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Abstract 26 

Rhipicephalus sanguineus sensu lato (R. sanguineus s.l.) is an important group of ticks that infest a 27 
large panel of animals’ species and are vectors of multiple pathogens of medical and veterinary 28 
importance. As the biology of ticks is driven by abiotic factors, mainly temperature and humidity, 29 
climate changes are incriminated in increasing ticks and tick-borne pathogens incidence. The aim of 30 
this study was to map the current potential geographic distribution of R. sanguineus s.l. in Tunisia to 31 
help anticipating control measures to prevent tick-borne pathogens transmitted by these ticks. 32 
Extracted R. sanguineus s.l. occurrence records from the literature and a field survey across Tunisia 33 
were combined with environmental predictors using the maximum-entropy (MaxEnt) approach. The 34 
higher habitat suitability is expected for R. sanguineus s.l. along the coasts of Tunisia than in the 35 
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internal regions, in particular in the north-east and the north-west of the country. Nevertheless, 36 
suitability reaches the lowest level in the plateau of Kasserine district, center west. The probability of 37 
R. sanguineus s.l. occurrence is positively correlated to the mean temperature of the coldest quarter 38 
and the mean specific humidity of the least humid quarter. The Mediterranean climate which is 39 
prevalent in north and coastal Tunisian regions is favorable to R. sanguineus s.l. occurrence, while 40 
the harsh conditions of the southern and the central-west region is unfavorable for the presence of 41 
this tick. Getting a detailed view of R. sanguineus s.l. potential distribution is of paramount 42 
importance for public health and veterinary decision makers to implement adequate control measures 43 
in the present. 44 

 45 

1 INTRODUCTION 46 

Ixodid ticks are considered as the second most important disease vector to both humans and animals 47 
after mosquitos (1). Globally, their geographic distribution continues to expand inducing an increase 48 
in the tick-borne pathogens in both tropical and temperate regions nowadays (2). The main cause of 49 
this expansion is climate changes, which is affecting more severely the Northern rather than the 50 
Southern hemisphere (3). Mediterranean regions are considered as hotspots of climatic extremes with 51 
increased precipitation and drought in winter and summer, respectively (4). As a consequence of such 52 
climatic changes, it was shown that the geographic distribution of some tick species will increase in 53 
the Mediterranean countries in 2050 (5). 54 

Depending on the geographic region, multiple tick species are threatening animal and human health, 55 
among them, R. sanguineus sensu lato (s.l.) is an important group of tick species including R. 56 
sanguineus sensu stricto (s.s.) which is considered as the most important tick species worldwide (6).  57 

The R. sanguineus s.l. infest large panel of both domestic animals, including dogs, livestock (cattle, 58 
sheep and goats), and wild species, such as reptiles, insectivores and rodents (7). Rhipicephalus 59 
sanguineus s.l. are vectors of multiple pathogens such as Ehrlichia canis, Anaplasma platys, 60 
Bartonella henselea, Mycoplasma canis, Mycoplasma ovis, Rickettsia rickettsii, R. conorii and 61 
several Babesia species (1). Based on their geographic distribution, two main genetic lineages are 62 
described within this tick group: the tropical lineage, which comprises ticks from tropical countries 63 
such as Thailand and Brazil; and the temperate lineage, encompassing ticks from Spain, France and 64 
Italy (8,9).  65 

Although R. sanguineus s.s. natural habitat is more commonly associated with the Mediterranean 66 
region, where it is active from spring to autumn (10), it was shown that the suitable area for its 67 
reproduction has dramatically expanded in Europe by 66% between 1960 and 2000 (11), with a 68 
marked expansion to the northern regions. Indeed, its geographic range extended to UK (12) and 69 
Slovakia (13), where it was reported for the first time in 2014 and 2017, respectively. 70 

As the biology of ticks is driven by both biotic and abiotic factors (mainly temperature and 71 
humidity), mathematical models combining field, spatial and climatic data were shown to be good 72 
predictors of tick and tick-borne pathogens geographic distribution (14). Predicting the risk of tick 73 
infestation may improve the implementation of tick control by both animal and human health 74 
decision makers, and also by farmers (15). 75 

Several methodologies were developed to estimate distributional areas on the basis of correlations on 76 
known occurrences with environmental variables (16). Ecological niche modelling (ENM) and 77 
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species distribution modelling (SDM), have been were extensively used in the last 20 years to 78 
understand geographic distribution and mapping of disease vectors (17). While SDM focuses on the 79 
actual distribution of the species, the ENM involves more the estimation of invasive potential niche 80 
or assessment of environmental effects changes on species distribution potential (18).  81 

Among the tools deployed for ENM, the maximum-entropy (MaxEnt) approach has a predictive 82 
performance considered as consistently competitive with the highest performing methods (19). 83 
Available since 2004, MaxEnt has been widely used in recent years for predicting the potential 84 
geographic distribution of several tick species under current and future conditions using different 85 
climate changes scenarios in several regions around the world (20–23). 86 

Climate change is incriminated in increasing ticks and tick-borne pathogens incidence (24). As 87 
Tunisia is situated in a hotspot region for climate change (25), it’s expected that ticks will shift their 88 
geographic distribution in the near future inducing an important modification of the epidemiological 89 
patterns of tick-borne diseases.  90 

In Tunisia, R. sanguineus s.l. infest a wide range of animal species and transmit several pathogens of 91 
public health and veterinary (26–28) importance (29). As the geographic distribution of these ticks 92 
was not well documented in Tunisia, the aim of this study was to map their potential geographic 93 
distribution under current conditions. This work will provide a guide on the suitable geographic areas 94 
for R. sanguineus s.l., and help anticipating control measures to prevent pathogens transmitted by 95 
these tick species. 96 

 97 

2 MATERIALS AND METHODS 98 

2.1 Study Area 99 

Tunisia, is located in North Africa, and is situated at the south of the Mediterranean basin with 1,445 100 
km long coast that extends from the extreme north-west to the south-east.  101 

The climate in Tunisia consists of three Köppen-Grieg patterns (30) (Figure 1). The northern, 102 
mountainous (maximum altitude 1203 meter above the sea level) and forestall region is characterized 103 
by a Mediterranean climate with mild, rainy winters and hot, dry summers, where the average annual 104 
precipitation reaches 1,500 mm. During winter, the temperature can decrease to 10°C in the 105 
Kroumirie Mountains (Districts of Jendouba, Béja and Bizerte). 106 

The south is occupied by the desert, with an average summer temperature in July and August 107 
reaching 40°C and precipitations in winter below 100 mm (31). The eastern coastal border has an 108 
arid steppe climate where temperature ranges from 10°C in winter (December to February) to 27°C 109 
in summer (June-August) in northern part. In central western regions, temperature ranges from 11°C 110 
in winter to 32°C in summer, drought can be frequent (32). 111 

 112 

FIGURE 1. Köppen-Geiger climate classification map for Tunisia (1980-2016) at 1 km 113 
resolution (30) 114 

  115 
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 116 

2.2 Tick Collection and Identification 117 

Between April 2018 and January 2020 repeated cross-sectional trimestral visits were performed to 15 118 
small and extensively managed sheep flocks randomly selected from six Tunisian localities. A total 119 
of 459 ear-tagged yearling and ewes were monitored. Sheep are reared in mixed flocks with goats, 120 
cows, mules and dogs, and graze all the year-round on natural range-lands and cereal stubbles in 121 
summer. This survey was part of a large study on ticks and tick-borne pathogens in sheep in Tunisia. 122 

During each visit, animals were clinically examined and all attached ticks were collected and stored 123 
in identified tubes (one tube per animal) containing 70% ethanol. Ticks were identified under a 124 
stereomicroscope according to the key of Walker et al. (33).  125 

As mentioned by Nava et al. (34), studies on several specimens from the R. sanguineus complex, 126 
showed that they are morphologically and genetically very close, suggesting that 12 Rhipicephalus 127 
species could be considered as conspecific. For this reason, we pooled the three Rhipicephalus ticks 128 
found in Tunisia (R. turanicus, R. camicasi, and R. sanguineus sensu stricto), as R. sanguineus s.l. 129 

 130 

2.3 Rhipicephalus sanguineus s.l. Data Sources and Data Preparation 131 

2.3.1.1 Data sources 132 
A total number of 16 peer-reviewed articles from PubMed database and 8 Tunisian doctor in 133 
veterinary medicine dissertations were reviewed from the Database of ticks in livestock species in 134 
Tunisia website (35) (Supplementary Material D). This database is managed by the International 135 
Center for Agricultural Research in the Dry Areas (ICARDA) and the National School of Veterinary 136 
Medicine of Sidi Thabet, Tunisia, it contains an exhaustive literature about ticks and tick-borne 137 
pathogens in Tunisia published since 1935. Additional records were included from the database 138 
published as supplementary material by Estrada-Peña and de la Fuente (36) to get totally 103 records  139 
(Table 1).  140 

 141 

TABLE 1. Rhipicephalus sanguineus s.l. occurrence number and sources 142 

 143 

2.3.2 Literature Selection 144 

2.3.2.1 Inclusion criteria 145 
All studies reporting R. sanguineus s.s., R. camicasi, R. turanicus the only species from the R. 146 
sanguineus s.l. present in Tunisia and collected from different host species (cattle, sheep, goats, and 147 
dogs) were selected. The included studies must indicate the geographic coordinates (latitude and 148 
longitude) of the sampled farms or at least the correct name of the smallest Tunisian administrative 149 
subdivision (it corresponds to village called in Tunisian Arabic “imada”). 150 
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2.3.2.2 Exclusion criteria 151 
All the studies where not indicating one of the following information were excluded: GPS 152 
coordinates, a clear indication about the location name of the sampled farms or animals. 153 

 154 

2.3.3 Occurrence Data Preparation 155 
Each tick occurrence record was defined by its geographic coordinates (longitude and latitude in 156 
decimal degrees). From the selected documents, coordinates corresponding to R. sanguineus s.l. 157 
occurrence were extracted and checked in Google Earth (www.google.com) according to the 158 
recommendations of Hijman (37). For occurrences without georeferencing, the centroid coordinates 159 
of the smallest administrative subdivision of the mentioned locality was considered. As different 160 
published studies mentioned the same localities, all duplicated coordinates were considered once. 161 
The extracted records from the data of Estrada-Peña and de la Fuente (36), were combined with the 162 
retrieved data from the Database of ticks in livestock species in Tunisia website and those of the 163 
present field records by resulting in a total of 87 eligible records (Figure 2) (Supplementary Material 164 
E). 165 

 166 

FIGURE 2. Map of Tunisia showing the location of Rhipicephalus sanguineus s.l. collection 167 
sites. 168 

Circles: localities of the field work 169 

Triangles: metadata derivative localities 170 

Red polygon: calibration (M) area 171 

 172 

To avoid model bias and overfitting resulting from spatial autocorrelation (38), we thinned the 87 173 
records using a spatial distance filter of 15 km (spTthin package) (39). Several iterations on R using 174 
increasing thinning distance were tested. The 15 km filter distance was selected as the best in terms 175 
of having a good number of occurrence points to run the models. 176 

Finally, a total of 45 occurrence points was used to model R. sanguineus s.l. potential distribution 177 
over Tunisia. The data was divided randomly into two sets: 50% for model calibration and 50% for 178 
model evaluation. Then, the full set of data was used for creating the final models (40). 179 

 180 

2.3.4 Climatic Variables Selection and Preparation, and Calibration Area Definition 181 
The effect of climate on tick distribution was well described in the literature, where temperature and 182 
humidity were identified to play a major role (10). Indeed, engorged larvae and nymphs enter in 183 
diapause phase at low temperatures whereas the molting period is shorter at higher temperatures (41). 184 
Thus, heat, humidity, and moisture are very important factors of tick survival and dispersion (42).  185 
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To prevent final models from bias, the accessible area (termed M) of the studied species is to be 186 
considered during tick modelling (43). This area describes the dispersal capacities of the tick species 187 
from established populations, by either their own movements or by the host-mediated movements 188 
(44). Assuming the latter play a key role in dispersing R. sanguineus s.l., the M area (study area, or 189 
calibration area) was delimited based on a 50 km buffer zone around the available occurrence points 190 
and used in model calibration (Figure 2). As far as it could be ascertained, there is no publication 191 
indicating the distance to be used for the calibration area, thus we performed several iterations on 192 
QGIS using increasing calibration area radius. The best calibration area was 50 km since it covers the 193 
whole country and we considered that this radius covers the distance reached by different mammal 194 
hosts. 195 

Among the 19 bioclimatic variables, fourteen were removed for the following considerations:  196 

(i) Variables with known spatial artefacts were removed (Bio8, Bio9, Bio18, and Bio19) 197 
(Bede‐Fazekas and Somodi. 2020). 198 

(ii) Variables expressing annual mean values (Bio1 and Bio12) were removed because the 199 
range of temperature between summer and winter in Tunisia is big. 200 

(iii) Variables of extreme values (Bio5, Bio6, Bio13, and Bio14) were removed because 201 
activity of ticks is not conditioned by these extreme values which represent peaks and are 202 
not persistent in time. 203 

(iv) Due to high correlation, variable expressed as a synthetic indicator of other bioclimatic 204 
variables (Bio3) was removed. 205 

(v) Variables expressing seasonality (Bio4, and Bio15) were removed since they provide 206 
information about the whole season. 207 

Five variables were considered in modelling; three related to temperature (BIO2, BIO10 and BIO11) 208 
and two related to humidity (BIO16 and BIO17) (Table 2). This set of five bioclimatic variables were 209 
retrieved from MERRAclim dataset (45), which contains three different version of the same 19 210 
bioclimatic variables corresponding to the last three decades (1980s, 1990s and 2000s), presented as 211 
minimum, maximum and mean values, and available at three resolutions (2.5, 5 and 10 arc-minutes) 212 
(45). Contrarily to the commonly used Worldclim dataset (www.worldclim.org), whose variables 213 
derive from spatially interpolated climate surfaces as obtained from ground weather stations, 214 
MERRAclim uses satellite-based observations (46).  215 

To match our sampling dates (extending from 1999 to 2016) with climatic information, the dataset 216 
for the 2000 decade was considered at 2.5 arc-minutes resolution corresponding to approximately 4 217 
km. The predictors were masked to the M area, then combined to generate five candidate sets to 218 
improve model calibration, with one predictor removed in each dataset except the set 1 (Table 2). 219 
Indeed, using various candidate sets of predictors improves the model calibration (40). 220 

 221 

TABLE 2. Predictors used in the maximum entropy for Rhipicephalus sanguineus sensu lato 222 
modelling (46) 223 

 224 

2.4 Rhipicephalus Sanguineus sensu lato Distribution Modelling 225 
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2.4.1 Ecological Niche Modelling 226 
We used maximum entropy (MaxEnt) that is implemented in MaxEnt (49). All implementation was 227 
performed with R software, using the “kuenm” package (50). By combining R and MaxEnt 228 
softwares, the “kuenm” package allows model calibration, final model selection, evaluation and 229 
extrapolation risk analysis through a simple processing (40). 230 

Here, the ODMAP protocol was used to document all the key steps for producing the final model 231 
((51); Supplementary material A). 232 

 233 

2.4.2 Model Calibration  234 
For model calibration, we tested 15 combinations among linear (l), quadratic (q), product (p), and 235 
hinge (h) features and 17 regularization multiplier values (Supplementary materials B). In turn, each 236 
feature-regularization multiplier combination was tested separately for each environmental dataset. 237 
Candidate models were tested and evaluated based on the statistical significance of the partial 238 
receiver operating characteristic (ROC) at α < 0.05 (52) and omission rate (E < 5%) thresholds (38). 239 
Finally, among significant, low-omission models, we estimated the Akaike Information Criterion 240 
corrected for small sampling sizes (AICc) (53) and delta AICc (∆AICc). We retained 7 models as the 241 
best candidates (∆AICc < 2) to be included for modelling the potential geographic distribution of R. 242 
sanguineus s.l. in Tunisia (Figure 3). 243 

 244 

FIGURE 3. Calibration result and best selected models used for modelling the potential 245 
geographic distribution of Rhipicephalus sanguineus s.l. in Tunisia 246 

 247 

2.4.3 Final Models 248 
Seven models were finally retained having ∆AICc<2 to model the potential geographic distribution 249 
of R. sanguineus s.l. in Tunisia (Figure 3). For each final model, we used a 50% bootstrap with 10 250 
replicates to quantify the uncertainty associated with the available occurrence data, and transferred 251 
the model prediction throughout the whole study area. In particular, the geographic representation of 252 
the final models was obtained by using the median value of the relative occurrence rate (ROR) 253 
among the bootstrapped replicates from each spatial unit (40). 254 

An extrapolation process was necessary to predict the potential geographic distribution of R. 255 
sanguineus s.l. outside the calibration area. To this aim, we used ‘free extrapolation’ by assuming the 256 
species-environment relationship as observed within the calibration area to remain constant outside 257 
the calibration area itself (54). 258 

 259 

3 RESULTS 260 

3.1 Calibration models 261 
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From total of 2,635 candidate models, 1,948 were statistically significant (P ≤ 0.05). Seven were 262 
identified as the best models based on their AICc (∆AICc<2), but none of them met the omission rate 263 
criteria (OR ≤ 0.05; Table 3). All best models were characterized by the “product” feature class 264 
accounting for interaction among the predictors. One of the seven models was selected based on 265 
variables in Set 1, while the remaining models were chosen based on variables in Set 5 (Table 2). 266 

 267 

TABLE 3. Best models after model calibration 268 

In the seven retained models, three variables (Bio2, Bio11, and Bio17) were positively correlated 269 
with tick occurrence probability in the study area (Figure 4).  270 

 271 

FIGURE 4: Mean responses of Rhipicephalus sanguineus s.l. to the Bio2, Bio10, Bio11, Bio16, 272 
and Bio17 predictors in the 7 models after 10 replicates 273 

 274 

3.2 Current potential distribution 275 

Current predictions for R. sanguineus s.l. showed higher suitability along the coasts of Tunisia than 276 
in the internal regions. In particular, higher suitability was observed in the north-east and north-west 277 
of the country specially in two districts (Jendouba and Nabeul) and two islands (Kerkennah and 278 
Djerba), respectively. Low suitability areas were observed as the distance increased from the coastal 279 
areas inside to Central and West Tunisia, in which reaching the lowest level in Kasserine district 280 
(Figure 5).  281 

 282 

FIGURE 5. Potential distribution of Rhipicephalus sanguineus s.l. in Tunisia based on MaxEnt 283 
modelling (Black dots corresponds to districts) 284 

 285 

4 DISCUSSION 286 

The present study aimed, for the first time, to model the current potential geographic distribution of 287 
R. sanguineus s.l. ticks, using MERRAclim variables. When compared to other algorithms applied to 288 
species distribution modelling (e.g. generalized linear models and generalized additive models), 289 
MaxEnt was the best for tick distribution modelling (20). Indeed, since its development in 2004, 290 
MaxEnt was improved markedly by adding several options (55,56). We performed the most up-to-291 
date MaxEnt methodology in ecological niche modelling using the kuenm R package (40), which 292 
allows model calibration and selection, final model creation, and evaluation in a unified way from 293 
within the open source R environment. The candidate model performances are evaluated based on the 294 
significance of partial ROC, which is better than the full area under the ROC curve (52,57,58). 295 

Models’ performance was also evaluated by estimating the omission rate, which denotes how well a 296 
model based on the training data is able to predict the occurrences in the testing dataset. The fact that 297 
all final models showed 8.7% omission rate (a value slightly higher than the selected 5% threshold) 298 
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could be due to the low number of occurrences in the training data (n=22), but does not compromise 299 
the good performance of the models. Indeed, we believe that our model is performant, also because 300 
we used remotely sensed predictors (eg. MerraClim) that allows better model performance than 301 
interpolated ground derived measurements (eg. Worldclim) as argued by Estrada-Peña et al. (14,59). 302 
However, considering that MaxEnt algorithm is performant to manage collinearity (48) we did not 303 
remove predictors with multicollinearity and having ecological significance to R. sanguineus, which 304 
potentially could hamper the analysis.  305 

Although animal hosts play an important role in geographic distribution of ticks, we did not consider 306 
this factor because R. sanguineus s.l. species could be collected from a wide range of animal hosts, 307 
moreover, data regarding the geographic distribution of different domestic mammals are not available 308 
in Tunisia. This omission represents a limitation in the present work. Moreover, there is possibly a 309 
sampling bias due to using occurrence data with different sampling strategies and efforts, which 310 
could hamper the performances of modelling (60).  311 

Assuming that R. sanguineus s.l. species behave equally to climatic variables, could possibly 312 
introduce another limitation to the present study. It was not possible to consider this aspect in the 313 
discussion because of the scarcity of data gathered through natural or experimental observations 314 
regarding the effect of temperature and humidity on R. sanguineus species other than R. sanguineus 315 
s.s. The difficulty of considering separately the behavior of R. sanguineus s.l. species may impact 316 
also the accessible area (M) determination which already suffers from the lack of objective criteria 317 
and detailed protocol for its estimation. Moreover, personal observation of one of the co-authors 318 
showed that in Southern Tunisia, there are probably a wild population of R. sanguineus linked to 319 
desertic wild animals (foxes, rodents…). This R. sanguineus wild population displays a different 320 
biological natural cycle than does the domestic population. This observation needs further 321 
investigations at the field. In addition, there are two reported lineages for R. sanguineus s.l. in the 322 
world depending on the geographic regions. Indeed, R. sanguineus s.l. temperate lineage is present in 323 
areas where the land surface temperature ranges between 10 and 20°C (9,61). Whereas, the tropical 324 
lineage of these ticks is more adapted to a higher land surface temperature, ranging between 20 and 325 
30°C (9). Although there is no information about the type of lineage present in Tunisia, it seems that 326 
it’s more likely to be a temperate lineage as in Spain, France and Italy (62).  327 

In the present study, we estimated R. sanguineus s.l. potential geographic distribution in Tunisia, the 328 
coastal regions, showed the highest suitability. These areas have a temperate climate, according to the 329 
classification of Köppen-Geiger (30). Furthermore, high habitat suitability is also predicted in both 330 
Kerkennah archipelago and Djerba island despite their Köppen-Geiger classification as arid and 331 
desertic, respectively, possibly due to the tempered effect of sea in these islands (30). These islands 332 
are small in area (the maximum radius does not exceed 18 km for Djerba island), so they benefit of 333 
the moderation effect of the sea on both temperature and humidity. The geographic distribution we 334 
mapped overlays to the results obtained by Estarda-Penã and Venzal (63), and Alkishe et al. (23) for 335 
R. turanicus and R. sanguineus s.l., respectively, showing a high suitability of both of these ticks to 336 
northern and central-east coastal regions of Tunisia. 337 

The high suitability of R. sanguineus s.l. in coastal region is concordant with the finding of Beugnet 338 
et al. (2009) for R. sanguineus s.s., where a weather research and forecasting (WRF) meteorological 339 
model was used and showed that the best combination of temperature and humidity was 20-30°C and 340 
50-100%, respectively for R. sanguineus s.s. in terms of ability to attach to hosts, take blood meals 341 
and reproduce (activity index). The same model also evidenced how the combination of higher 342 



Mapping Rhipicephalus sanguineus s.l. in Tunisia 

 
10 

This is a provisional file, not the final typeset article 

temperatures (30-35°C) and humidity (above 60%) leads to a lower activity index that varies between 343 
60 and 80% (15).  344 

The very low to low suitability in the central-western regions of Tunisia (Kasserine and Gafsa 345 
districts) could be explained by the big distance to the sea leading to unsuitable climatic conditions in 346 
addition to the limiting effect exercised by the variable Bio11 (mean temperature in the coldest 347 
quarter of the year), which appears to be among the main ecological variables driving habitat 348 
suitability for R. sanguineus s.l. in Tunisia. In this region the dry period is very long, it extends from 349 
April to September with high summer temperatures during long periods (reaching 43°C in August) 350 
and long cold periods in winter (reaching -4°C in January) (64,65). Based on our filed survey from 351 
April 2018 to January 2020, no tick was found in Sebeitla (Kasserine district) during two winter 352 
seasons (January 2019 and January 2020) (Supplementary Material C), where the mean temperatures 353 
recorded in both periods, ranged between 8 and 10°C, respectively (66). These temperatures are 354 
below the theoretical minimal threshold necessary to the tick to initiate molting, which is estimated to 355 
10.8 and 13.9°C for R. sanguineus s.s. larvae and nymphs, respectively (67). Such a limiting factor 356 
for ticks’ development could have been grasped by Bio11, whose mean response curve indicates 357 
increased habitat suitability when mean temperature exceeds 14°C. This behavior is consistent with 358 
the ecology of the species where the long-term low temperature is the major limiting factor for the 359 
establishment of R. sanguineus population in cold regions (68). 360 

In Southern Italy, where the climate is similar to northern Tunisia, R. sanguineus s.s., is influenced 361 
by the Mediterranean climate in natural conditions but behaves differently in spring, summer and 362 
autumn (10). It was observed that the number of eggs laid by female ticks is positively correlated 363 
with humidity and negatively correlated to temperature during spring, which indicates the vital role 364 
of relative humidity when associated to high temperature. This situation is similar to what we see in 365 
Northern and coastal Tunisian regions, where R. sanguineus activity starts in spring and continues 366 
during the summer (69). Indeed, the north-west is characterized by a maximal temperature below 367 
35°C in August, tempered by the proximity to the sea and the rain during the winter. However, in 368 
Southern Tunisia, during the same period, the maximum temperature reaches 45.8°C (Tataouine 369 
district), combined with a low relative humidity, decreases the suitability for R. sanguineus. The 370 
harsh climate in Southern Tunisia, is concordant with the scarcity of R. sanguineus s.l. in this region, 371 
confirmed by the absence of ticks in July 2018, during our field survey. Nevertheless, in July 2019, 372 
we collected in the same region 40 specimens of R. sanguineus s.l. from 19 sheep probably due to the 373 
particular climate of 2019, that was cold and relatively rainy in winter and spring, associated to a hot 374 
summer classified as the third hottest one since 1950 (66). Despite the low suitability in Tataouine 375 
district, the presence of R. sanguineus s.l. could be also explained by the behavior of these tick 376 
species. R. sanguineus withstands the low relative humidity rates (67,70) and on the other hand, R. 377 
sanguineus free stages have both endophilic and exophilic behaviour, they hide in refuges, under 378 
stones and wall crevasses when temperatures increases (71). 379 

Other factors than temperature and humidity, can determine R. sanguineus s.l. distribution such as 380 
host availability and abundance. In the review by Estrada-Peña et al. (7), multiple animal species are 381 
reported to serve as host for R. sanguineus s.l. Indeed, among the 478 R. sanguineus s.l. collected in 382 
the western Palearctic and recovered between 1975 and 2010, 37% were represented by carnivores, 383 
35% by insectivores, 24% by rodents, 13% by sheep, and 12% by equids. In our case, no accurate 384 
data on the distribution of the major host species in Tunisia was available and no information related 385 
to hosts could be included into the model we built. Furthermore, the extent of urban area was 386 
identified as a key factor for R. sanguineus s.l. distribution in China, which could be possibly 387 
associated with the presence of dogs (72).  388 
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5 CONCLUSIONS 389 

Getting a detailed pattern of R. sanguineus s.l. geographical distribution is of paramount importance 390 
for public and animal health point of view in order to implement adequate control measures in the 391 
present and to identify new areas of expansion under different climate change scenarios. Indeed, due 392 
to global warming, the geographic distribution of R. sanguineus is extending to new regions. This 393 
extension was reported in northern Europe and southern America (13,73,74). 394 

The high adaptative capacity of R. sanguineus to different biotopes and its vector role increase the 395 
importance of studying its geographic distribution. The dual endophilic and exophilic behaviour of R. 396 
sanguineus makes their survival possible in large range of environmental conditions, excepting in 397 
very cold regions.  398 

Species distribution modelling showed its efficacy to predict Rhipicephalus spp. potential 399 
distributions both under current and future abiotic conditions in several regions of the world 400 
including Africa (75). However, spatial predictions from such models must be validated by field 401 
observations, which is often hampered by the paucity of the collected data mainly in developing 402 
countries. As many limitations (tick collection efforts, sampling bias, accuracy of occurrence 403 
records…) could affect modelling performance, interpretation should be made carefully to avoid 404 
misunderstanding of such models. To circumvent this limit, we strongly encourage the creation of a 405 
regional network for tick and tick-borne pathogens monitoring in North Africa with an online free 406 
database. In this system, new tick records should be always georeferenced and climatic data collected 407 
with optimal resolution (76). Citizen science should be encouraged through different channels (direct 408 
reporting, GSM transmission…) to improve the knowledge about different tick species phenology 409 
mainly in remote African regions (Sahara, Savannah…). 410 
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TABLE 1. Rhipicephalus sanguineus s.l. occurence number and sources 680 

Source Occurrence records 

Our field survey 22 

DVM dissertation and peer-reviewed 
articles  

48 

Estrada Peña and de la Fuente (2016) 33 
Total 103 

 681 

TABLE 2. Predictors used in the maximum entropy for Rhipicephalus sanguineus sensu lato 682 
modelling (46) 683 

Description Bioclimatic 
variable 

Set 
1 

Set 
2 

Set 
3 

Set 
4 

Set 
5 

Mean diurnal range (mean of monthly 
(max temp - min temp)) 

BIO2 x x x x x 

Mean temperature of warmest quarter BIO10 x x x x  
Mean temperature of coldest quarter BIO11 x x x  x 

Specific humidity (mean of most humid 
quarter) 

BIO16 x x  x x 

Specific humidity (mean of least humid 
quarter) 

BIO17 x  x x x 

 684 

TABLE 3. Best models as resulting from model calibration 685 

N° Regularization 

multiplier 

Variable 

set 

Mean 

AUC 

ratio 

Partial 

ROC 

Omission 

rate at 

5% 

AICc ∆AICc Parameters 

1 0.3 Set 5 1.042 0.00 0.087 772.683 0.000 2 

2 0.4 Set 5 1.049 0.00 0.087 772.707 0.023 2 

3 0.5 Set 5 1.042 0.00 0.087 772.736 0.053 2 

4 0.6 Set 5 1.040 0.00 0.087 772.772 0.089 2 

5 0.7 Set 5 1.047 0.00 0.087 772.815 0.132 2 

6 0.8 Set 5 1.035 0.00 0.087 772.864 0.181 2 

7 1 Set 1 1.031 0.00 0.087 772.989 0.305 2 

AUC = area under the curve. 686 
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ROC = receiver operating characteristic.  687 

AICc = Akaike information criterion corrected for small sample size. 688 

 689 

FIGURE 3. Köppen-Geiger climate classification map for Tunisia (1980-2016) at 1 km 690 
resolution (30) 691 

FIGURE 4. Map of Tunisia showing the location of Rhipicephalus sanguineus s.l. collection 692 
sites. 693 

Circles: localities of the field work 694 

Triangles: metadata derivative localities 695 

Red polygon: calibration (M) area 696 

 697 

FIGURE 3. Calibration result and best selected models used for modelling the potential 698 
geographic distribution of Rhipicephalus sanguineus s.l. in Tunisia  699 

FIGURE 4: Mean responses of Rhipicephalus sanguineus s.l. to the Bio2, Bio10, Bio11, Bio16, 700 
and Bio17 predictors in the 7 models after 10 replicates 701 

FIGURE 5. Potential distribution of Rhipicephalus sanguineus s.l. in Tunisia based on MaxEnt 702 
modelling 703 

 704 



   

Figures 

 

FIGURE 1.  

 



  Supplementary Material 

 2 

 
FIGURE 2.  

 



 3 

 
FIGURE 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  Supplementary Material 

 4 

 
FIGURE 4 
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FIGURE 5.  

 


