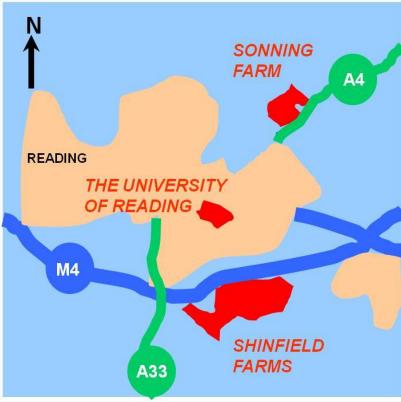


SNP discovery and validation for genomic-assisted breeding of faba bean (Vicia faba L.)


Donal O'Sullivan 8th Oct 2013, Rabat

School of Agriculture, Reading

All-faculty campus near town centre

Ag research supported by 2 farms

Sonning farm (180ha)

Acknowledgements:

NIAB Colleagues – Jane Thomas, Amanda Cottage, Anne Webb, Krystyna Gostciewicz, Douglas Hobbs

Visiting Scientist (INAT, Tunisia) - Khalil Khamassi

The Genome Analysis Centre – Melanie Febrer, Jane Rogers

Wherrys - Peter Smith NPZ-Lembke – Olaf Sass

Collaborators – Ana Maria Torres (IFAPA), Wolfgang Link (Goettingen), Fred Stoddard (Helsinki), Gérard Duc (INRA-Dijon), Fouad Maalouf, Francis Ogbonnaya (ICARDA), Mahmoud Zeid (Alexandria)

MergeMap (UC-Davis, Close Lab), Strudel (JHI, Matthews et al)

Technology Strategy Board
Driving Innovation

Why faba bean?

- Faba bean is the broadacre grain legume best placed (in UK) to provide:
 - sustainably produced protein for food and feed
 - return N to soil in a sustainable rotation
- 2. We have identified several researchable topics that can be readily addressed IF we have the right tools to do so.

SNP DISCOVERY

ALBUS

nematode-susceptible "white" flower

454 sequence of RNA From 10-day old seedlings

BPLI0

nematode resistant "normal" flower

>Mt3.5

Alignment of 14k gene transcripts present in both lines to Mt3.5 predicted CDSs

40,000 putative SNPs

888 new KASPAR assays designed

Validation on 37 reference lines

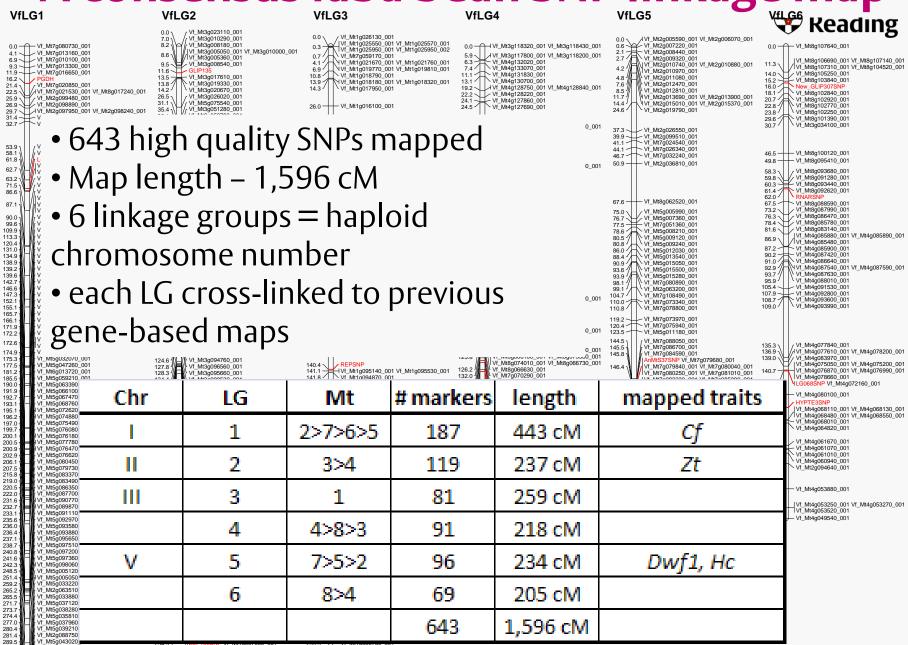
SNP VALIDATION

KASPar assay validation summary

• 888 new Albus-BPL National Institute of Agricultural Botany (NIAB) - Crops and Traits - Project 972.019, Genotyped on 37 c Vf Mt1a021760 001 Project number 972.019..... KSNP number 154024-0755 GTTAGCGAAAGTCAT[A/C]GAGTACCTTTGAAAC •Results: 🞹 Vf_Mt1g021760_001 Vf Mt1q025550 001 W Vf Mt1q025570 001 Class I - High Vf_Mt1g025950_001 Wf_Mt1g025950_002 Vf Mt1q026130 001 Class II & III -W Vf Mt1q030300 001 Wf_Mt1g030420_001 A:A Wf_Mt1g030480_001 Vf_Mt1g031620_001 Class IV - Les W Vf Mt1q031650 001 Missina Wf_Mt1g044570_001 Bad Wf_Mt1g045800_001 Short Class V - Jun Vf Mt1q050730 001 W Vf Mt1q056180 001 Wf_Mt1g056520_001 Uncallable 🔘 Wf_Mt1g056560_001 Paid for by 5 institu 500 Vf Mt1q061530 001 W Vf Mt1q061600 001 Vf_Mt1g061800_001 Validation panel als 🚥 Vf_Mt1g064060_001 Quality Class Vf Mt1q066380 001 W Vf Mt1q071110 001 Wf_Mt1g071430_001 Added SNP assays Wf_Mt1g072640_001 Vf Mt1q072740 001 W Vf Mt1q073000 001 Cottage et al Wf_Mt1g075140_001 Wf_Mt1g075320_001 Vf_Mt1g075610_001 NIAB_AC3_p1 W Vf Mt1q079520 001 Mol Breeding Wf_Mt1g079810_001 DOI 10.1007/s11032-012-9745-4 Wf_Mt1g079830_001 SHORT COMMUNICAT Wf_Mt1g079870_001 W Vf Mt1q079930 001 Wf_Mt1g080150_001 Wf_Mt1g081290_001 Heterozygosity an ണ്ടു Vf MH1a082210 001 nucelotide polymo

programme

A. Cottage · K. Gostkiewicz · J. E. Thomas · R. Borrows · A.-M. Torres · D. M. O'Sullivan


MAPPING

Populations used

- ALBUS x BPL10 (anchor) 136 F_2 s
 - Segregates for white flower (zero tannin)
- NV657 x NV643 170 F_2 s
 - Segregates for ZT
- NV644 x NV153 125 F₂s
 - Segregates for dwarfism, hilum colour, ZT
- $NV639 \times NV658 50 F_2 \text{s}$
 - Segregates for closed flower mutation
- 128,615 good datapoints
- Call rate across pops ranged from 98-99%

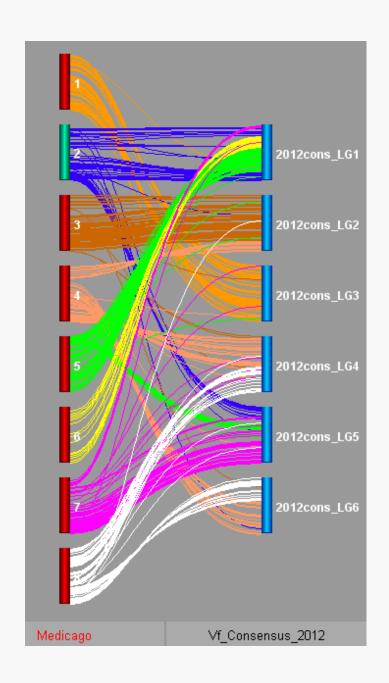
A consensus faba bean SNP linkage map

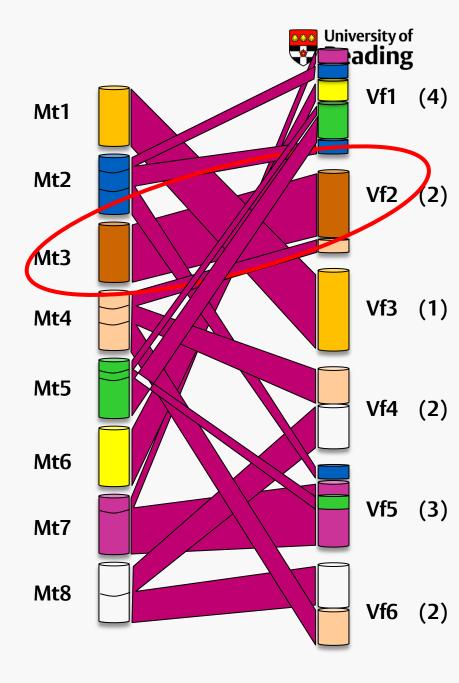
Mt5g044980_001

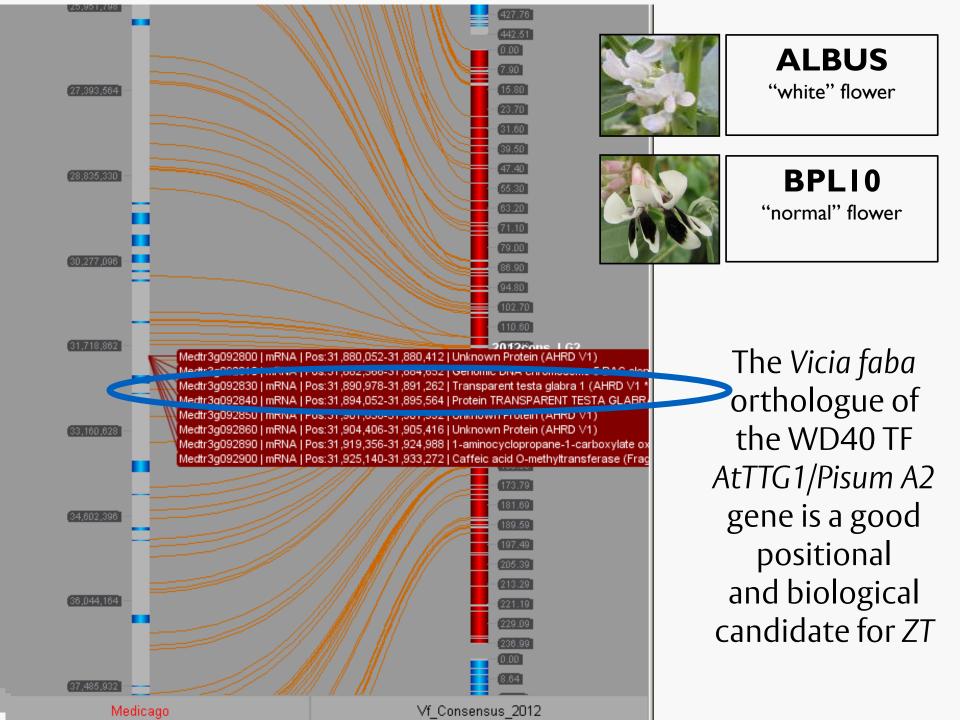
Mt5g046030_001

Mt5g026840_001

293.4


299.0


Mt5q044970 001 Vf Mt5q045630 001


Vf_Mt4g005830_001

SYNTENY

MUTAGENESIS

Hedin/2 inbred line

- ~Medium-small seeds
- Spring habit
- Highly autofertile
- Highly inbred
- Summer 2013 multiplication
 - 2x pollinator-free cages
 - Isolation distance
 - 2 x single inbred plant progenies
 - 300 plants total
 - c. 25,000 seeds

Mutagenesis 2013/14

- Mutagen dose response and herbicide growth inhibition tests over winter
- Spring 2014 >20,000 M_0 harvest bulk of >2,000,000 M_1
- Winter 2014 screen batches of 50,000 using a high density seedling screen every 10 days
- Herbicide targets TBC

Sebastien 1992 sulfonylurea-resistant soybean patent

Number and Type of Soybean Mutants Selected from Eight M2 Populations					
-	Estimated Number of M2 Plants	Mean number of M2 per	Number of Putative Mutants saved		
Population code	Screened	M1 plant	Resistant	Tolerant	
A3205-EMS	100,000	2.5	0	3	
Williams-EMS-1	42,000	5.4	0	6	
Williams-EMS-2	88,000	11.7	2	10	
Williams-NMU-1	55,000	8.9	21	6	
Williams 82-NMU-A	26,000	17.3	0	2	
Williams 82-NMU-B	30,000	24.0	0	0	
Williams	18,000	18.0	0	1	

Beware ease of evolving resistance

Table 1. Site of action and Weed Science Society of America mode of action group for herbicide-resistant weeds in the United States based on the number of resistant weed biotypes (summed across states) and number of the weed species (Heap 2012).

Site of action	Group	No. of biotypes	Weed species
ACCase	1	34	13
ALS	2	121	37
Auxins	4	12	8
Carotenoid biosynthesis	28	1	1
Chloroacetamides	15	1	1
Dinitroaniline	3	12	5
EPSPS	9	39	9
Not classified	27	3	1
Organic arsenicals	17	7	1
Protox	14	3	1
PS I	22	5	4
PS II (nitriles)	6	1	1
PS II (triazines)	5	91	25
PS II (ureas)	7	11	7
Thiocarbamates	8	6	5
Total		347	119

Abbreviations: ACCase, acetyl-coenzyme A carboxylase; ALS, acetolactate synthase; EPSPS, enolpyruvyl shikimate-3-phosphate synthase; PS, photosystem.

THANK YOU! SHOKRUN! MERCI!