

Estimating the value of knowledge management

PROFESSOR JEFFREY ALWANG

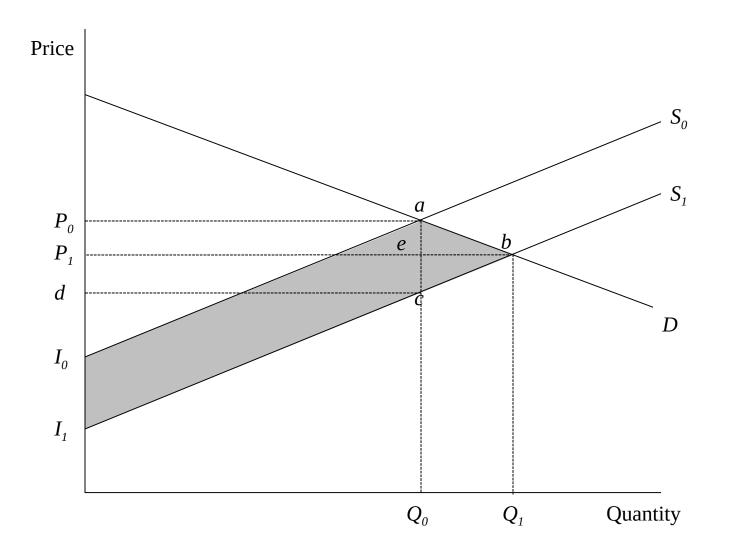
NOVEMBER 13, 2019

OUTLINE OF PRESENTATION

- Discuss current year activities
- Present methodology
- Discuss data needs and limitations

CURRENT YEAR ACTIVITIES

- Design methodology and data collection instruments
- Compile data
 - Crop production: Area planted, quantity harvested, by year
 - Historical and current data on agricultural research expenditures and full-time equivalent scientists by crop and discipline
- Conduct interviews with scientists and research leaders to determine expected returns from different research programs



THE VALUE OF ALTERNATIVE AGRICULTURAL RESEARCH PROGRAMS (Successful) Research leads to reductions in cost of production (cost per

- unit of output)
- Examples: Improved wheat varieties that resist diseases; management research to use water more efficiently
- Cost per unit of output: Either yield increases or cost reduction/avoided input use
- With diffusion of technology, lower cost of production induces a rightward shift in the commodity's market supply
- Economic benefits emerge: Consumers gain (lower market prices); producers gain (lower cost of production)

Basic Model 1: Closed-Economy Case

(EX-ANTE) FACTORS AFFECTING (ECONOMIC) IMPACTS OF ANY RESEARCH PROGRAM

"Size" of the commodity=>P*Q

- Expected size of the shift ($S0 = >S_1$)
 - Nature of technology (scientist interviews)
 - Diffusion=> rate and peak
- Conditions in the market
 - Elasticities of supply and demand
 - Inelastic demand=> Consumers benefits more
 - Elastic demand=> Producers benefit more
 - These depend on "openness" of market

Benefit Estimation

Suppose the supply and demand take linear forms:

Supply:
$$Q_s = \alpha + \beta (P + k) = (\alpha + \beta k) + \beta P$$

Demand: $Q_D = \gamma - \delta P$

where *k* is the downward shift in supply due to a cost saving induced by research, and the supply shift relative to initial equilibrium price is

$$K = k / P = (P_0 - d) / P_0$$

In equilibrium, $P = (\gamma - \alpha - \beta k) / (\beta + \delta)$

When k = 0, $P_0 = (\gamma - \alpha) / (\beta + \delta)$ When $k = KP_0$, $P_1 = (\gamma - \alpha - \beta KP_0) / (\beta + \delta)$

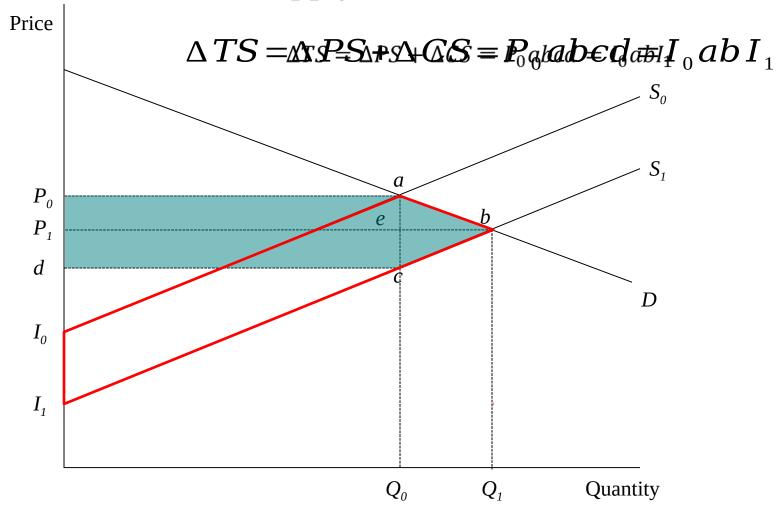
Benefit Estimation

Define the relative reduction in price as

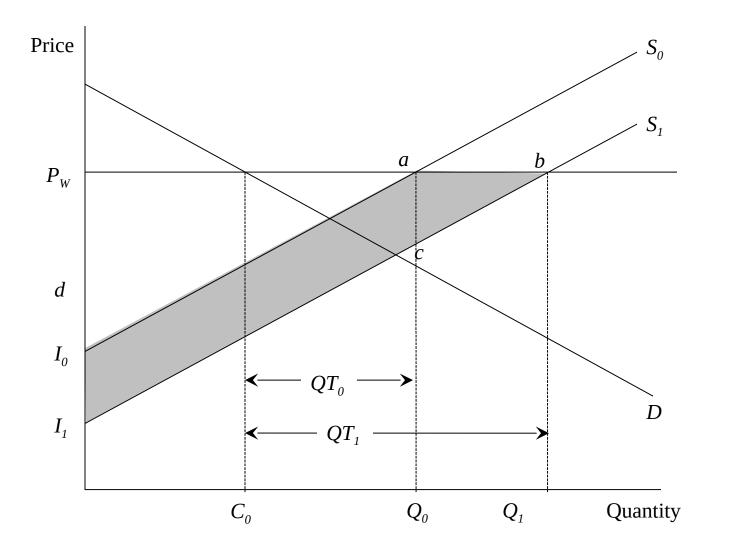
$$Z = -(P_1 - P_0) / P_0$$

where P_0 and Q_0 are equilibrium price and quantity before the supply shift; \mathcal{E} is the supply elasticity and η is the absolute value of the price elasticity of demand

Given above, we have $P_1 - P_0 = -\beta K P_0 / (\beta + \delta)$


and thus,

$$Z = -\frac{P_1 - P_0}{P_0} = \frac{\beta K}{\beta + \delta} = \frac{\beta K}{\beta + \delta} \times \frac{P_0 / Q_0}{P_0 / Q_0} = \frac{K\varepsilon}{\varepsilon + \eta}$$


Benefit estimation: Total surplus change due to research-induced supply shift

Basic Model 2: Small Open Economy

Benefit estimation: Small open economy

- There is no consumer surplus, because price is taken
- Since the country can increase export / reduce importss as much as it needs at the same price, the demand elasticity can be considered as infinite: η → ∞
- Thus, an extension of the closed economy model yields:

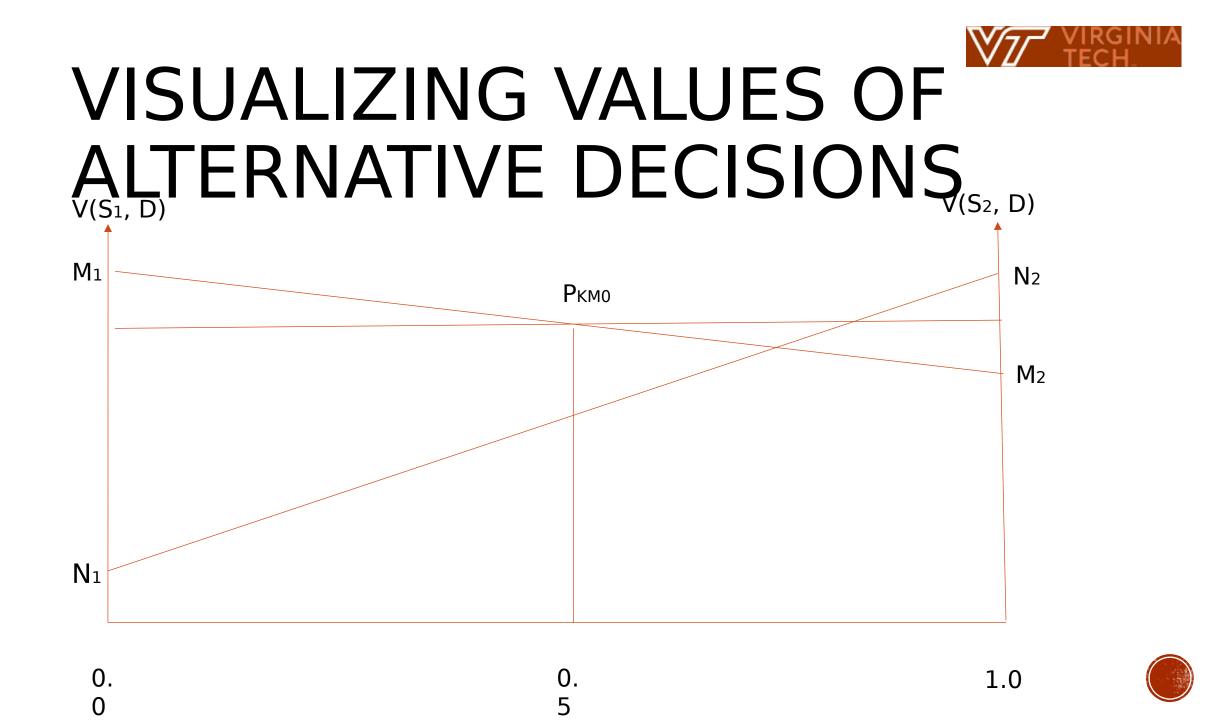
 $\Delta PS = \Delta TS = (K - Z)P_0Q_0(1 + 0.5Z\eta)$ $= \lim_{\eta \to \infty} (K - \frac{K\varepsilon}{\varepsilon + \eta})P_0Q_0(1 + 0.5\frac{K\varepsilon}{\varepsilon + \eta}\eta)$ $= P_WQ_0K(1 + 0.5K\varepsilon)$

KNOWLEDGE MANAGEMENT

- With information on research program outputs and costs, it is straightforward to "optimize" research portfolio=>research allocation that creates most benefits
- Provide information to decisionmakers on benefits from different program allocations and how they compare to the optimal
- Do decision-makers use this information? What is the "value" of KM?
- Why is "value" important?
 - Prioritize KM & invest in different dimensions of KM
 - Enhance KM according to its functions
 - Provide "good" information
 - Lower cost of obtaining information

DETERMINING VALUE: A DECISION-THEORETIC APPROACH

- Value for KM comes from the value of a decision (DKM) made with KM compared to the value of the decision made without KM
- This value is determined by the "state of the world" (SOW) and uncertainty about it=>access to knowledge reduces this uncertainty
- Implications
 - Prioritize KM investments toward "high value" outcomes
 - Consequences of making a bad decision are large (important sector/important policy)
 - Uncertainty or misinformation is high



EXAMPLE: INNOVATION PLATFORMS

- Two states of the world:
 - Innovation platforms aid technology diffusion
 - Innovation platforms do not aid technology diffusion
 - Decision makers do not know which SOW predominates
- Policy question: Do we invest in innovation platforms for the purpose of diffusing a "good" technology?
 - Decision: D1=invest in innovation platform, D2=invest in traditional extension program
 - V(.) is the "value" of the decision given the SOW

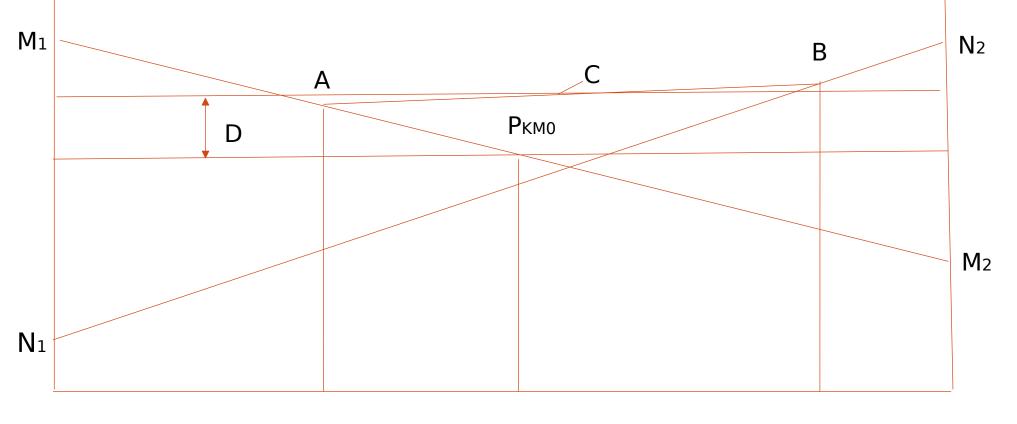
VALUATION

- Vertieal axis refiers and us at desis (and under som SOW):
 - If D₁ is chosen (in the set in the set
 - If D2 is chosen (in the set in the diaditade atension); is not is not is not in the set of the s
- Horizontalazisisettetetesusjelejeletetipeopaoliabisities (boldesutifications feature) keighto right)
- Without KWM, "ggesses's at atast at the before where worked. (arthout KWM), "ggesses's at atast at the before where of the begin by the begin by
- Consider the value of the MM aplan televite for the devision process
 - The KM impossion will provoked a for for the time to be the terms of the source of the source of the source of the terms of t

QUALITY OF INFORMATION IN THE KM PLAN

	KM message	
True "state"	Effective	Ineffective
S1: Effective	.8	.2
S ₂ : Ineffective	.4	.6

- If IPs are effective, then there is an 80 % probability that the KM message will convey this information
- It is more difficult to conclude/convey the message that IPs are ineffective so there is a 60% probability that the KM message will convey this ineffectiveness
- Apply Bayes' theorem to get posterior probabilities of decision makers given the prior and the information content in the KM message


POSTERIOR PROBABILITIES OF DECISION MAKERS

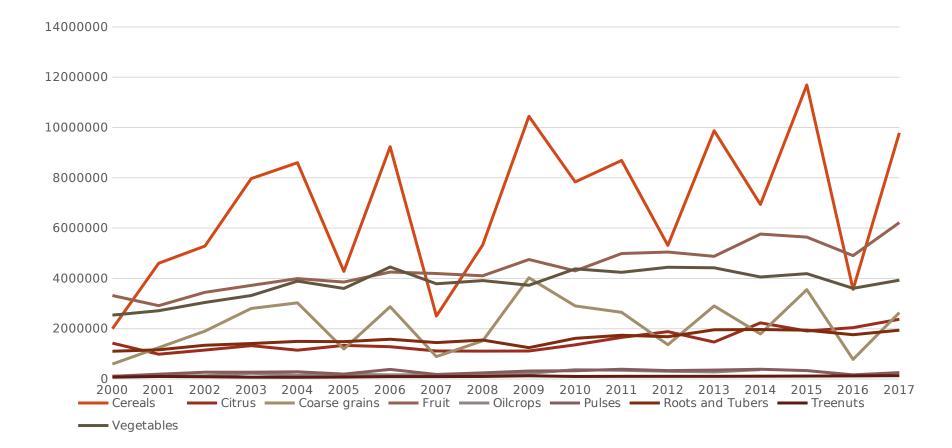
	ki messaye	
True "state"	Effective	Ineffective
S1: Effective	.7	.2
S2: Ineffective	.3	.8

- If KM conveysmessage at the the affective, πthe ame Biand Da will be will be a sequence of the appendix of the american decision de
- If KM system: conversitation age age age theat Pinaffe in off endive = 0 heand = 0 with be with the switch end (Bruit charten sin HPs the extension hing) conversion of the switch end of th
- (Exognative) fKM: If both outcomes are equally likely, the expected value
- Ex Va(n)tes viaeluneioofpk/Mt blétkoeten or utano migesnoite explanel øflike ly(Mt)peogram is expectedavolferoride() eisweren michopolientvite ownedevi (Pram) ch. Ed and the (akpected) eakine pricipika/m(Disstance e) tical difference between the value

VISUALIZING VALUES OF ALTERNATIVE DECISIONS

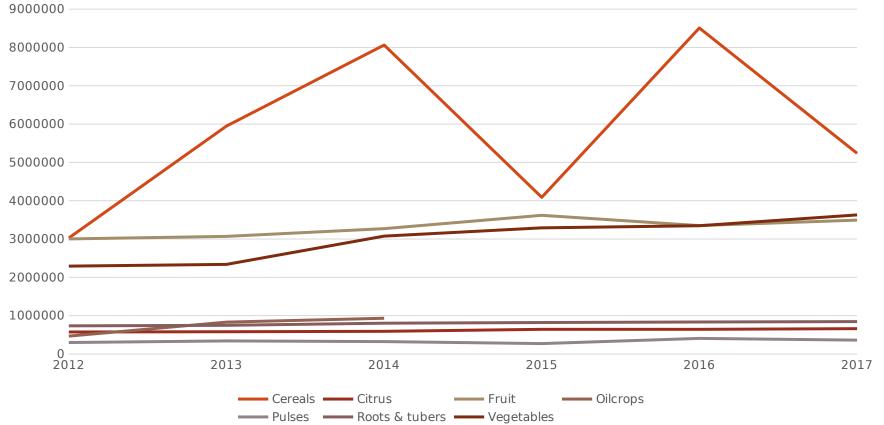
0.0.0.1.00358

THREE ELEMENTS DETERMINE THE VALUE OF KM


- 1. The value of acting on the knowledge if the knowledge is correct (M₁-N₁ or N₂-M₂)
- 2. Amount and accuracy of prior knowledge (knowledge without KM)—0.5 in our example
- 3. Quality of knowledge in the KM system (puts us as point A or B)

These factors alone determine the value=>

- a. If SOW is known with certainty, there is no value to KM
- b. If KM does nothing to reduce this uncertainty, there is no value to KM
- c. If decision is the same under all SOW, no value to KM


QUANTITY PRODUCED BY YEAR, MOROCCO Harvest quantity (MT), major crops by year

QUANTITY PRODUCED BY YEAR, SUDAN

Quantity harvested (MT), by major crop by year

ADDITIONAL INFORMATION NEEDED

- Prices of specific sub-components (to calibrate model)
- Conditions in markets (elasticities)
- Current research allocations by sub-component
- Expected gains from research
- Likelihood of adoption

