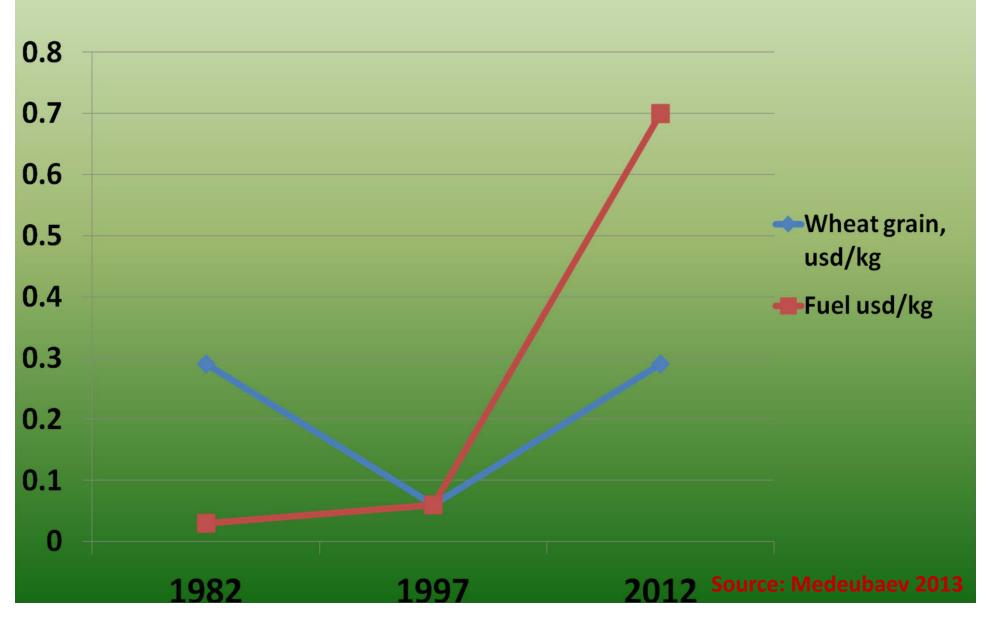


16th Steering Committee Meeting Fergana, Uzbekistan, 27-29 August 2014

Conservation agriculture in irrigated areas

A. Nurbekov, A.Musaev, D. Sydyk and Z. Ziyadullaev



The regional challenges

- Land degradation (salinization, soil erosion, waterlogging, overstocking and soil fertility decrease)
- Arable land per capita is decreasing
- Agricultural input prices increasing (fuel, fertilizer, seed, pesticides, etc.)

Comparison wheat and fuel prices in Kazakhstan (1982-2012)

Conservation agriculture can address these challenges

What is Conservation Agriculture?

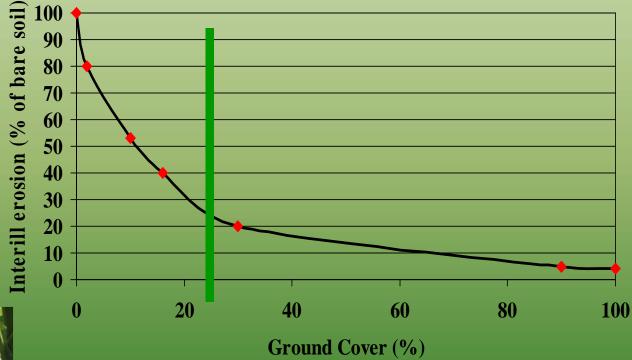
Empirical and scientific evidence internationally shows

- No or minimum mechanical soil disturbance by – seeding or planting directly into untilled soil
- Enhance and maintain organic matter cover on the soil surface – using crop residues and cover crops to protect & feed soil life

• **Diversification of species** -- both annuals and perennials - in associations, sequences and rotations

Conservation Agriculture, together with other good practices

CA impact on soil fertility and environment


	CA impact on soil fertility and environment								
	Type of degradation	Conservation Agriculture impact							
Soil salinity		□ Reduced soil salinity was reported by Devkota (2011) □ The differences in soil salinity at the end between conventional practices (0.52%) and NT (0.39%) were significant. After 4 years, NT system had the lowest soil salinity level (Nurbekov 2008 and Pulatov et al., 2012).							
	Soil organic matter	 □ Numerous results from the irrigated areas showed that crop residue retention improves SOM and soil N content (e.g. Egamberdiev, 2007; Nurbekov et al., 2012; Pulatov et al., 2012) □ In comparison, a wealth of information on CA practices worldwide shows an increase in SOM (e.g. West and Post, 2002; Sanchez et al., 2004; Govaerts et al., 2006; Corsi et al., 2012) and these results were also confirmed by selected studies in the irrigated areas in Central Asia 							
Soil Biodiversity & Biological activities		□ CA positive effect on earthworm populations, with earthworm biomasses up to 80% higher							
Soil Physico- chemical properties		 □ CA positive effect on soil aggregation + 60% (F. Tivet, Laos 2008) □ Under CA total exchange capacity + 50% (P. Lienhard, Laos 2013) 							

Soil Cover and Erosion

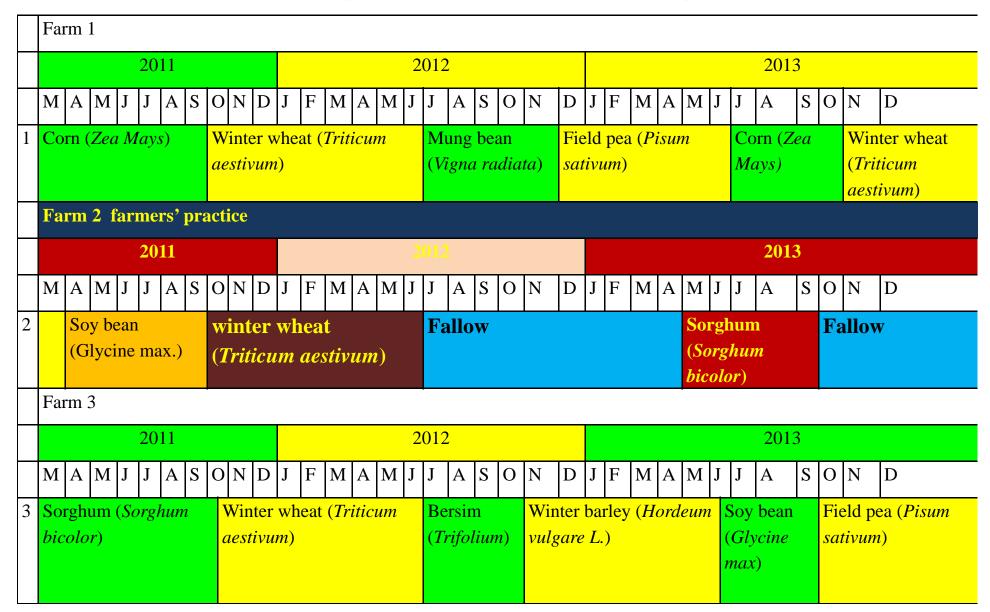
80% reduction with 30% cover!!

From Brady and Weil, 2002

Double crops will be essential to improve sustainability of farming and land use efficiency

Effect of no till succeeding maize in Azerbaijan (2011-2012)

	Cr	4- f			
Crops	Winter wheat	Maize	Winter wheat+maize	+-, t ha -1	
Winter wheat, control	5.17	-	5.17	-	
Winter wheat + maize	5.17	5.21	10.38	5.21	



Land use efficiency with different crop rotations

Traditional agriculture - wheat

Conservation agriculture – wheat

No-till Mungbean grown in Karshi (2011-2013)

Planting method	Spent fuel for	Yield, t ha-1	
	planting, l ha-1		
Conventional	53.6	1.61	
No-till with 1	13.6	1.77	
cultivation			
No-till	5.9	1.94	

Economics of planting methods on maize green mass yield in Kazakhstan (2012-2013)

Tillage method	Yield, t ha-1	Production cost, USD t ha -1			Profitabi lity rate %
No-till	47.5	81.2	190.2	109.0	134.8
Conventional till	47.9	103.	191.9	88.1	83.5

If CA is so good, why CA is it not spreading?

Adoption - Regionally

- Kazakhstan 2.1 M ha
- Uzbekistan 0.6 M ha minimum till wheat (only one year), including 2450 ha in rainfed area
- Tajikistan 25,000-50,000 ha minimum till wheat
- Kyrgyzstan 700 ha
- Turkmenistan no data

Why has there been so little adoption of Conservation Agriculture outside the Kazakhstan?

Constraints - adoption of conservation agriculture

- Mind set
- Lack of extension services throughout the region
- Training needs larger than perceived
- Lack of local manufacturers
- Limited number of publications CA
- Little or no mainstreaming of CA in National Programs
- Policy makers unaware of CA

No-till drill - 24 rows, 15 cm, 3.6 m

Conclusions

- CA practices are suitable for the existing major cropping systems.
- •CA also can combat land degradation in the region through application of no-till, crop residue retention and crop diversification;
- •CA can provide similar or higher crop yields while saving considerable production resources, including fuel, seeds, water and labour.

Discussion

- Further research in Central Asia across agro-ecological zones is necessary:
 - Son weed, nutrient, pest and water management;
 - Son sowing depth, dates, density;
 - >on fertilizer and irrigation rates;
 - on the impact to livelihoods and environment.
- Where necessary, livestock should be integrated with Conservation agriculture systems;
- To make results applicable on a wider scale, state programmes should become more active in conducting research, training and extension on CA.

