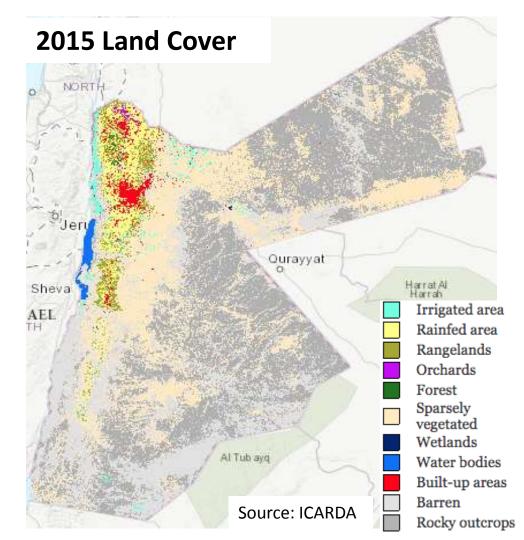

Impact of Rangeland Rehabilitation Strategies on Drought Resilience in Jordan

Definition of Terms

Degradation of the Rangeland

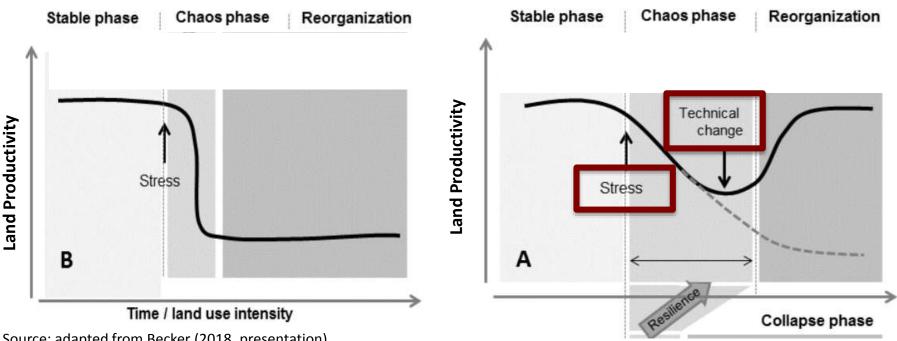
Ecosystem services...

- Livestock fodder
- Medicinal herbs
- Wildlife biodiversity
- Groundwater recharge


Degradation of the Rangeland

Ecosystem services...

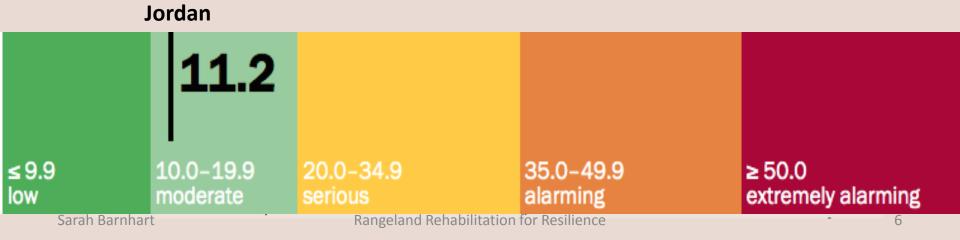
- Livestock fodder
- Medicinal herbs
- Wildlife biodiversity
- Groundwater recharge


...have been degraded by:

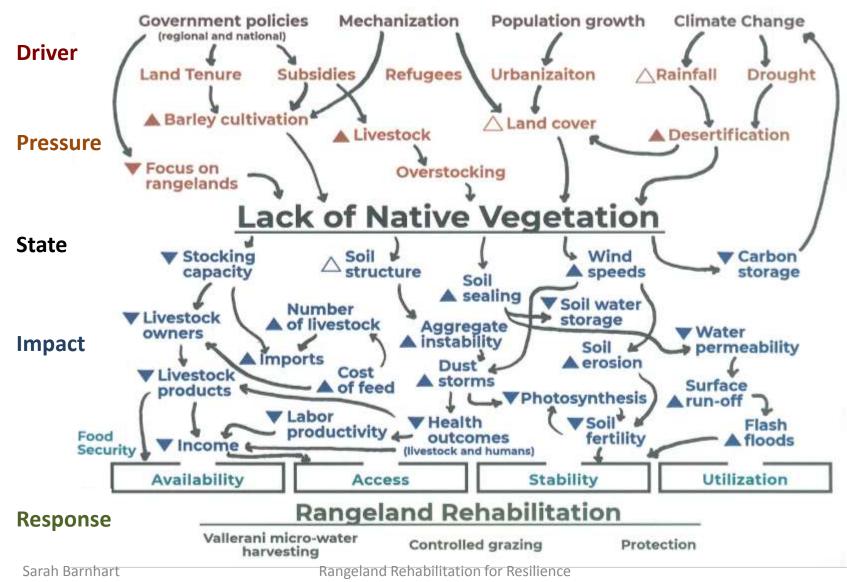
- Overgrazing
- Land use changes
- Political boundaries
- Barley production
- Droughts

Social-Ecological Resilience

The ability to absorb shocks without restructuring or collapsing is linked to the status of ecosystem services and natural resources (Holling, 1973)


Source: adapted from Becker (2018, presentation)

Food Security in Jordan


Global rankings are positive...

World Bank Classification Human Development Index Global Hunger Index Upper middle income 0.735 (#95 worldwide) 11.2 (moderate)

Global Hunger Index Scale:

eDPSIR Framework

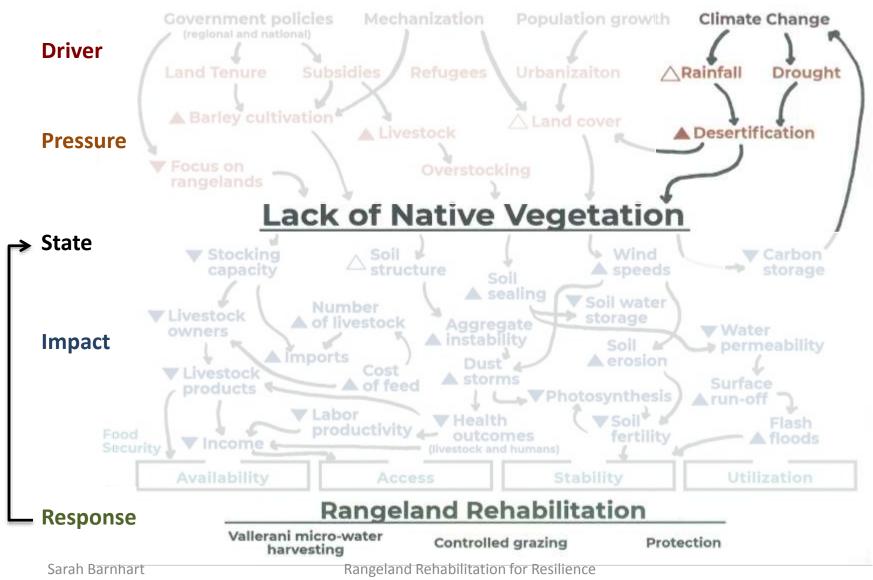
Focus on Droughts

Current water situation:

- 135m³/year water per capita
- Below "absolute scarcity" threshold

Focus on Droughts

Current water situation:


- 135m³/year water per capita
- Below "absolute scarcity" threshold

Future scenarios in 2070:

- Decrease in Syria to Jordan transboundary flow
- 30% reduction in rainfall
- Increase in extreme drought events to ~25 in 30 years

eDPSIR Framework

10

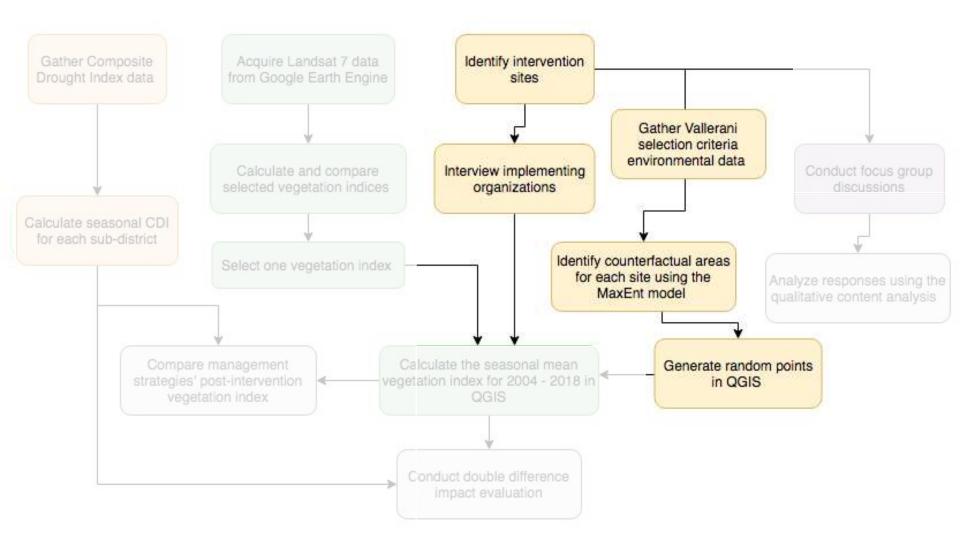
Management Strategies

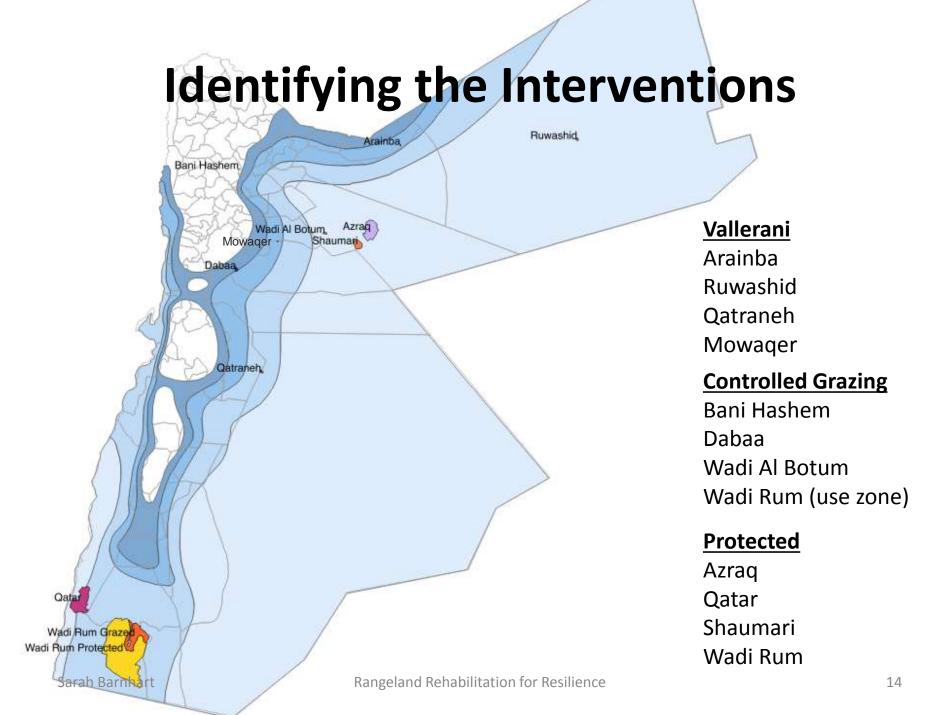
Protected

Controlled Grazing

+ Protected

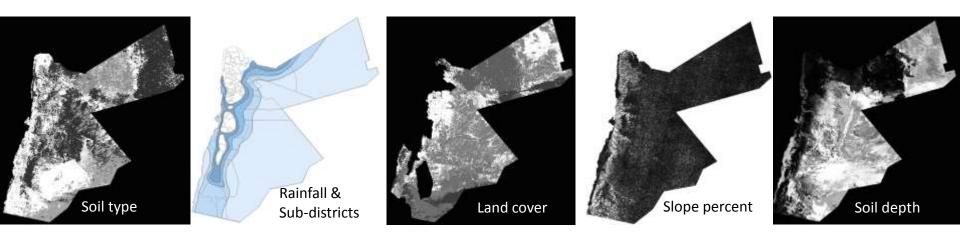
Vallerani


- + Protected
- + Controlled Grazing


Research Objectives

- 1. Analyze the effect of different rehabilitation strategies on vegetation cover
- 2. Assess the impact of rehabilitation interventions on ecological drought resilience
- 3. Understand how communities depend on the rangelands, cope with drought and perceive rehabilitation interventions

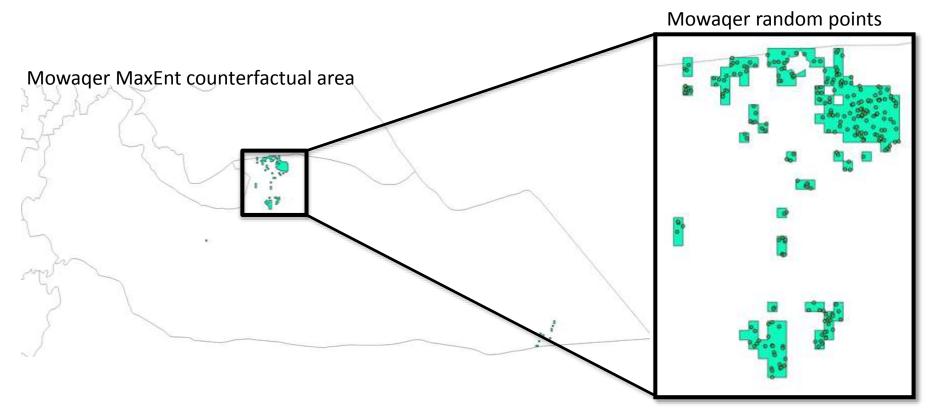
Identify Intervention Sites



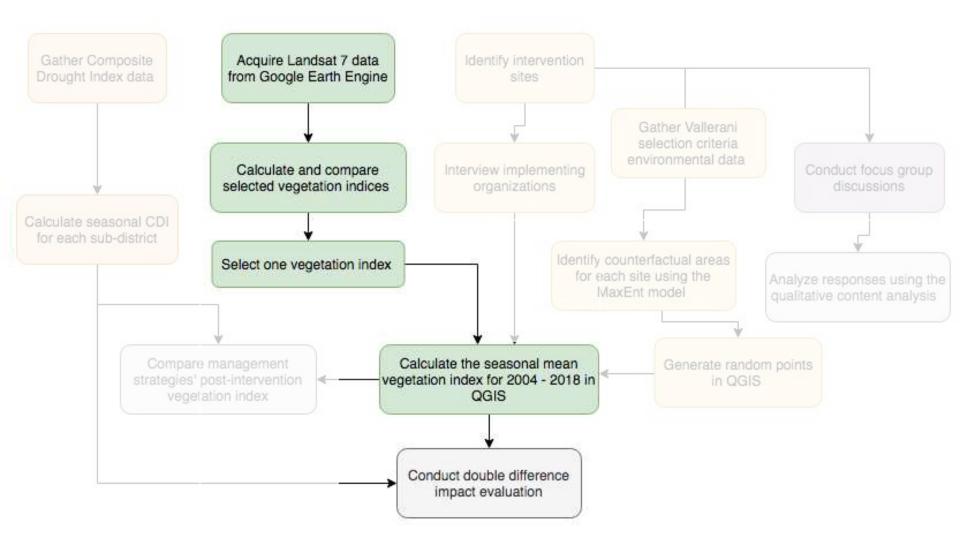
Generating Counterfactuals

Maximum Entropy Model (MaxEnt) environmental input:

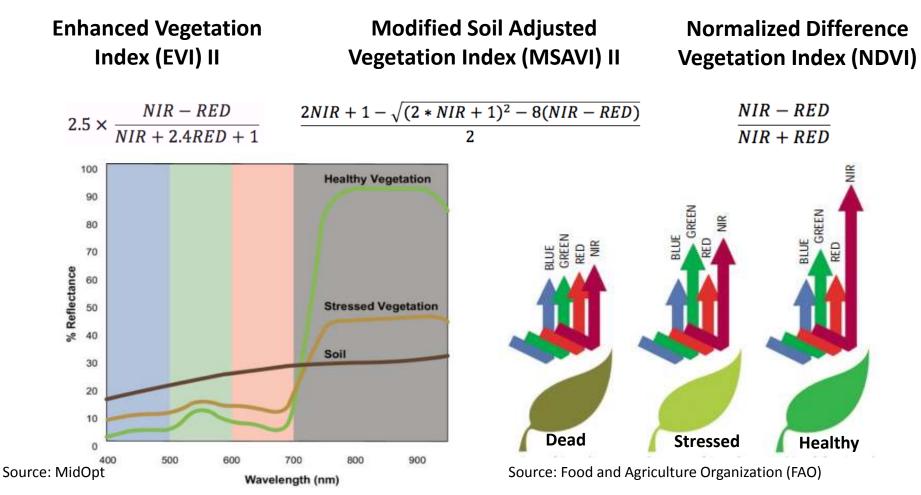
- Sub-district administrative borders (ICARDA)
- Slope percent (Alaska Satellite Facility)
- Annual rainfall (Badia Restoration Project)
- Dominant soil type (ISRIC)
- Soil depth to bedrock (ISRIC)
- Land cover (Badia Restoration Project)


Sarah Barnhart

Rangeland Rehabilitation for Resilience

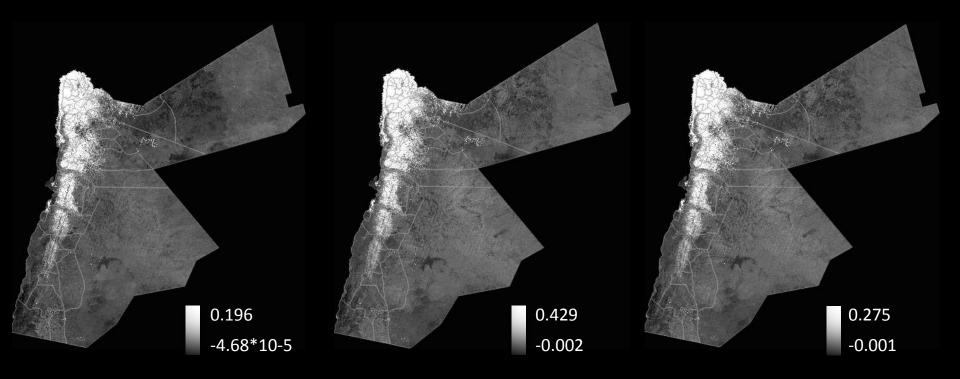

Generating Counterfactuals

Maximum Entropy Model (MaxEnt)


• Used to model species distribution

Identify Intervention Sites

Calculating Vegetation Indices


Sarah Barnhart

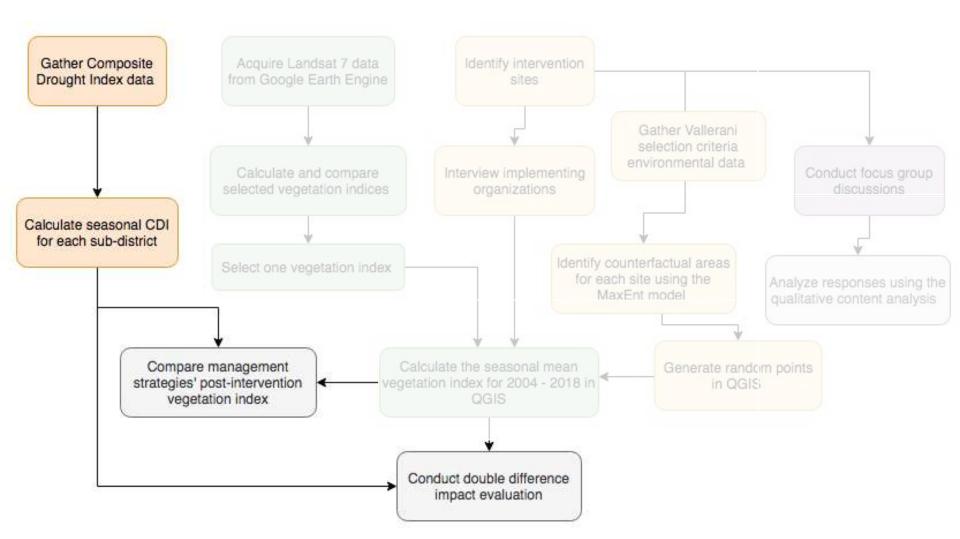
Rangeland Rehabilitation for Resilience

Composites from Landsat 7 January – March 2018

Enhanced Vegetation Index (EVI) II

Modified Soil Adjusted Vegetation Index (MSAVI) II Normalized Difference Vegetation Index (NDVI)

Assessing the Vegetation Indices

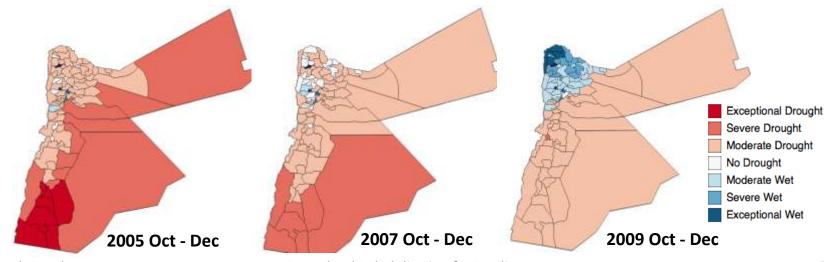

Mowager Vallerani Site: January to March 2 Composite Drought Index 0 7 0.20 MSAVLII 9 EVI II NDVI 0.15 Mean Vegetation Index 0.10 0.05 8.0 2004 2006 2008 2010 2012 2014 2016 2018

Year

Similarity in vegetation index and CDI patterns

MSAVI II amplifies the vegetation signal

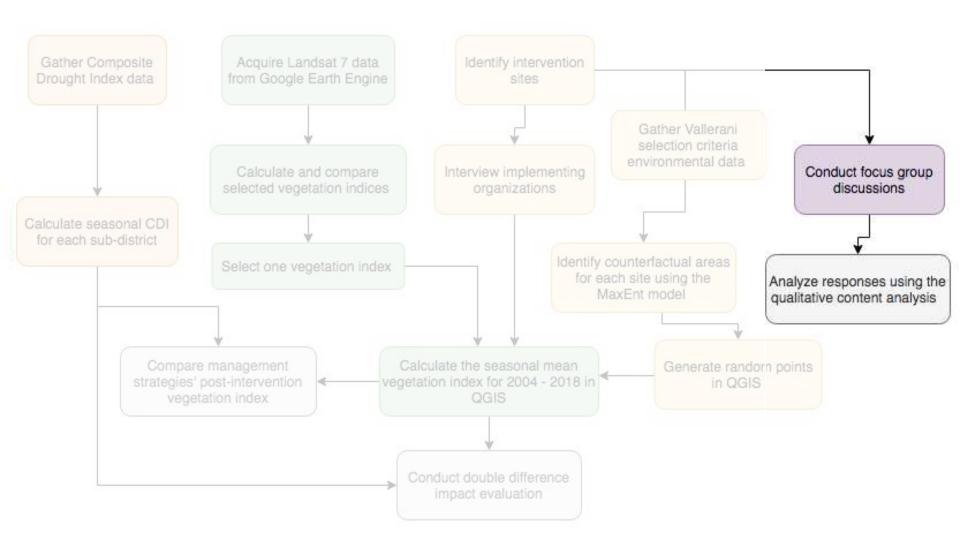
Identify Intervention Sites



Classifying Drought

Monthly Composite Drought Index (Intl. Center for Biosaline Agriculture)

- Standardized Precipitation Index (SPI), monthly
- Normalized Difference Vegetation Index (NDVI), monthly
- Root zone soil moisture anomalies model
- Actual evapotranspiration
- Surface temperature anomalies


Three month rainy season averages (January – March, October – December)

Sarah Barnhart

Rangeland Rehabilitation for Resilience

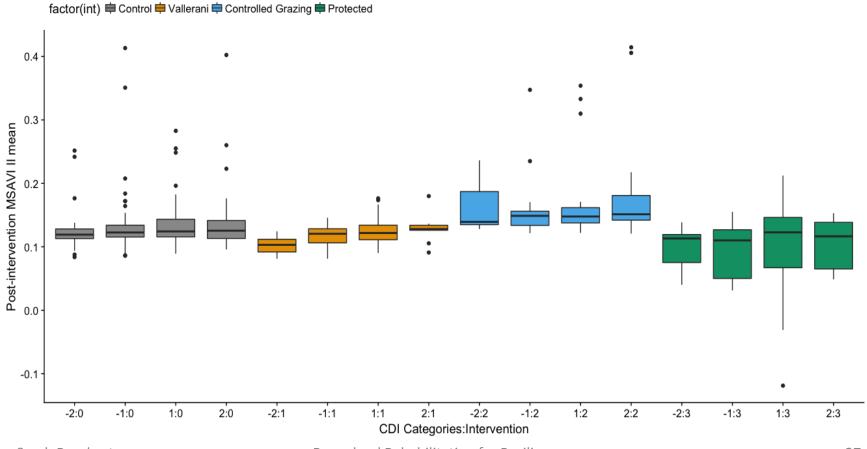
Identify Intervention Sites

Integrating Qualitative Data

- Semi-grounded theory
- Focus group discussions
 - Four communities
 - 37 people (13 men, 24 women)
 - Gender segregated (mostly)
- Validated questions with aim to:
 - Understand how dependence on the rangeland changed
 - Identify drought coping strategies
 - Gather opinions about the value of rangeland rehabilitation

1. Analyze the effect of rehabilitation strategies on vegetation cover

Analyzing Vegetation Trends


- Time trend analysis from 2004-2018
- Mann Kendall non-parametric test:

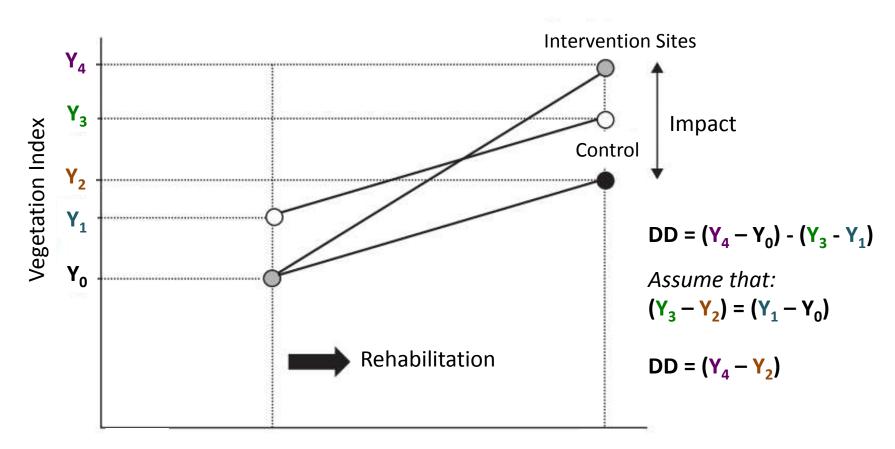
	January	– March	October –	December
	Tau	2-sided p-value	Tau	2-sided p-value
Arainba	0.007	0.972	-0.103	0.43245
Azraq	-0.101	0.443	-0.159	0.22506
Bani Hashem	-0.054	0.694	-0.113	0.39179
Dabaa	0.425	0.0010279***	0.287	0.026947***
Mowaqer	0.324	0.012499***	0.062	0.64274
Qatar	0.059	0.69155	0.002	1
Qatraneh	-0.025	0.8584	0.099	0.45366
Ruwashid	0.186	0.1535	0.274	0.03527***
Shaumari	0.287	0.026947***	0.140	0.28441
Wadi Al Botum	0.356	0.0060048***	0.117	0.37237
Wadi Rum Grazed	0.568	0.000011444***	0.425	0.0010279***
Wadi Rum Protected	0.430	0.00090528***	0.264	0.041964***

Controlled grazing sites have the most significant, positive vegetation cover trends

Comparing the Strategy Outcomes

Post-intervention data only

Comparing the Strategy Outcomes


Post-intervention data only

Unbalanced, three-way ANOVA (type II):

Variable	Sum Sq	Df	F value	Pr(>F)
Treatment	0.186	3	31.735	2.2*10 ⁻¹⁶ ***
CDI Category	0.018	3	3.126	0.026 *
Season	0.054	1	27.762	2.15 * 10 ⁻⁷ ***
Treatment: CDI Category	0.009	9	0.527	0.855
Treatment: Season	0.026	3	4.496	0.004**
CDI Category: Season	0.006	3	1.028	0.380
Treatment: CDI Category: Season	0.011	9	0.636	0.766
Residuals	0.858	440		

Vegetation cover is significantly impacted by the intervention strategy and the interaction with the season

Calculating the Double Difference

Assessed Vallerani and Controlled Grazing interventions

Source: adapted from Khandker et al. (2010)

Sarah Barnhart

Calculating the Double Difference

Simple calculation:

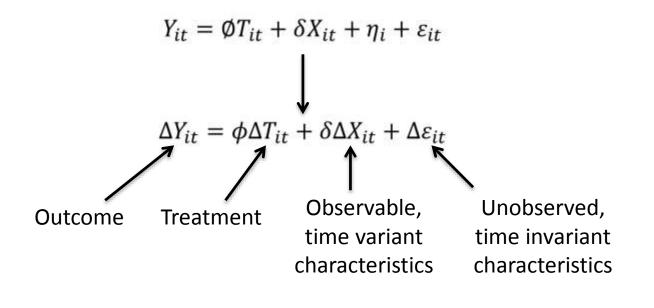
Season	Vallerani	Controlled Grazing	No change between
January - March	-0.004	0.005	
October – December	-0.003	-0.002	the counterfactual and
Overall	-0.003	0.002	intervention sites

Ordinary Least Squares regression (tt = treatment *time):

Season	Coefficient	Estimate	Std. Error	t-value	Pr(> t)	
	(Intercept)	0.171	0.010	17.049	2 *10 ⁻¹⁶ **	
Tt (interactio	Tt (interaction)	-0.001	0.020	-0.061	0.951	
Jan-Mar	Treatment	-0.003	0.014	-0.242	0.809	No significant
	Time	-0.002	0.014	-0.170	0.865	differences
	(Intercept)	0.134	0.004	37.27	2 *10 ⁻¹⁵ **	 differences
Oct Doc	Tt (interaction)	-0.003	0.007	-0.426	0.671	
Oct-Dec	Treatment	-0.002	0.005	-0.412	0.681	
	Time	-0.001	0.005	-0.146	0.884	

2. Assess the impact of rehabilitation on ecological drought resilience

Correlating with Drought


Post intervention data only

Spearman's correlation of MSAVI II means and CDI

Treatment	Correlation
Untreated	0.134
Overall Treated	0.208
Vallerani	0.289
Controlled Grazing	0.152
Protected	0.193

The intervention sites are influenced by drought more than untreated areas

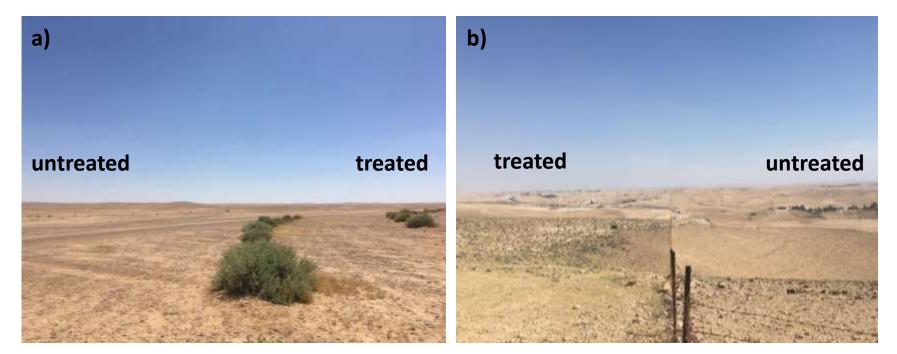
Panel Fixed Effects Model

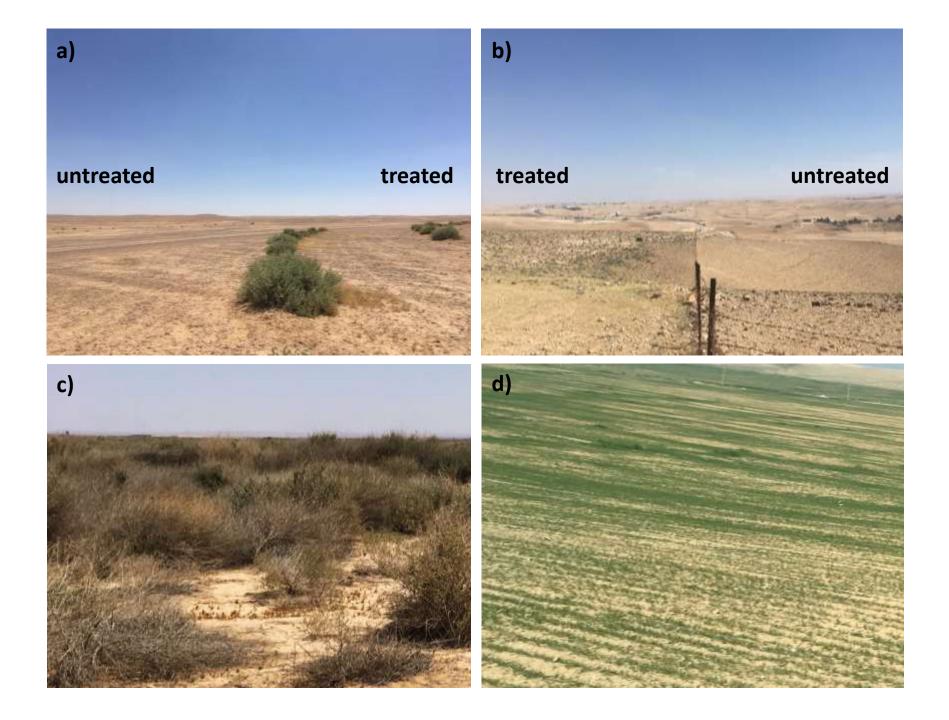
Assessing the OLS Fixed Effects

		Estimate	Std. Error	t-value	Pr(>ltl)
January – March:	Intercept	0.1710983	0.0100155	17.0834	2.2*10 ⁻¹⁶ **
	tt (interaction)	-0.0012042	0.0203680	-0.0591	0.9529
	Treatment	-0.0034972	0.0142293	-0.2458	0.8061
	Time	-0.0037798	0.0143950	-0.2626	0.7931
	CDI	0.0112830	0.0073178	1.5419	0.1247
	Total Sum of Squares:		1.1191		
	Residual Sum of Squares:		1.1048		
	R-Squared:		0.012742		
	Adj. R-Squared:		-0.0066162		
	F-statistic:		0.658217 on 4 and 204 DF		
	p-value:		0.62173		
	p-value:		0.621/3		
	p-value:		0.62173		
	p-value:	Estimate	Std. Error	t-value	Pr(> t)
toher – December:		Estimate 0.1353865		t-value 37.4067	Pr(> t) 2.2*10 ⁻¹⁶ **
tober – December:	Intercept tt (interaction)	and the second	Std. Error		Pr(> t) 2.2*10 ⁻¹⁶ ** 0.66807
tober – December:	Intercept	0.1353865	Std. Error 0.0036193	37.4067	2.2*10 ⁻¹⁶ **
tober – December:	Intercept tt (interaction)	0.1353865 -0.0030456	Std. Error 0.0036193 0.0070924	37.4067 -0.4294	2.2*10 ⁻¹⁶ ** 0.66807
tober – December:	Intercept tt (interaction) Treatment Time	0.1353865 -0.0030456 -0.0020944 -0.0037793	Std. Error 0.0036193 0.0070924 0.0050389 0.0052049	37.4067 -0.4294 -0.4156 -0.7261	2.2*10 ⁻¹⁶ ** 0.66807 0.67811 0.46860
tober – December:	Intercept tt (interaction) Treatment Time CDI	0.1353865 -0.0030456 -0.0020944 -0.0037793 0.0042540	Std. Error 0.0036193 0.0070924 0.0050389	37.4067 -0.4294 -0.4156	2.2*10 ⁻¹⁶ ** 0.66807 0.67811
tober – December:	Intercept tt (interaction) Treatment Time	0.1353865 -0.0030456 -0.0020944 -0.0037793 0.0042540 uares:	Std. Error 0.0036193 0.0070924 0.0050389 0.0052049 0.0019480	37.4067 -0.4294 -0.4156 -0.7261	2.2*10 ⁻¹⁶ ** 0.66807 0.67811 0.46860

Droughts from October to December impact vegetation cover more than January to March

Testing Serial Correlation


Durbin Watson Results:


	January – March	October – December
Autocorrelation	0.749	0.798
D-W statistic	0.495	0.373
P-value	0	0

Null hypothesis (residuals are not auto correlated) is accepted, but the autocorrelation is less than 1?

Sustainable or Unsustainable "Green"?

- Rehabilitation or not, vegetation cover is similar
 - Sustainability of barley and irrigated agriculture?
 - Incorporation of input costs

3. Understand how communities depend on rangelands, cope with drought and perceive rehabilitation

Common Themes from Discussions

	Azraq (M; n=8)	Azraq (W; n=3)	Qatraneh (M; n=6 W; n=1)	Bani Hashem (W; n=12)	Jaber (W; n=8)	Total
ES. Provisioning ecosystem services	4	6	5	4	2	21
ES. Regulating ecosystem services	2	0	2	0	0	4
ES. Supporting ecosystem services	1	0	0	0	0	1
DR. Anthropogenic drivers	1	0	1	1	1	4
DR. Natural drivers	6	3	3	2	2	16
IM. Poor animal health	0	1	0	3	1	5
IM. Climatic changes	2	0	0	0	1	3
IM. Economic hardship	1	2	8	5	5	21
IM. Change in rangeland dependence	2	2	1	2	3	9
IM. Negative effect on ecosystem services	7	6	4	3	6	26
IM. Pressure on social systems	0	0	1	2	0	3
CS. Buy livestock products	0	1	1	1	1	4
CS. Transition away from pastoralism	7	4	2	4	5	22
CS. Intensification of agriculture	0	1	2	0	4	6
CS. Alternative resources for livestock	3	0	3	0	5	10
RP. Interest in renewing the rangeland	2	2	1	0	5	10
Cooperative management	0	0	0	0	1	1
Education of rangeland benefits	0	0	0	0	1	1
Target interventions	2	0	0	0	0	2
Coordinate investments	0	0	1	0	0	1
RP. Knowledge of intervention strategies	3	1	5	2	1	12
RP. Alternative livelihood options	0	0	0	1	0	1
Job creation for women	0	0	0	1	0	1
RP. Idealization of the past	1	1	0	0	1	3
SUM	44	30	39	31	46	190

- Highlighted provisioning ecosystem services (ES)
 - Forage for livestock
 - Medicinal herbs

- Highlighted provisioning ecosystem services (ES)
 - Forage for livestock
 - Medicinal herbs
- Identified natural and human drivers of degradation
 - Drought and reduced rainfall

...with the exception of this year!

- Highlighted provisioning ecosystem services (ES)
 - Forage for livestock
 - Medicinal herbs
- Identified natural and human drivers of degradation
 - Drought and reduced rainfall
- Decreased rangeland dependence

- Highlighted provisioning ecosystem services (ES)
 - Forage for livestock
 - Medicinal herbs
- Identified natural and human drivers of degradation
 - Drought and reduced rainfall
- Decreased rangeland dependence
- Common coping strategies:
 - Transition away from pastoral livelihoods
 - Urbanization
 - Intensification of agriculture

Sarah Barnhart

Policy Implications

- Include cost of rainfed barley cultivation and irrigated agriculture
 - Ecosystem service valuation
 - Inputs (seed, tractor, fuel, etc.)
 - Over abstraction of water
- Invest in rangelands
 - Livelihood alternatives are unsustainable or limited
 - Externalities (health, infrastructure, etc.)

Recommendations for Future Studies

- Improve counterfactual site identification to account for barley and other agriculture
 - Use finer resolution land cover data
 - Include land tenure data (public vs. private land)
- Compare remote sensing data with field samples
- Utilize higher resolution vegetation index data
 - Sentinel 2 (2015 onwards)
- Select sites with more detailed records and controls

Monitoring for Impact

Long-term monitoring of rehabilitation interventions is

Sarah Barnhart