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Genome-wide association study 

(GWAS)
Association with Vitamin E Levels in Maize Grain

Peak SNP is within ZmVTE4

• Identify genomic regions associated with a phenotype

• Fit a statistical model at each SNP in genome

• Use fitted models to test H0: No association with SNP 

and phenotype

Lipka et al. (2013)
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Markers exhibiting peak associations with 

traits are potential targets for marker-

assisted selection (MAS) 



Examples of GWAS identifying 

potential targets for MAS breeding 

efforts

• Rincker et al. (2016): Targets for brown stem 

rot resistance in soybean

• Lipka et al. (2013): Targets for boosting 

vitamin E and antioxidant levels in maize grain

• Owens/Lipka et al. (2014): Targets for 

boosting provitamin A and other carotenoid 

levels in maize grain
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Genetic diversity can lead to false 

positives in a GWAS

• Two sources for false positives:

– Population Structure

– Familial Relatedness

Genetic Diversity of 2,815 Maize Inbreds
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Romay et al. (2013)
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Mixed models reduce false positives 

in GWAS

• (Line1,…, Linen) ~ MVN(0,             )

• K = kinship matrix

• εi ~ i.i.d. N(0,      ) 

Phenotype of ith

individual

Grand Mean

Fixed effects: account 

for population 

structure

Marker effect

Observed SNP alleles 

of ith individual

Random effects: 

account for familial 

relatedness

Random error

term

Yu et al. (2006)

Measures relatedness between 

individuals
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Computational approaches for 

reducing computational burden

• The unified mixed linear model is a common 
approach for GWAS:

– Effectively accounts for population structure and 
familial relatedness

– Reduces false positives

• Resulting computational challenges:

– A typical GWAS of ~2,000,000 SNPs with standard 
model fitting approaches can be impractical

– Newly-developed model fitting approaches need to be 
used to address this challenge

GAPIT R package (Lipka et al. 2012):

• Employs computationally-efficient 

approaches for GWAS 

• Makes it possible to perform mixed-

model GWAS on an ordinary computer



Unified mixed linear model (MLM)

• (Line1,…, Linen) ~ MVN(0,             )

• K = kinship matrix

• εi ~ i.i.d. N(0,      ) 

Phenotype of ith

individual

Grand Mean

Fixed effects: account 

for population 

structure

Marker effect

Observed SNP alleles 

of ith individual

Random effects: 

account for familial 

relatedness

Random error

term

Yu et al. (2006)

Measures relatedness between 

individuals

• Variance component estimation is 

computationally intensive

• GAPIT employs two approaches to 

reduce this computational burden

7



Approach 1: Compressed mixed 

linear model

• (Line1,…, Linen) ~ MVN(0,             )

• K = kinship matrix

• εi ~ i.i.d. N(0,      ) 

Perform hierarchical 

clustering on lines 

using kinship matrix

Zhang et al. (2010)

• (Group1,…, Groupk) ~ MVN(0,             )

• KC = group (“compressed”) kinship matrix

• εi ~ i.i.d. N(0,      ) 

• Reduces computational time because it 

works with a smaller kinship matrix 



Approach 2: Population parameters 

previously determined (P3D)

Estimates variance 

components prior to 

running GWAS

Zhang et al. (2010)

• (Group1,…, Groupk) ~ MVN(0,             )

• KC = group (“compressed”) kinship matrix

• εi ~ i.i.d. N(0,      ) 

GWAS is run using 

variance component 

estimates

• Reduces computational time because 

intensive variance component estimation 

is conducted only once

Output Summary

Lipka et al. (2012)



Rep 1 Rep 2

Environment 1

Rep 3 Rep 4

Environment 2

Accounting for multiple reps and locations

Resulting panel planted in 
multiple reps within multiple 
environments

Seeds obtained from a germplasm 
bank 

How can we summarize trait information across 

multiple reps and locations?

• Fit a mixed model accounting for genetic, 

environmental, and genetic x 

environmental (GxE) sources of trait 

variation

• Output from this model:

- BLUPs/BLUEs trait values for each taxa

- Estimates of trait variation attributable 

to each source



Statistical model used to obtain best 

linear unbiased predictions (BLUPs)

• Gi = Random Genotype Effect

• Ei = Random Environment Effect

• (GE)ij = Random Genotype x Environment Effect

Random error

term

Phenotype of ith

individual

Grand Mean

Random

Effect

Random effect

Random

Effect

• Output 1: BLUPs of the genotype effect

• Output 2: Variance component estimates 

for calculating heritabilities



Statistical model used to obtain best 

linear unbiased estimators (BLUEs)

• Gi = Fixed Genotype Effect

• Ei = Random Environment Effect

• (GE)ij = Random Genotype x Environment Effect

Phenotype of ith

individual

Grand Mean

Fixed

Effect

Random effect

Random error

term

Random

Effect

• Output: BLUEs of the genotype effect



BLUPs vs BLUEs

• BLUPs:
– Advantage: Makes more sense from a biological 

perspective

– Disadvantage 1: BLUPs “shrink” values towards the mean

– Disadvantage 2: Fitting random effects is more 
computationally intensive than fitting fixed effects

• BLUEs:
– Advantage 1: BLUEs do not shrink values towards the 

mean

– Advantage 2: Less computationally intensive

– Disadvantage: Makes less sense from a biological 
perspective
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BLUPs and BLUEs: Some Technical 

Notes

• In plant breeding, estimate of grand mean is 
added to BLUPs and BLUEs

– Rationale: BLUEs/BLUPs will be in the same units of 
measurement as raw trait data

– After adding grand mean estimate, they are still called 
BLUPs/BLUEs

• Consider transforming your phenotypic data 
before fitting statistical models:

– Rationale: This would help with deviations from 
normality and constant variance assumptions
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Software I used to obtain BLUPs 

and BLUEs
• SAS:

– Advantage: (Relatively) simple to use

– Disadvantage 1: Annual license fee

– Disadvantage 2: Takes a long time to compute

• ASReml:
– Advantage: Can fit very complicated models quickly

– Disadvantage 1: Not simple to use

– Disadvantage 2: Expensive annual license fee

• R:
– Advantage: Free

– Disadvantage: Potentially not as extensively tested as SAS 
and ASREML
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Model used to obtain BLUPs for 

kernel color in NAM population

16
Chandler/Lipka et al. (2013)

• Two environments: Purdue University 2009 

and 2010

• Sets design:

• Each family set was in an incomplete 

block α-lattice design

Phenotype: kernel color visually assessed 

using standardized color scale

• Also included AR1xAR1 correlation 

structure to account for spatial variation

• Backwards elimination conducted to 

remove non-significant effects

• Analysis conducted in ASREML



Example: Rincker et al. (2016)

• Brown stem rot (BSR) and 
soybean:
– Caused by the fungus C. 

gregata

– Soybean yield loss of up to 
38% has been reported in the 
United States

– BSR resistance has been 
mapped in only 12 sources, 
only two of which have been 
used to develop BSR-resistant 
cultivars 
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Source: cornandsoybeandigest.com/

• Three genes associated with BSR 

resistance, Rbs1-3, have been identified 

in previous studies

• Critical need to obtain a more precise 

location of these loci

• Result in more efficient MAS for BSR 

resistance



Separate GWAS performed on four 

association panels
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• N-1989 panel:
– Binary phenotype: logistic regression + stepwise 

model selection

• Other panels:
– Quantitative phenotype: Unified MLM + multi-locus 

mixed model

Rincker et al. (2016)



Unified MLM GWAS identifies 

signals near Rbs1-Rbs3
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• Multi-locus mixed model identified two 

peak SNPs from this region in the final 

model

• GWAS was reran using these two peak 

SNPs as covariates

Rincker et al. (2016)



Peak SNPs from MLMM reduces 

explains most of  Rbs1-Rbs3 signal

20
Rincker et al. (2016)

• Similar findings were obtained in the 

other association panels



Breeding Ramifications

• Previous Rbs1-Rbs3 signals been refined to a 0.3 Mb 
region on Chromosome 16

• Should facilitate both MAS-based approaches and gene 
cloning efforts

• Demonstrates the utility of GWAS in soybean
21

Source: blogs.ext.vt.edu

Rincker et al. (2016)



Biofortification

• Identify target genes associated 

with nutrients  in crops

• Increase nutritional value of local crop varieties 

by selecting on these target genes

• Results in increased availability of essential 

nutrients

Source: www. aboutharvest.com



Compounds analyzed in Lipka et al. (2013)

• Tocochromanols

• Lipid-soluble antioxidants 

• Consist of tocopherols (T) and 

tocotrienols (T)

• α-tocopherol (αT) has greatest vitamin E activity

• Vitamin E 

• Essential nutrient 

• Suboptimal dietary intake exists in specific population 

segments

• Deficiency associated with cardiovascular disease and 

decreased immune function

Source: wartremovalexperts.com



Highest 

VitE

Activity

Distribution of 

Tocochromanol Compounds

Grain tocochromanol compositions across

a maize diversity panel

• Boost vitamin E levels by increasing      

α-tocopherol concentration



Data analyzed in Lipka et al. (2013)

• 281-member Goodman diversity panel

• Grown at Purdue University in 2009 and 2010 
field seasons

• Compound levels quantified in grain:
– Tocochromanols for 252 lines
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Source: Brenda Owens



Phenotypic data used for analysis

• High-pressure liquid chromatography (HPLC) used 

to measure tocochromanol levels in maize grain

• Mixed model accounting for field season effects 

fitted to each phenotype

• Best linear unbiased predictors (BLUPs) of lines 

from each model used as phenotypes for our GWAS26

Source: www.ssi.shimadzu.com Source: Torbert Rocheford

• 20 tocochromanol compounds, sums, 

ratios, and proportions were analyzed in 

GAPIT

• GWAS was conducted using 294,092 

SNPs with minor allele frequency > 0.05



In-class example: GWAS scan of 

Lipka et al. (2013) data subset

• Trait: α-tocopherol
– Has the greatest Vitamin E activity

• Marker subset:
– 3,093 marker set obtained from various marker technologies (i.e., the 4k 

marker set)

• GWAS software used: Genome association and prediction integrated 
tool (GAPIT)
– Unified mixed linear model is fitted at each SNP

– Population parameters previously determined (P3D) used to save 
computational time 
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In-class example: GWAS scan of 

Lipka et al. (2013) data subset

• 4K_SNPsmdp_genotype_test1_GBS_Names1.hmp.txt
– Genotypic data: 3,093 SNPs

• alpha.tocopherol.BLUPs_No_Outliers.transformed.txt
– Phenotypic data: α-tocochperhol levels

• Scripts_Necessary_for_GAPIT
– Folder containing scripts to be read into R

• Run_GWAS_on_alpha_tocopherol_4K_SNPs.r
– R script for conducting the GWAS

28



In-class example: GWAS scan of 

Lipka et al. (2013) data subset
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In-class example: GWAS scan of 

Lipka et al. (2013) data subset

• For details on running GAPIT, here is the user manual: 

http://zzlab.net/GAPIT/gapit_help_document.pdf 30

http://zzlab.net/GAPIT/gapit_help_document.pdf


In-class example: GWAS scan of 

Lipka et al. (2013) data subset
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In-class example: GWAS scan of 

Lipka et al. (2013) data subset
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In-class example: GWAS scan of 

Lipka et al. (2013) data subset
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GWAS identified signals near two 

biosynthetic pathway genes

ZmVTE4

• Peak SNP within ZmVTE4

(P-value = 7.36x10-14)

• ZmVTE4 has been previously 

identified

ZmVTE1

• Peak SNP located 70 bp from 

ZmVTE1 start site 

(P-value = 1.29x10-7)

• We are the first to identify 

ZmVTE1 in a maize association 

panel

Lipka et al. (2013)



ZmVTE4 and ZmVTE1 are 

important genes

Phytyl-DP
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Source: Dean DellaPenna

• Possible to develop maize grain with 

enhanced vitamin E and antioxidant 

levels via marker-assisted selection of 

ZmVTE4 and ZmVTE1



Elucidating the association between 

αT and ZmVTE4

• Short-range LD decay with peak SNP

• Significant GWAS signals up to 4,000,000 

bp away from ZmVTE4

Lipka et al. (2013)



Stepwise model selection identified 

two other ZmVTE4 SNPs associated 

with αT 

• ZmVTE4 signal explained by three SNPs

• 5.76-fold change in αT levels between most 

and least favorable haplotypes of these three 

SNPs

= SNP identified in GWAS

= SNP identified in stepwise model selection (developed in Segura et al., 2012) 

Lipka et al. (2013)



Including three ZmVTE4 SNPs as 

covariate removes signal
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Three ZmVTE4 SNPs explain the complex 

association signals in this region  

Lipka et al. (2013)



Targeting vitamin A deficiency 

through biofortification
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• Vitamin A deficiency (VAD):

– Affects 17-30% of children 
under 5

– 250-500,000 children become  

blind every year

– Infant morbidity and mortality

• Maize is a primary food source in many vitamin A 
deficient regions

• Biofortification: breed locally-adapted maize lines for 
increased provitamin A levels in grain

Source: en.wikipedia.org



Work in maize provitamin A biofortification 

prior to Owens/Lipka et al. (2014)

• Candidate gene studies identified loci in maize (Harjes et al., 

2008; Vallabheneni et al., 2010; Yan et al. 2010)

• Developed high provitamin A maize (CIMMYT, HarvestPlus) 

and high carotenoid lines (Burt et al., 2011) through selection 

on target alleles 

• Major QTL identified near candidate genes 

(Chandler/Lipka et al., 2013)

• Pleiotropy identified among metabolite 

QTL (Kandianis et al., 2013)

Source: Chandler/Lipka et al., 2013

Owens/Lipka et al (2014):

1.) Conduct an GWAS to identify new 

candidate genes

2.) Determine a minimal marker set to 

accurately predict  carotenoid levels 



Data analyzed in Owens/Lipka et al. 

(2014)

• 281-member Goodman diversity panel

• Grown at Purdue University in 2009 and 2010 
field seasons

• Compound levels quantified in grain:
– Carotenoids for 252 lines
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Source: Brenda Owens

• Maize lines with white kernels do not 

produce measureable carotenoids

• We only analyzed a subset of 201 lines 

that range from light yellow to dark 

orange kernel color



GWAS found significant marker-trait 

associations near carotenoid pathway 

genes
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Carotenoid biosynthetic 
pathway

Owens/Lipka et al. (2014)

= Significant at the 
genome-wide level

• Adjusting for multiple testing at the 

genome-wide level was conservative

• We also conducted a pathway-level 

analysis, where only markers near 58 a 

priori genes were considered



GWAS found significant marker-trait 

associations near carotenoid pathway 

genes
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Carotenoid biosynthetic 
pathway

Owens/Lipka et al. (2014)

= Significant at the 
genome-wide level

= Significant at the 
pathway level

Dxs2

• This work identified potential targets for 

marker-assisted selection (MAS)

• Are selecting for these target loci 

sufficient for improving provitamin A 

content in maize grain?



Targeted marker subsets for 

estimating kinship
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CHR:  1     2   3    4   5    6   7   8   9  10

• Suppose we are testing SNP 1 on chromosome 1 
for an association with a trait

• K_chr model for chromosome 1:

– Unified mixed linear model

– Kinship matrix calculated using markers on chromosomes 2-10

– Similar “leave one chromosome out” approach used for other 
chromosomes

Rincent et al. (2014)

• K_chr model has greater power to detect 

marker-trait associations in high-LD 

regions

SNP 1



Re-evaluated associations using 

K_chr model
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• Previously published GWAS results from two maize diversity panels:
– Mendelian: Sweet vs. starchy corn 

– Polygenic: Carotenoids and tocochromanols 

– Complex: Flowering time and plant height 

• Compared results of the K_chr model to the unified MLM:
– Did the K_chr model identify signals in “novel genomic regions”?

– Did the K_chr model identify more statistically significant associations in 
high LD regions?

Angela Chen

Chen and Lipka (2016)



K_chr identified signals in “novel 

genomic regions”
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Angela Chen ZmVTE1

K_chr signals located more than +/- 250 kb distant from trad. MLM 
signals

Four tocochromanol traits in Goodman diversity panel

Chen and Lipka (2016)



K_chr identified stronger 

associations in high LD regions
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Associations with tocotrienol ratio in vicinity of ZmVTE1
Angela Chen
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