating 305 

randomizations and storage and retrieval of crop information in terms of genotype pedigree and 306 

response data. 307 

  308 

Inheritance Studies form a part of the genetics of the traits used in phenotyping through the use of 309 

specific mating designs such as such as complete/partial diallel crosses and line x tester to generate 310 
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information on the gene actions controlling the traits in terms of genetic ratios, genetic variance and 311 

its components (such as additive, dominance, and allelic interactions of various orders). Embedding 312 

of mating and environmental designs derived from incomplete crosses and blocks are discussed and 313 

reviewed in Singh et al. (2012). 314 

 315 
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Table 1. Layout of an augmented design in blocks containing test entries numbered from 1 to 417 

45 and check entries numbered from 46 to 48. 418 

Blocks 1 2 3 4 5 6 7 8 9 

Plots 

1 47 23 41 43 14 36 25 21 22 

2 46 35 26 48 47 13 48 48 1 

3 9 47 46 47 16 4 47 3 5 

4 28 46 33 15 31 47 12 47 47 

5 48 48 47 29 48 48 32 24 48 

6 38 19 6 46 34 46 46 46 44 

7 7 45 48 17 46 20 11 18 46 

8 39 10 30 37 2 40 27 8 42 

 419 

Table 2. A randomized plan of a Latin Square design in six genotypes numbered 1 to 6  420 
  421 
Column

s 1 2 3 4 5 6 

Rows 

 1 1 2 4 5 6 3 

2 4 5 1 2 3 6 

3 6 4 3 1 2 5 

4 2 3 5 6 4 1 

5 5 6 2 3 1 4 

6 3 1 6 4 5 2 

 422 

423 
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Table 3 A randomized plan for a randomized complete block design in four replications and 424 

ten genotypes numbered 1 to 10.  425 

Rep 1 2 3 4 

Plots 

 1 3 11 7 3 

2 2 2 12 8 

3 11 12 4 2 

4 4 3 2 7 

5 9 7 9 10 

6 1 6 10 12 

7 7 4 6 1 

8 12 1 3 6 

9 10 9 11 9 

10 5 5 5 11 

11 6 8 8 5 

12 8 10 1 4 
 426 

 427 

428 
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Table 4. A randomized plan for an alpha design in 40 genotypes, incomplete blocks of size 5 429 

and 3 replications 430 

 

Plots 1 2 3 4 5 

Replicates Blocks 

 1 1 7 40 12 30 36 

 

2 39 34 33 29 1 

 

3 26 32 4 31 14 

 

4 9 2 21 20 10 

 

5 25 17 6 23 19 

 

6 24 8 11 3 22 

 

7 15 37 13 5 28 

 

8 16 35 38 18 27 

2 1 36 38 11 5 32 

 

2 3 13 16 39 30 

 

3 40 31 6 20 1 

 

4 27 8 25 28 33 

 

5 17 9 26 34 37 

 

6 2 29 24 23 15 

 

7 21 35 7 19 14 

 

8 12 22 10 4 18 

3 1 33 2 17 16 32 

 

2 9 40 27 15 14 

 

3 20 8 26 23 30 

 

4 35 12 24 31 34 

 

5 11 4 19 39 28 

 

6 25 29 13 36 10 

 

7 37 22 6 7 38 

 

8 21 3 1 18 5 

 431 

432 
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Table 5. A randomized plan for an alpha design in 29 genotypes, incomplete blocks of sizes 433 

4 and 5, and 3 replications 434 

 

Plots 1 2 3 4 5 

Replicates Blocks 

     1 1 17 15 18 5 29 

 

2 3 8 1 9 16 

 

3 28 12 # 22 7 

 

4 2 26 23 19 24 

 

5 11 21 27 4 25 

 

6 10 14 6 20 13 

2 1 29 10 25 7 8 

 

2 # 21 15 1 26 

 

3 3 4 23 28 14 

 

4 5 22 19 20 9 

 

5 2 16 13 27 17 

 

6 12 6 11 18 24 

3 1 16 6 15 25 22 

 

2 23 8 # 11 17 

 

3 18 26 20 7 4 

 

4 14 27 19 12 1 

 

5 28 13 9 29 24 

 

6 3 21 2 5 10 

 435 

#: the empty plot need not be retained or, if required, could be filled by a suitable filler check. 436 

 437 

438 
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Table 6. A randomized plan, on an 8 × 8 layout, of a p-rep design in 33 genotypes 439 

numbered 1 - 20 have no replications, 21 - 30 have two replications and 31 - 33 are checks 440 

with 8 replications 441 

 442 

Rows\columns 1 2 3 4 5 6 7 8 

1 4 33 20 29 24 5 31 32 

2 31 9 25 23 1 32 19 27 

3 14 30 21 10 31 18 33 28 

4 32 13 33 17 21 27 24 31 

5 6 28 23 32 12 26 30 33 

6 31 16 22 3 33 11 32 15 

7 7 32 26 33 22 31 8 32 

8 33 29 31 25 32 2 33 31 

443 
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Appendix 444 

Some key codes used in generating the experimental designs under various tables. 445 

A1. GenStat Code for Table 2 (Geno stands for genotypes) 446 

AGLATIN [PRINT=design; ANALYSE=Yes] NROWS=6; NSQUARES=1; \ 447 

   TREATMENTFACTORS=!p(Geno); ROWS=Rows; COLUMNS=Columns; SEED=27257 448 

 449 

A2. GenStat code for Table 3 (Rep, Plots and Geno stand for replications or complete blocks, 450 

plots within block and genotypes respectively) 451 

 AGHIERARCHICAL [PRINT=design; ANALYSE=Yes;SEED=2534] \ 452 

  BLOCKFACTORS=Rep,Plots; TREATMENTFACTORS=*,!p(Geno); LEVELS=4,12 453 

 454 

A3. R Language code for Table 6 455 

library(DiGGer) 456 

trep <- rep(c(1, 2, 8), c(20, 10, 3)) 457 

design <- DiGGer(33, 8, 8, TreatmentRep = trep) 458 

design <- run(design) 459 

getDesign(design) 460 

layout <- getDesign(design) 461 

des.plot(layout, seq(1, 20), col = 5, new = TRUE) 462 

des.plot(layout, seq(21, 30), col = 6, new = FALSE) 463 

des.plot(layout, seq(31, 33), col = 7, new = FALSE) 464 

 465 

A4. Further details on GenStat menu and R-program 466 

A4.1 Generate an α- design using GenStat: 467 

To generate randomizations using GenStat statistical package go to its “Stats” menu, “Design” 468 

sub menu, then “Select Design ...” item, (see the screenshot below): 469 
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 470 

This will pop-up the dialog box listing several special analyses (see the screenshot below): 471 

 472 

Select “alpha designs” option then click “OK” button and answer the series of questions on 473 

number of treatments (within the range 20 - 100), number of blocks per replication, number of 474 

replications, and the labels that should be assigned to the factors. Using the “Spread” menu and 475 

further “Data in GenStat”, item from “New” sub menu, one can obtain the randomized plan in 476 

the GenStat spreadsheet as shown in the following screenshot. For more than 100 genotypes, one 477 

may use CycDesigN software (Whitaker et al. 2002). 478 

 479 
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 480 

 481 

The plan in Table 4, in 40 genotypes in blocks of size 5 and 3 replications, can be obtained by 482 

running the following code. 483 

 484 

AGALPHA [PRINT=design] LEVELS=40; NREPLICATES=3; NBLOCKS=8;\ 485 

  TREATMENTS=Geno;\ 486 

  REPLICATES=Rep;\ 487 

  BLOCKS=Blk;\ 488 

  UNITS=Plot;\ 489 

  SEED=1592654 490 

 491 

A4. 2. R- package DiGGer codes for Table 6. 492 

Generate Design for Partial Replications using DiGGer and R Language: 493 

To use DiGGer tool, one needs to carry out required installation for the R package and download 494 
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the following zip-files “R.methodsS3_*.zip”
1
, “R.oo_*.zip”

2
, and “DiGGer_*.zip”

3
 where “ * ” 495 

in the filenames denotes the current version available. Then one may start the R program , go to 496 

the “Packages” menu and select “Install package(s) from local zip files…”. Find the downloaded 497 

files and let R install them. 498 

 499 

 500 

 501 

Once DiGGer packages are installed, the following codes are used to generate the experimental 502 

design in the Table 6. 503 

# load required package 504 

library(DiGGer) 505 

 506 

# 20 genotypes with no replications [1  - 20] 507 

# 10 genotypes with 3  replications [21 - 30] 508 

# 3  genotypes with 8  replications [31 - 33] 509 

trep <- rep(c(1, 2, 8), c(20, 10, 3)) 510 

 511 

# in total we have 33 genotypes (i.e. 20 + 10 + 3) 512 

# in total we have 64 plots (i.e. 20*1 + 10*2 + 3*8) 513 

# field layout set as 8 rows x 8 columns 514 

design <- DiGGer(33, 8, 8, TreatmentRep = trep) 515 

 516 

                                                           
1
 http://www.austatgen.org/files/software/downloads 

2
 http://cran.rstudio.com/web/packages/R.methodsS3/index.html 
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# once the design search object has been created 517 

# we can produce the design 518 

design <- run(design) 519 

 520 

# extracting matrix of design numbers 521 

layout <- getDesign(design) 522 

 523 

# draw colored field layout 524 

# or you may simply use plain plot(design) function in this case 525 

des.plot(layout, seq(1, 20), col = 5, new = TRUE) 526 

des.plot(layout, seq(21, 30), col = 6, new = FALSE) 527 

des.plot(layout, seq(31, 33), col = 7, new = FALSE) 528 

 529 
# export into CSV file 530 

                                                                                                                                                  
3
 http://cran.rstudio.com/web/packages/R.oo/index.html 
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write.csv(design$dlist, "Variable Replications.csv") 531 

 532 

 533 

 534 

 535 


