





# FORESTRY SECTOR OF MOLDOVA AND CLIMATE CHANGE

Ion Talmaci, Dumitru Galupa, Liliana Șpitoc, Forest Research and Management Institute, Moldsilva Agency, Republic of Moldova

Balti, 29-30 November 2019

#### **Forest Fund structure by ownership categories:**

| Categories of holders                           | Total<br>area/percentage,<br>1000 ha/% |
|-------------------------------------------------|----------------------------------------|
| Forest Fund under the state management          | 362,3/ 81,0                            |
| Forest Fund managed by local public authorities | 82,2/ 18,4                             |
| Forest Fund in private property                 | 3,0/ 0,6                               |
| TOTAL (13,2%)                                   | 447,5/100                              |

#### **Forest land by ownership categories:**

| Categories of holders                     | Area of forest<br>land/percentage,<br>1000 ha/% |
|-------------------------------------------|-------------------------------------------------|
| Lands under the state management          | 331,2/ 85,7                                     |
| Lands managed by local public authorities | 51,9/13,4                                       |
| Private lands                             | 3,3/ 0,9                                        |
| TOTAL (11,4/11,7)                         | 386,4/100                                       |



#### Valorization of potential of forest vegetation condition by forests managed by Moldsilva

| Indicatore                                     | Category of quality class/productivity |        |       |  |  |
|------------------------------------------------|----------------------------------------|--------|-------|--|--|
| Inucators                                      | superior                               | middle | lower |  |  |
| Quality of forest vegetation conditions (%)    | 15,5                                   | 42,6   | 41,9  |  |  |
| Productivity of forest types (%)               | 13,7                                   | 43,6   | 42,7  |  |  |
| Actual productivity of species/stands (%)      | 9,4                                    | 33,8   | 56,8  |  |  |
| Actual average production class                | 3,8                                    |        |       |  |  |
| Potential average production class             | 3,4                                    |        |       |  |  |
| Natural potential to increased productivity, % |                                        | 10,5   |       |  |  |

#### Main indicators of forest lands during 1988-2016:

| Characteristics of forest fund             | The year of f | orestry records | Differences, ± |       |  |
|--------------------------------------------|---------------|-----------------|----------------|-------|--|
| Characteristics of forest fund             | 1988          | 2016            | Physical units | %     |  |
| The area covered with forestsi, 1000 ha    | 317,6         | 386,4           | +68,8          | +21,7 |  |
| Average age, years                         | 40            | 45              | +5             | +12,5 |  |
| Average production class                   | 2,3           | 3,9             | +1,6           | +69,6 |  |
| General average consistency                | 0,73          | 0,76            | +0,03          | +4,1  |  |
| Total standing volume, 1000 m <sup>3</sup> | 39382,4       | 45407,8         | +6025,4        | +15,3 |  |
| Average standing volume, m³/ha             | 124           | 118             | -6             | -4,8  |  |
| Average growth, m <sup>3</sup> /ha/year    | 3,3           | 3,8             | +0,5           | +15,2 |  |

#### CO<sub>2</sub> Emissions/Removals within the Sector 4 'LULUCF' (1990-2016), kt:



#### Average sequestration by the group of species, tCO<sub>2</sub>/ha/year:



## STRATEGIC FRAMEWORK WITH REFERENCES TO THE FORESTRY SECTOR

- 1. Strategy on sustainable development of forestry sector in Moldova (Parliament Decision No. 350 as of 12.07.2001);
- 2. Environmental protection strategy of Moldova (Governmental Decision (GD) No. 301 as of 24.04.2014);
- 3. Moldova's climate change adaptation strategy (GD No. 1009 as of 10.12.2014);
- 4. Moldova's biodiversity conservation strategy (GD No. 274 as of 18.05.2015);
- 5. Moldova's low emissions development strategy (GD No. 1470 as of 30.12.2016);
- 6. The strategy of institutional reform of the forestry sector in Moldova (2012-2019, draft);
- 7. Forest Policy Note (World Bank/Moldsilva Agency, 2014);
- 8. Forestry sector's climate change adaptation strategy (draft, 2015-2018);





## **VULNERABILITIES CONCERNED/FORECASTED**

- Changing the territorial distribution of plant species and associations (reducing the natural area);
- Changing tree and tree growth patterns (biomass accumulation);
- Changes in timber quality;
- <u>Reducing adaptive capacity of trees (phenomena of tree stand</u> degradation);
- Increasing the area of drying trees;
- Reducing the success of natural and artificial forest regeneration;
- The increase in the incidence of forest pest attacks;
- Increased competition capacity of exotic species;
- The increase in the incidence of forest fires;







## **VULNERABILITIES CONCERNED/FORECASTED**

### **Risk analysis for forests:**

|                 | Details on the size risks/opportunities                                   | North  | Centre | South  |
|-----------------|---------------------------------------------------------------------------|--------|--------|--------|
|                 | Change of species composition                                             | LOW    | MEDIUM | HIGH   |
|                 | Possible increase in tree mortality                                       | LOW    | MEDIUM | HIGH   |
|                 | Changes in species competition                                            | MEDIUM | MEDIUM | HIGH   |
|                 | Negative consequences for species susceptible to the temperature change   | LOW    | MEDIUM | HIGH   |
| lisk            | Change of regeneration rate                                               | MEDIUM | HIGH   | HIGH   |
| œ               | Changes in species sensitivity to water deficiency                        | MEDIUM | HIGH   | HIGH   |
|                 | Changes in individual tree density                                        | MEDIUM | HIGH   | HIGH   |
|                 | Increasing abiotic damage caused by fires, windstorms, floods and drought | LOW    | MEDIUM | MEDIUM |
|                 | Change of phytosanitary conditions                                        | MEDIUM | HIGH   | HIGH   |
| Opor-<br>tunity | Change in biomass production                                              | RIHIGH | MEDIUM | LOW    |

## **VULNERABILITIES CONCERNED/FORECASTED**

#### **Impact analysis for forests:**

| Impact category                                                       | Impact on the forestry sector                                                                                                                | Social/economic impact                                                                                                                                                     |
|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High temperatures,<br>heat waves                                      | Longer growing season;<br>Negative consequences for species<br>sensitive to temperature changes;<br>Increased vulnerability to forest fires. | Reducing the volume of wood production;<br>Transition to other forms of energy;<br>Additional costs for the population.                                                    |
| Changing<br>precipitation indices                                     | Change of phyto-sanitary status<br>Changing species composition; and<br>Changes in the types and incidence of<br>pests and diseases.         | Modification of the capacity of the forest<br>habitat to maintain biological diversity,<br>environmental protection and assurance of<br>specific socio-economic functions. |
| Extreme<br>phenomena:<br>droughts, fires,<br>windstorms and<br>floods | Low biomass growth and production;<br>Increase in the number of forest fires;<br>Increased seed mortality rate.                              | Economic losses in the forestry sector.                                                                                                                                    |

## FORESTRY SECTOR'S CLIMATE CHANGE ADAPTATION

### **Scheduled measures:**

- Afforestation (Forest Fund, shelterbelts, degraded lands), reaching the afforestation degree of <u>15% (about 130 thousand ha);</u>
- Ecological reconstruction of unsuitable trees (about 30-40% of the existing forests);
- Planting of forest energy crops of fast growing species, managed at short production cycles (3-10 years) on communal and private lands;
- Adapting forest regeneration practices to the needs imposed by climate change;
- Adaptation of wood use to climate change (harvesting possibilities, processed wood products etc.);
- Selection of genotypes of forest trees / shrubs adapted to the new climatic conditions;
- Extension of areas of forest protection shelterbelts up to 4% from the area of croplands (additional 50 thousand ha, at least);



## FORESTRY SECTOR'S CLIMATE CHANGE ADAPTATION

#### **Scheduled measures:**

- Developing a methodology for calculating carbon balance of forest land in accordance with international practices for monitoring carbon stocks;
- Normative regulation of the practices of carbon stock conservation in forests and their incorporation in forest management;
- Development and promotion of normative guidance "Forests and climate change";
- □ New regulations in the conservations of forest genetic resources;
- Reconsider the concept of protective shelterbelts, including by adapting of composition of existing shelterbelts to <u>new climate conditions</u>;
- Training of forest staff and personnel involved in forest management on the <u>necessity and the</u> opportunity to implement adaptation and mitigation measures;



#### **Agro-forestry practices:**

- An integral part of sustainable land management it ensures the needs of current generations, does not compromise the needs of future generations and is beneficial not only to agricultural producers, but also to the environment;
  - The installation of agroforestry systems minimizes the possibility of intensive exploitation of natural resources, which diminishes their capacity for regeneration, but guarantees the permanent renewal of used resources, such as soils, water, forest vegetation;
- Depending on purpose, tree placement (isolated, in groups, on the edge of land / plots), taking into account the local soil and climatic conditions, the following agroforestry systems are highlighted:
  - Improvement of degraded lands through afforestation;
  - multipurpose trees and shrubs within agricultural crops;
  - Protection shelterbelts;
  - cover crops in place of fallow;
  - uncultivated land (streams) improved in itinerant crops;
  - garduri de protecţie.



#### **Forest shelterbelts for cropland protection:**

- ➡ Formations with forest vegetation, located at a certain distance from each other or towards an object in order to protect it against the effects of harmful factors and / or for the climatic, economic and aesthetic-sanitary improvement of the lands;
- Depending on a series of indicators that underlie the conditions for establishing the networks of forest shelterbelts (type, structure, composition, etc.) their influence contributes to the croplands related by the following benefits::
  - <u>Improving the microclimate</u> through modifying albedo, decreasing the daily and annual range of air temperature, cutting wind speed, retaining snow, cutting unproductive evaporation and increasing humidity);
  - The diurnal amplitude of the air temperature may be reduced by 1-4oC and the annual range by 1-2oC; wind speed is reduced by 31-55 per cent in the shelter belt itself and by 10-15% across the protected areas; unproductive evaporation is reduced by as 30%; and the humidity of the air at ground level is increased by 3-5%;
  - Improving the growing conditions for agricultural crops to a distance of 20-30 times the height of the shelterbelt downwind and 5-12 times its height upwind.);
  - Improving soil and water conservation by cutting runoff, increasing infiltration, increasing accumulation
    of organic matter, and arresting erosion by wind;
  - Creating favorable conditions for local fauna development;
  - Increasing of zonal biodiversity;
  - Improving carbon stocks;
  - Re-modeling the landscape.

#### The Moldova Agriculture Competitiveness Project (MACP):

- Total area of forest shelterbelts is of 30.7 thousand ha or about 1.7% of cropland (under state management 5,7 thousand ha; 24.9 thousand ha under local authorities and only 0,1 thousand ha in private hands);
- Taking into consideration actual recommendations and country's characteristics (relief, soils, climate, afforestation degree etc.), the quota of shelterbelts should be at least 4% of cropland area, which means an increase of about 50 thousand ha;
- The original purpose of planting was to arrest soil erosion and, partly, to obtain valuable food products) and this determined their composition:
- walnut 38 per cent;
- acacia 36 per cent;
- oak 9 per cent;
- other species (elm, ash, sophora, cherry, poplar etc.) 17%.



#### The Moldova Agriculture Competitiveness Project (MACP):

- Increasing the competitiveness of the agricultural sector and local agricultural products by integrating the practices of organic farming and those of sustainable land management;
- Rehalitation of forest protection shelterbelt network on the total area of 2,2 thousand ha in the southern part of Moldova;









#### Agroforestry in the MACP project area:

|                            |                             |                             | F     |             |                      |                  |                                   |  |
|----------------------------|-----------------------------|-----------------------------|-------|-------------|----------------------|------------------|-----------------------------------|--|
|                            |                             |                             |       |             |                      |                  |                                   |  |
|                            | Area of                     |                             |       |             | of w                 | of which         |                                   |  |
| Administrative<br>district | district,<br>thousand<br>ha | Harmiand,<br>thousand<br>ha | Total | Forest land | Forest<br>vegetation | Shelterbelt<br>s | within<br>agricultural<br>land, % |  |
| Basarabeasca               | 31.8                        | 23.0                        | 3.1   | 2.5         | 0.6                  | 0.6              | 2.6                               |  |
| Cahul                      | 154.5                       | 84.6                        | 18.1  | 15.7        | 2.4                  | 2.1              | 2.5                               |  |
| Cimislia                   | 102.6                       | 71.1                        | 12.9  | 11.5        | 1.4                  | 1.3              | 1.9                               |  |
| UTA Gagauzia               | 184.8                       | 147.0                       | 17.7  | 14.7        | 3.0                  | 2.7              | 1.8                               |  |
| Leova                      | 76.5                        | 57.2                        | 11.8  | 9.6         | 2.2                  | 0.9              | 1.5                               |  |
| Anenii Noi                 | 88.8                        | 65.9                        | 12.2  | 11.0        | 1.4                  | 0.7              | 1.1                               |  |
| Hancesti                   | 147.2                       | 92.7                        | 39.0  | 36.7        | 2.3                  | 0.9              | 1.0                               |  |
| Ialoveni                   | 78.4                        | 52.4                        | 14.8  | 13.6        | 1.2                  | 0.6              | 1.1                               |  |
| Cantemir                   | 86.8                        | 64.4                        | 12.7  | 11.5        | 1.2                  | 0.9              | 1.4                               |  |
| Causeni                    | 131.1                       | 102.1                       | 16.1  | 14.6        | 1.4                  | 1.1              | 1.1                               |  |
| Stefan-Voda                | 99.8                        | 78.5                        | 9.6   | 8.5         | 1.1                  | 0.9              | 1.1                               |  |
| Taraclia                   | 67.4                        | 54 7                        | 57    | 43          | 14                   | 11               | 2.0                               |  |

#### Areas rehabilitated in MACP by different technical solutions:

| No   | Technical solutions                        | Area, ha | Percentage |
|------|--------------------------------------------|----------|------------|
| I    | Reconstruction works, total                | 253      | 11.3       |
| 1.1  | Replanting                                 | 253      | 11.3       |
| II   | Stimulation of natural regeneration, total | 20       | 0.9        |
| 2.1  | Coppicing                                  | 4        | 0.2        |
| 2.2  | Completion/tree planting                   | 15       | 0.7        |
|      | Forestry treatments, total                 | 252      | 11.2       |
| 3.1  | Extraction of pre-existing trees           | 210      | 9.4        |
| 3.2  | Tree planting                              | 64       | 2.9        |
| 3.3  | Coppicing                                  | 156      | 6.9        |
| IV   | Tending activities, total                  | 1197     | 53.4       |
| 4.1  | Tending coppice in young plantations       | 760      | 33.9       |
| 4.2  | Thinning                                   | 239      | 10.7       |
| 4.3  | Removing dead and diseased wood            | 198      | 8.8        |
| V    | Pruning                                    | 315      | 14.0       |
| VI   | Crown and canopy thinning                  | 66       | 2.9        |
| VII  | Tending undergrowth                        | 12       | 0.6        |
| VIII | Creation and maintenance of fire breaks    | 127      | 5.7        |
|      | TOTAL                                      | 2242     | 100        |

Budget for rehabilitation – circa 23,3 million MDL (1,2 mil. EURO); the most expensive – Ireconstruction works – 26.2 thousand MDL/ha), and the cheapest – stimulation of natural regeneration in Robinia plantations – 0.3 thousand

#### **Cropland area protected by shelterbelts rehabilitated under MACP:**

#### Average cropland area protected by forest shelterbelts

| Croup of basic spacios                            | The protected area depending on the number of rows, ha / 1 ha shelterbelts |    |     |      |  |  |  |
|---------------------------------------------------|----------------------------------------------------------------------------|----|-----|------|--|--|--|
| Group of basic species                            | 1                                                                          | 2  | 3-9 | =>10 |  |  |  |
| Walnut                                            | 12                                                                         | 15 | 35  | 25   |  |  |  |
| Other deciduous species                           | 12                                                                         | 20 | 35  | 25   |  |  |  |
| Species present in the rehabilitated shelterholts |                                                                            |    |     |      |  |  |  |

Species present in the rehabilitated shelterbelts

| Main species (Romanian)   | Area, ha | %   |
|---------------------------|----------|-----|
| Walnut (Nuc/NU)           | 560      | 25  |
| Acacia (Salcam/SC)        | 1016     | 46  |
| Ash (Frasin/FR)           | 146      | 7   |
| Elm (Ulm de camp/ULC)     | 118      | 5   |
| Plane (Paltin/PA)         | 79       | 4   |
| Oak (Cvercinee/ST)        | 74       | 3   |
| Honey locust (Gladita/GL) | 52       | 2   |
| Sophora (Sofora/SF)       | 38       | 2   |
| Cherry (Cires/CI)         | 24       | 1   |
| Poplar (Plop/PL)          | 22       | 1   |
| Others (Alte specii/AS)   | 70       | 3   |
| TOTAL                     | 2 200    | 100 |

#### Area of croplan protected by rehabilitated shelterbelts:

|                 | Number of rows |                              |          |                           |          |                           |          |                           | Total    |                           |  |
|-----------------|----------------|------------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|----------|---------------------------|--|
|                 |                | 1                            |          | 2                         |          | 3-9                       |          | =>10                      |          | TOLA                      |  |
| Main<br>species | Area,<br>ha    | Protect<br>ed<br>area,<br>ha | Area, ha | Protecte<br>d area,<br>ha |  |
| SC              | 0              | 0                            | 6        | 112                       | 874      | 30 578                    | 137      | 3423                      | 1016     | 34 112                    |  |
| NU              | 139            | 1 667                        | 360      | 5 394                     | 62       | 2 153                     | 0        | 0                         | 560      | 9 215                     |  |
| FR              | 0              | 0                            | 7        | 147                       | 121      | 4 242                     | 17       | 432                       | 146      | 4 821                     |  |
| ULC             | 1              | 8                            | 13       | 255                       | 85       | 2 976                     | 19       | 485                       | 118      | 3 724                     |  |
| PA              | 0.6            | 7                            | 6.       | 123                       | 73       | 2 542                     | 0        | 0                         | 79       | 2 672                     |  |
| ST              | 0.2            | 3                            | 4        | 79                        | 70       | 2 457                     | 0        | 0                         | 74       | 2 539                     |  |
| GL              | 3              | 35                           | 8        | 159                       | 41       | 1 446                     | 0        | 0                         | 52       | 1 639                     |  |
| SF              | 0              | 0                            | 0        | 0                         | 38       | 1 338                     | 0        | 0                         | 38       | 1 338                     |  |
| CI              | 7              | 80                           | 17       | 340                       | 0.6      | 20                        | 0        | 0                         | 24       | 440                       |  |
| PL              | 12             | 144                          | 9        | 175                       | 0.9      | 30                        | 0        | 0                         | 22       | 349                       |  |
| AS              | 3              | 34                           | 5        | 108                       | 62       | 2 168                     | 0.0      | 0.0                       | 70       | 2 311                     |  |
| TOTAL           | 165            | 1 978                        | 435      | 6 892                     | 1 427    | 49 950                    | 174      | 4 340                     | 2 200    | 63 159                    |  |
| %               | 8              | 3                            | 20       | 11                        | 659      | 79                        | 8        | 7                         | 100      | 100                       |  |

#### **Carbon stock in plots rehabilitated within MACP:**

| Project stage              | Carbon in tree<br>and bush biomass,<br>tC | Carbon stock<br>in litter, tC | Carbon stock in soil, tC | Total carbon stock in MACP, tC |
|----------------------------|-------------------------------------------|-------------------------------|--------------------------|--------------------------------|
| Initial, 2014              | 39 774                                    | 7 458                         | 166 844                  | 214 769                        |
| After rehabilitation, 2016 | 59 962                                    | 21 066                        | 144 787                  | 225 815                        |
| Post-implementation, 2019  | 72 883                                    | 12 594                        | 147 524                  | 233 001                        |
| Difference, %              | +83                                       | +69                           | -12                      | +9                             |

Biomass – 28 SP in 8 strata (species/works); soil – 15 SP in 2 strata (<>2% humus);

| Element | Actual net<br>carbon stock,<br><i>ex post,</i> tC | Net carbon<br>stock, <i>ex</i><br><i>ante,</i> tC | Net carbon<br>stock change,<br>tC | Total net GHG<br>drawdown from the<br>atmosphere,<br>tCO <sub>2</sub> eq | Net GHG drawdown<br>by sinks,<br>tCO <sub>2</sub> eq/ha/yr |
|---------|---------------------------------------------------|---------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------|
| TOTAL   | 233 001                                           | 214 076                                           | +18 925                           | 69 392                                                                   | 7.89                                                       |

#### **Cost: benefit analysis of the use of shelterbelts in agricultural practice:**

|                                                                          | Maggurangent | Agricultural crops |                 |        |           |         |
|--------------------------------------------------------------------------|--------------|--------------------|-----------------|--------|-----------|---------|
| Indicator                                                                | unit         | Maize<br>grain     | Winter<br>wheat | Soy    | Sunflower | Average |
| Yield                                                                    | t/ha         | 5.5                | 3.1             | 2.3    | 2.2       | 3.3     |
| Cost of agricultural production                                          | lei/t        | 2278.0             | 2493.0          | 5609.0 | 5050.0    | 3857.5  |
| Value of agricultural production                                         | 1000 MDL/ha  | 12.6               | 7.8             | 13.1   | 11.0      | 11.1    |
| Value of agricultural production for a 43ha field                        | 1000 MDL     | 539.7              | 336.6           | 564.4  | 473.4     | 478.5   |
| Increase of production from shelterbelt influence (17.5%)                | 1000 MDL     | 94.5               | 58.9            | 98.8   | 82.8      | 83.7    |
| Income from the wood                                                     | 1000 MDL     | 46.6               | 46.6            | 46.6   | 46.6      | 46.6    |
| Income from non-wood products and other                                  | 1000 MDL     | 20.3               | 20.3            | 20.3   | 20.3      | 20.3    |
| Total complementary income                                               | 1000 MDL     | 161.3              | 125.8           | 165.6  | 149.7     | 150.6   |
| Cost of shelterbelt creation (7/3 rows; 4,14 ha/2 fields)                | 1000 MDL     | 72.2               | 72.2            | 72.2   | 72.2      | 72.2    |
| Cost of tending and maintenance works for shelterbelts                   | 1000 MDL     | 5.8                | 5.8             | 5.8    | 5.8       | 5.8     |
| Loss of farmland to shelterbelts (6% from total agricultural production) | 1000 MDL     | 32.4               | 20.2            | 33.9   | 28.4      | 28.7    |
| Total costs                                                              | 1000 MDL     | 110.4              | 98.2            | 111.9  | 106.4     | 106.7   |
| Balance of cost and income                                               | 1000 MDL     | +50.9              | +27.5           | +53.7  | +43.3     | +43.9   |
| Percentage from the total production                                     | %            | +9.4               | +8.2            | +9.5   | +9.1      | +9.1    |

#### **Benefits from the rehabilitation of shelterbelts under MACP:**

- Clearly positive impact on the productivity of cropland increasing the production of agricultural crops on average by over 9%.
- Legal harvesting of fuel wood about 12,5 thousand cubic meters of wood has been havested and handled to local communities fee of charge;
- □ Creation of temporary and permanent jobs in rural zones (replanting and tending activities for shelterbelts), providing the guard, harvesting of wood from various forestry treatments etc.);
- □ The capacity of shelterbelts to absorb carbon significantly increased The shelter belts have achieved net carbon capture of 7.9 tCO2eq /ha/year, or a cumulative gain of 69 392 tCO2eq;
- Environmental benefits become apparent within 3-6 years of the establishment or rehabilitation of shelter belts, and culminate within 10-12 years ;
- Testing and modeling of the technical solutions in the process of shelterbelts rehabilitation contributions for achieving efficiency and best results; further will be used in the rehabilitation of the entire network of shelterbelts across the country, with adjustments and embodiments;
- Rehabilitated shelterbelts ensures the protection of neighboring croplands (protection from winds, soil erosion and surface runoff; contributions to increase fertility, soil moisture and soil enrichment in humus and other nutrients, increasing biodiversity; creating favorable conditions for wildlife development, etc.) 63 thousand ha;
- Forest shelterbelts is an agroforestry practice with a high factor of maintaining and increasing the productivity of croplands.

## **PROJECTS: FORESTRY SECTOR AND CLIMATE CHANGE**

### **Ongoing/projecting measures:**

| Project name                                               | Implementation<br>entity                                                                  | Implementati<br>on period                                                                           | Main objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moldova Soil<br>Conservation<br>Project                    | World<br>Bank/Moldsilva<br>Agency/Forest<br>Research and<br>Management<br>Institute(FRMI) | Since October<br>2002,<br>Project cost 19<br>mln. US<br>dollars,<br>crediting<br>period 60<br>years | <ul> <li>Creation of new, communal and state forests on 20.3 thousand ha by afforesting eroded and unproductive lands;</li> <li>Stabilization of landslides and improvement of hydrological regime;</li> <li>Increased access to wood resources and non-wood forest products;;</li> <li>Creating a basis for sustainable development at local and regional level;</li> <li><u>Total emission reduction of GHG – 3.6 mln tones of CO<sub>2<sup>2</sup></sub></u></li> <li><u>Obtaining additional revenues from the sale of 1.9 mln. tones of ERs of CO<sub>2<sup>2</sup></sub></u></li> </ul>                                       |
| Moldova<br>Community<br>Forestry<br>Development<br>Project | World<br>Bank/Moldsilva<br>Agency/FRMI                                                    | Since<br>November<br>2006,<br>28,2 mln. US<br>dollars,<br>crediting<br>period 30<br>years           | <ul> <li>Creation of new communal forests on 8,5 thousand ha by afforesting eroded and unproductive lands;</li> <li>Stabilization of landslides and improvement of hydrological regime;</li> <li>Increased access to wood resources and non-wood forest products;;</li> <li>Creating a basis for sustainable development at local and regional level;</li> <li>Introduction of new participatory forest and grassland management practices.</li> <li>Total emission reduction of GHG – 1.2 mln tones of CO<sub>2</sub>.</li> <li>Obtaining additional revenues from the sale of 0.55 mln tones of Ers of CO<sub>2</sub>.</li> </ul> |

## **PROJECTS: FORESTRY SECTOR AND CLIMATE CHANGE**

### **Ongoing/projecting and measures:**

| Project name                                                    | Implementati<br>on entity                        | Implementation period                              | Main objectives                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forestry NAMA<br>(National<br>Appropriate<br>Mitigation Action) | UNDP<br>Moldova,<br>Moldsilva<br>Agency,<br>FRMI | 2020-2035,<br>investments - 127<br>mln. US dollars | <ul> <li>Main objective of NAMA is to contribute to the process of stopping soil degradation, increasing carbon sequestration by approx. 140 thousand tCO<sub>2</sub> annually through:         <ul> <li>Afforestation of 45.000 ha of degraded lands;</li> <li>Planting of 15.000 ha of riverside forest belts;</li> <li>Planting of 1.500 ha of farmland protection belts.</li> </ul> </li> </ul> |



# **THANK YOU FOR YOUR ATTENTION!**