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Statistical Analysis of Multi- location Variety Trials

This Module

Objectives and Output

To develop the participant 's skill in designing multi-locational plant variety trials,
carrying out the statistical analyses of the data generated from such designs,
interpretation and presentation of the results from such analyses. Each participant will be
expected to a prepare a draft scientific manuscript using the data from his/her own
experiments.

Scope

The course covers:

- Design and analysis of data from Multi-locational Variety Trials and interpretation of
GxE interaction, in general. In particular it focuses on - analysis of data from individual
environments, test for homogeneity of error variances, combined analysis of data
(evaluation of GxE interaction and tests for parallelism of the regression lines), common
stability statistics, clustering methods (hierarchical and non-hierarchical cluster analysis
of genotypes/environments), principal component analysis (of genotypes/environments)
and heritability of the traits in broad sense (from individual environments as well as all
the environments combined), additive main-effects and multiplicative interaction model,
and inter-site transferability of crop varieties.

- Programs coded in GENSTAT 5 Release 4.2 for analysing data from multi-locational
trials conducted in block designs.

In this note we have adapted the materials from several sources and have been cited in
the reference/bibliography.



Statistical Analysis of Multi- locational Variety Trials
1. Introduction

Crop improvement process is long and involved several stages of germplasm collections,
selection of desired material types, developing crosses between desired parents,
preliminary evaluation of (generally large number of) genotypes/lines, selection,
evaluations of selected genotypes in replicated trials followed by further (advanced) yield
trials at multi-environments/locations representing the target domain for which the
varieties are ultimately developed for production. When a number of varieties of a crop is
grown over several environments (locations, years), their relative responses on various
characters may show variation over the environments. This happens due to differential
interplay between genetic and non-genetic (environmental) factors and therefore such a
variation is said to occur due to interaction between genotype and environment or
genotype X environment interaction (GEI). The major aspect of multi-locational trials is
to identify stable and/or adaptable genotypes to the changing environments. Search for
such genotypes requires a careful examination and exploitation of the GEI.

Keeping above aspect in view, this manuscript discusses commonly used
experimental designs, data analysis from individual environments, combined analysis of
data in Section 2, stability analyses Section 3, partitioning of GEI in Section 4,
stochastic dominance in Section 5, a brief introduction to additive main-effects and
multi-plicative interaction (Section 6) and inter-site transferability of crop varieties
(Section 7). Various analyses covered in these sections have been coded in GENSTAT 5
(Genstat 5 Committee 1993) and a sample printout has been presented in Section 8.

2. Estimation of genotype means and GEI
2.1 Experimental design and data

We consider for that a set of p genotypes have been evaluated in q environments in
replicated trials conducted in complete or incomplete block designs. A checklist of
concerns in planning of an experiment is given by Jeffers (1978). The number of
replications at a site depends on the variability in the experimental material (plots) and on
the precision required of the estimates. For multi-locational trials, Kempthorne (1952,
p383) provides an expression for an optimum number of replication in terms of error



variance, genotype variance and genotype x environment interaction variance and the
cost factors. Although two replicates are absolutely minimum to estimate experimental
error variance, in many case this is also the optimum number.

A number of statistical packages, such as GENSTAT 5, ALPHGEN, ALPHA+,
GENDEX, etc. can facilitate generating randomized plans for various types of
experimental designs. Plot-wise records on the response variable, generally taken as
yield, are required for statistical analysis.

2.2. Analysis of variance from individual locations

Analysis of variance would be generated by fitting the model

yield = general mean + genotype effect + replicate (or complete block) effect +
error

for randomized complete block design (RCBD), and
yield = general mean + genotype effect + replicate effect
+ effect of incomplete block within replicate + error
for the incomplete block design used.

The above model for data from RCBDs can be expressed using the following notations.
Yij=pn+7 +bj+ey;
where y;; = yield corresponding to
J= thblock (j = 1,2,...,7), i — thvariety (i = 1,2,...,v);
¢ = general mean, 7; = effect of i — th genotype, b; = effect of j — th block,
e;; = normally and independently distributed random variables with mean zero
and
variance o2,

If the varieties are selected randomly to represent a population, we then assume that the
7; s are normally and independently distributed random variables with mean zero and
variance ag. Analysis of variance for the data with expected mean squares is in the

following:



Table. Analysis of variance and expected mean squares from a single location data

Mean Ezxpectationof
Source df Square Mean Square
(a) Variety effects assumed fixed,
Blocks r—1 -
Varieties v—-1 1% o+ 53 (ri — 7)?
Error (r—1)}v-1) E o?

(b) V ariety effects assumed random

Blocks r—1 - -
Varieties v-1 % o’ +ra}
Error (r=-1(v-1) E e

The estimates of variance components are
a2
o =FE

8, =(V - E)/r

Gain due to selection
The gain in selecting a chosen proportion p of the lines is the difference between mean of

the selected lines and the population mean. This difference has the expected value
Ko?

= m
The constant K, a function of p, is given by
K = Z/p; Z = ordinate of the standard normal distribution at the point which
covers the area p in the right tail of the distribution and is given by
Z = (1/(2m)"?)exp( — £%/2)
where p= [7(1/(27)"*)ezp( — u*/2)du.

For example p = 0.2 (i.e. 20%) gives Z = 10.28 and K = 1.40.

If the selection is based on means of r replications then the expected difference is
Ka?

;;03+0'2/r



Models can similarly be written for other type of experimental designs. These models
can be fitted using statistical packages (e.g. GENSTAT, SAS). The analysis of variance
provides an estimate of experimental errors variance and a test of significance if the
varietal differences in the yield response are real rather than arising from experimental
error or chance. Means of varieties can be estimated (with adjustment for incomplete
blocks where used) for individual environments. The experimental error variances may
be examined for their homogeneity over the environments using Bartlett's chi-square
test. If the error variances are found homogeneous then a pooled error variance can be
obtained.

2.3 Combined analysis of variance over all locations

The combined analysis of variance to study GEI should distinguish the two cases- i) error
variances homogeneous and ii) error variances heterogeneous.

Homogeneous error variances

One may estimate the GEI by fitting the model for RCBDs

Yield = General mean +Environment effect + Replication effects (within environments)
+ genotype effect + genotype x environment interaction effect + error

This will produce a common (pooled) error for testing significance of GEI.

Expressing the above model in notations

Yijk = B+ Ej + B+ 7 + (GE)ij + e (8)
where

variety, i = 1,2, ..., v

environment j =1,2,... L

blocksk =1,2, ..., r

E; = effect of j — th environment; 8;; = effect of & — th blockin j — th
environment;

7; = effect of i — th variety;

(GE);; = interaction term for i — th genotype and j — th environment;

eijx = plot error assumed independent and normally distributed with mean zero
and

constant variance o2.

Let us assume that the environment and variety effects are fixed and the genotype x
environment interaction are independent and normally distributed with means zero and
variance o2,. We have the following ANOVA structure.



Table. Analysis of variance of data from several experiments conducted in RCBDs

Mean
Source df Square Ezpectationof Mean
Square
Environment L-1 - -
Blocks within Envs. L(r — 1) - -
Variety v—1 |4
o’ +rol, + vr_Ll (ri — 7)?
Variety z Envs. (v—1)}(L-1) I o?+rol,
Error L(r-1){v-1) E o?
Total Lrv-1

(Assuming environment effects fixed, genotype effects and the interaction effects random)

Envs. =Environments

Gain due to selection
The gain in selecting a chosen proportion p of the lines (based on means over the

replications) has the expected value
Ko?

\/ag +0%/L+0%/(Lr)

Example 1. Combined ANOVA over RCBDs
Data: Chickpea yields

Identifier Type Length Values Missing
Location Factor 460 Present 0
Rep Factor 460 Present 0

Geno Factor 460 Present 0

Yield Variate 460 Present 0

**w*+ Analysis of variance ****%
Variate: Yield
Source of variation d.f. S.5. m.s. v.r. F pr.

Location.Rep stratum
Location 4 1.127E+08 2.817E+07 22.10 <.001
Residual 15 1.911E+07 1.274E+06 8.30

Location.Rep.Geno stratum

Geno 22 7.644E+06 3.474E+05 2.26 0.001
Location.Geno 88 3.968E+07 4.509E+05 2.94 <.001
Residual 330 5.064E+07 1.535E+05

Total 459 2.297E+08



**%*%*%* Tablas of means ***k*

Variate: Yield
Grand mean 101l6.
Location 1.00 2.00 3.00
1012. 322. 880.
Geno 1,00 2.00 3.00
1124. 976. 942.
Geno 8.00 9.00 10.00
1128. 951. 959,
Geno 15.00 16.00 17.00
1073. 1081. 856.
Geno 22.00 23.00
761. 965.

Location Geno 1.00 2.00
1.00 828. 1054.
2.00 172. 284.
3.00 933. 792.
4.00 2579, 1954.
5.00 1107. 798.

Location Geno 7.00 8.00
1.00 773. 1078.
2.00 328. 555.
3.00 932. 875.
4.00 1875. 2598,
5.00 988. 53e6.

Location Geno 13.00 14.00
1.00 979. 805.
2.00 271. 293.
3.00 818. 693.
4.00 906. 2285.
5.00 691. 1024.

Location Geno 19.00 20.00
1.00 1183, 1262.
2.00 280. 333.
3.00 1099. 1218.
4.00 803. 1903.
5.00 1774. 1214,

kk* Standard errors of means ***

Table Location Geno
rep. 92 20
e.s.e. 117.7 87.6
d.£. 15 330

4.00 5.00
1867. 998.
4.00 5.00
854. 1057.
11.00 12.00
1196. 1121,
18.00 19.00
1030. 1028.
3.00 4.00
101e. 1023.
401. 132.
750. 625.
1852, 1238.
691. 1250.
9.00 10.00
818. 1240.
281, 276.
766, 826.
2149, 1704.
043. 750.
15.00 16.00
1005. 943,
326. 481.
906. 875.
2117. 1783.
1012. 1322.
21.00 22.00
1059, 926.
354, 228.
1026. 959,
1442. 929.
1465. 762.

Location

Geno

4

224.8

151.47

Except when comparing means with the same level(s) of

Location

195.9

6.00
1254.

13.00
733.

20.00
1186,

5.00
880.
381.
818.
2207.
1000.

11.00
1153.
318.
792.
2942.
774.

17.00
882.
286.
891.

1446.
774.

23.00
1014.
339.
896.
1016.
15860.

7.00
979.

14.00
1040.

21.00
1069.

6.00
1111.
312.
917.
2931.
1000.

12.00
1000.
427.
719.
2556.
905.

18.00
1036.
349.
1110.
1729.
929.



d.f.

**+* Standard errors of differences of means **

330

*

Table Location Geno Location
Geno
rep. 92 20 4
s.e.d. 166.4 123.9 318.0
d.f. 15 330 151.47
Except when comparing means with the same level(s) of
Location 277.0
d.f. 330
*** Least significant differences of meansg ***
Table Location Geno Location
Geno
rep. 92 20 4
l.s.d. 354.7 243.7 628.2
d.f. 15 330 151.47
Except when comparing means with the same level(s) of
Location 544.9
d.f. 330

Example 2. Combined analysis of data from triple lattices

Data: Barley yield: v =64genotypes, 10 environments.

*+%++* REML Variance Components Analysisg *##%+&+*
Response Variate : Yield

Fixed model : Constant+Loc+Geno+Loc.Geno
Random model Loc.Rep+Loc.Rep.Blk

Number of units : 1920
No absorbing factor

*** Estimated Variance Components ***

Random term Component S.e.
Loc.Rep 34618. 13020.
Loc.Rep.Blk 41528, 5621.
*units* 83456. 3642.

*** Approximate stratum variances ***

Loc.Rep 2631205.
Loc.Rep.Blk 304939,
*units* 83456.

Effective d.f.
20.00
210.00

1050.00

* Matrix of coefficients of components for each stratum *

Loc.Rep 64.00 8.00 1

.00



Loc.Rep.Blk
*units*

0.00

0.

00

*** Wald tests for fixed effects *+*

Fixed term

Loc
Geno

Loc.Geno

Wald statistic

1521.7
517.4
1314.0

*** Table of predicted means for Constant *+*

*** Table of predicted means for Geno ***

Geno
Geno
Geno
Geno
Geno
Geno
Geno
Geno
Geno
Geno
Geno
Geno

Geno

1
2132
6
1355
11
2099

Standard error of differences:

Average variance of differences:

2 3
2332 2251
7 8
1893 2228
12 13
2314 2261
17 18
19¢9 2102
22 23
2113 1663
27 28
2166 1738
32 33
2333 1933
37 38
1946 2273
42 43
2189 2068
47 48
2159 2302
52 53
2296 2260
57 58
2335 2245
52 63
2164 2194
Average
Maximum
Minimum

78.98
79.51
78.23

6237.

*** Table of predicted means for Loc.Geno ***

Geno
Loc

[n]
2]
= [
]

[
o
0

WD JNANLEWNM

LD B =

1

421

819
1980
1180
3327
4422
1080
4918
1570
1601

61

430
805
2325
1246
3347
4167

2

360

715
2442
1379
3716
4764
1142
5038
1485
2278

62

533
989
2501
1102
3046
3646

3

379

716
2372
1090
3386
4100
1423
5160
1712
2171

63

416
823
2374
1196
3236
4181

10

567

357

759
1927

996
3858
4935
1246
4872
2191
2008

64

475
864
2237
778
3774
4216

352

808
2305
1225
2737
3178
1302
5052
1296
2027



7 1324 825 1264 1305

8 5102 5413 5013 4410
9 1701 1437 1412 1599
10 2436 2149 2024 2100
Standard error of differences: Average 293.2
Maximum 298.0
Minimum 246.4
Average variance of differences: 86200.

Standard error of differences for gsame level of factor:

Loc Geno

Average 249.7 298.0

Maximum 251.4 298.0

Minimum 246.4 298.0
Average variance of differences:

62372. 88806.

2.4 Combined analysis of data from experiments in RCBDs conducted
over several locations and years

We shall consider the analysis of a trial on v varieties evaluated in r randomized blocks at
each of L locations in each of the same Y years. We shall use is the following model.

Vit = p+ L+ Y + (LY)jk + 7+ (L7)ij+ (YT)u + (LYT),-jk
+ Bikt + eijn

where the various terms in right hand side represent general mean, location effect, year
effect, location x year interaction, variety effects, location x variety interaction, year x
variety interaction, location x year x variety interaction, blocks within location and year,
and plot error respectively and associated with the suffixes representing the following:

t=1, 2, .., v : variety

3=1,2, .., L:locations

k=1,2, .., T:years

l=1,2, .. r:blocks.
Further we assume that variety and replication effects are fiexd while location effect and
all other factor effects are random. The interactions with variety i.e. location x variety
interaction, year x variety interaction, location x year x variety interaction, and the plot
errors are assumed independently and normally distributed with means zero and
variances o}, o7, , of,, and o respectively. We have the following ANOVA structure.



Table Analysis of variance of experiments combined over several locations and
years

Mean
Source df Square Ezxpectationof Mean Square
Location L-1 Lo -
Years Y-1 Ye -
Location X years (L-1}Y-1) LoYe -
Varieties v—1 v o*+ral, +rlol, +rYo},

+ L (- 7)?

Places X varieties (L-1)v-1) LoV o+ ra,zyg + TYO';‘;
Years X varieties (Y-1)(v-1) YeV o+ ra’fyg + 7‘L0'§g
Places X years X varieties (L — 1)(Y — 1)(v — 1) LoYeV o° + rafyg
Replications LY(r-1) -
Error LY(v-1)(r-1) E o?
Total LYvr -1

Gain due to selection
The gain in selecting a chosen proportion p of the lines (based on means over the

replications) has the expected value
Ko?

VO3 +0h/L+0%,/Y+0 [(LY) +02/(LYT)

Heterogeneous error variances
We can fit the following model on the genotype x environment data on means (or

adjusted means for incomplete blocks) using a weighted analysis of variance with
weights being inversely proportional to the variance of the means. The weight
corresponding to a mean (for a combination of genotype and environment) may be
estimated by 1/(standard error of the mean)?.

Mean=Environment effect + Genotype effect + residual

The residual sum of squares produced by the weighted least-squares would be the
weighted GEI sum of squares and would be approximately distributed as chi-square with
GEI degrees of freedom.

Once there is a significant GEI, we may carry out further analyses to identify the causes
of interaction inters of the responsiveness of the genotypes to the environments.

3 Exploitation of G x E Data: Stability Analysis

12



Genotypes performance changes due to environmental pressures or stresses (due to the
population heterogeneity or population buffering and changes in the genetic make up
taking place over generations) and differences in their ability to adapt to the stress factors
(short-term acclimatization). A number of statistical models to study genotypic
adaptation based on phenotypic performance have been discussed in literature. Byth and
Mungomery (1981) discussed the following three concepts Stability, adaptability, and
predictability.

"

Phenotypic stability refers to the ability of a genotype to maintain a near constant
phenotype for the character of interest over variable environments. Such a genotype
would be regarded as having wide adaptation. But certain genotypes may also show
predictably superior performance in particular types of environments indicating that
broad adaptation inevitably involves sacrifice of performance in specific environments.
Thus the strategies of plant improvements for broad adaptation (minimizing G x E
interaction) and specific adaptation (emphasizing favorable interaction) are in direct
conflict.

Predictability refers to the extent to which response is systematic.

Responsiveness is the ability of a genotype to respond in a particular manner to a general
change in the environmental potential.

Sensitivity (also stability) refers to the extent of unpredictable variation in response.
Some researchers relate stability to variability of performance over time (temporal
variation) at a location while adaptability to variability in performance across locations
(spatial variation).

We shall in the present chapter discuss various concepts of stability using statistical
measures in common practice. The various concepts and measures of stability,
originating due to different outlooks of experimenter to their specific problems, have
added to the difficulty of choosing a stability parameter (s) for a given situation. We
include the two approaches discussed by Lin et al (1986).

13



3.1 Parametric Approach

Stability statistics are derived (computed) for each genotype from two-way tables of
genotype and environment data. These statistics are based on either of the following
three types of stability concepts. A genotype is considered to be stable if

- its among environments variance is small (Type I stability),

- its response environments is parallel to mean response of all genotypes in trial (Type II
stability),

- the residual mean square from regression model on environment index is small( Type
II stability ).

In order to list various statistics, we shall use the following notations. Let y;
denote the mean value of i-th genotype in the j-th environment (i=1,2, ...p, j=1,2...9).
Let

¥i= 2yl 9= 2yl 5= 22 yi(p9)
i i i J

represent respectively, means of i-th genotype, j-th environment and overall mean. The
nine statistics and one more in current use are briefly described as follows:

I. The variance of a genotype across environments
2% o \2
S; =§(yi,- - 9:.)%/(g-1),
J=

2. The coefTicient of variation

CV,'-':Si/S'i' .
Francis and Kannenberg (1978) used the conventional CV% of each genotype as a
stability measure.
3. Plaisted and Peterson's (1959) mean variance component for pair- wise G x E
interaction (6;)

14



- a .
fi= (p ;(Yi 7S P57+ Rp-1)(g-1)).
J=

The mean of the estimated variance components of the G x E interaction for all pairs of
genotypes that include genotype i is the stability measure of genotype i.
4. Plaisted's (1960) variance component for G x E interaction ()

q
9(,-)=('PZ%()’1' i Tie G- 9P Hp- D+ DY 9429 7+9- ) ((p-2)(g-1)).
J=

One genotype i is deleted from the entire set of data and the G x E interaction variance
from this subset is the stability index for genotype i.
5. Wricke's (1962) ecovalence (w?)

q
w?=§_:|(yi V9. t9.)° .
=

This G x E interaction effects for genotype i , squared and summed across all
environments, is the stability measure for genotype i.
6. Shukla's (1972a) stability variance (c?)

7= (P Li; i 5549 Y- (i ;7:.-9.7+9-)(p-1) Y((p-2)(g-1)).

Based on residuals in a two-way classification, the variance of a genotype across
environments is the stability measure.
7. Finlay and Wilkinson's (1963) regression coefTicients(b;)

bi =3 i; ¥ )G VG55 )
j

The observed values are regressed on environmental indices environments and the
overall means. The regression coefficient of each genotype is taken as its stability
parameter.

8. Perkins and Jinks' (1968) regression coefficient (5;)

Bi = 201595749059 W55,
j

15



Similar to (7) except that the observed values are adjusted for environment effects for
computing regression coefficients (3,= b;- 1).
9. Eberhart and Russell's (1966) deviation parameter (67)

& = (X Oi;¥i-5-5+9-)-BF (F.5-9.)a-2)
) )

This is the residual mean square (MS) of deviation from regression defined in (7) or (8) is
the measure of stability.

10. Variance of genotypes across environments on the ratios of yields to environment
means

Yau (1972) gave an other statistics, denoted here by & as the variance across
environments of the ratios of yields to the mean under respective environment

& = ZFI(rij - 7.)°/q-1), where #= _erij/q, and 1;;=y;/¥;
]=

This statistic can be see to measure Type-II stability.
Grouping of the indices and their similarity

The first nine statistics are based either on the deviation from average genotype effect
(DG) = y;;-§; or on the G x E interaction term I;; = y;;-§; -¥;+§ _(in form of their
sums of squares SS , regression coefficient or deviation from regression) and were
classified into four groups (A, B, C, D):

Group A: DG, SS: (S?, CV,) — Type I stability

Group B: GE, SS: (6:, 8y, W2, 0?) — Type |
stability

Group C: DG or GE regression coefficient : {bi, B;) — Type Il stability

Group D: DG or GE regression deviation. (67) - Type Ill stability

Lin et al (1986) noted:

(i) Since Var (log(y)) ~ Var(y)/(mean(y))? = (CV(y))?2. Thus the two statistics in group
A are equivalent, except for data transformation.

16



(i) The four statistics in group B are equivalent for the purpose of ranking genotypes.
o?, also is an unbiased estimate of variance of genotype i. An approximate test for
homogeneity of o7 has been given by Shukla (1972b).

(iii) Since f3; = b; -1, the two statistics in group C are equivalent. Similarly, the statistics
of group D are equivalent.

(iv) When variability in response can be satisfactorily expressed by a regression model,
the regression coefficient (of group C) can serve as stability parameters and could be
preferred to variability measures (group B) since, they (of Group C measures) provide
information on shape of response along with its variation.

Stability indices and stability measures

(i) The statistics in Group A measure Type I stability; those of Group B and Yau's index
measure Type 1l while those of Group D measure Type I11. The statistics of Group C are
of Type I or Type Il stability measures depending on the nature of the stable genotype. If
stable genotype are defined by having b;=1 (3;=0) Type II is implied; but if they are
defined by b;=0 (8;=-1), then Type I is implied.

(ii) Type I stability: Type I indicates homeostasis, a biological concept (Becker 1981). It
differs from agronomic concept of stability given by Type 1. Although Type I is
theoretically sound, but breeder do not use it frequently, for a breeder would like to select
cultivars with high yields besides having Type I stability. Type I stability is associated
with relatively poor yield in environments which are high yielding for other cultivars.
Also, b; and yield are positively correlated (Finlay and Wilkinson, 1963). Although wide
(broad) adaptation may be desirable but difficult to achieve in practice. A still more
convenient way would be to breed cultivars with (specific) adaptation to different
environments to maximize the production. Since Type [ stability does not depend on the
presence of other genotypes, it has broad inference base. However, it does not provide
information on the response structure.

(iii) Type II stability: The inferences from Type Il stability measures are relative to the
genotypes included in the test. For example, a genotype A may be assessed stable and B
unstable if A resembles majority of genotypes in the set more closely than does B. In an
another set of genotypes, if B resembles majority of genotypes more closely than does A,
then B is stable and A unstable. This measure is useful for comparing a specific set of
genotypes and thus, does not have a broad inference base for general assessment.

(iv) Type III stability: Eberhart and Russell (1966) suggested another measure of stability
based on mean square of deviation (67). Thus, there are two measures of stabilty, (b;, 02)
for a single character. Use of o} was advocated by Breese (1969) as he considered

17



'stability’ should refer the unpredictable variation (irregularities) in response to
environment. The variability of response to environment can be divided into predictable
variation (given by regression mean squares) and unpredictable variation (measured by
deviation MS, 7). This argument is sound but the measure of stability by deviation MS
is inappropriate as it represent the goodness of fit of the model we choose. To support
the argument in practice, one must measure independent variables explaining
environment and a prediction model be made with them. The environmental index
(based on means of all genotypes) can not provide an independent measure of
environment potential. Thus low value of percent variance accounted for or high o2 or
heterogeneous MS simply indicate that regression model is not adequate for stability and
some other methods should be investigated. Type III is useful only when the prediction
model is considered and is based on independently measured environmental variables.

3.2 Non-parametric Approach

In sequel to our previous discussion, we now consider the non-parametric approach to
study genotype x environment interaction. This approach is used to search pattern in the
genotypes and or in the environments.

The statistics under parametric approach express multivariate information
(responses over multi-environments are considered multi-variate) in terms of a
univariate, and measure only individual aspects (Types I, II, or III) of stability. It is
possible to arrive at a contradiction, i.e. a genotype may be found stable for one type of
stability measure but could be found unstable for the other measure(s). These do not
provide any interrelationship among the genotype exploiting the response patterns from
these (common) environments. Classifying genotypes into quantitatively homogeneous
stability subsets, based on similarity of their responses to the environments, is another
line of thought to evaluate interrelationships among the genotypes, and such an approach
is considered to be non-parametric. The classification method has an advantage in the
sense that although the genotypes are grouped on the basis of a specific data set, the
relative relationship among genotypes can be independent of it or any specific data set.
For instance, two genotypes say A and B, with dissimilar response patterns (unrelated)
can always be grouped into two different stability sets, irrespective of the presence of
genotypes resembling A and or B. We now consider methods for classification.

3.2.1 Cluster Analysis

18



Several commonly used methods for clustering genotypes (or environments) based on
similarity of response characteristics are available in references cited in the end of this
material. Every clustering technique has two considerations. (i) a definition of the
similarity matrix, (ii) a strategy for grouping. Two cases arise. In one case, similarity is
based on genetic effect and G x E interaction (means of p x q table) while in the other
case similarity is based on G x E interaction only. Strategies for grouping could be, for
instance incremental sums of squares (ISS) fusion strategy and group average (GA)
fusion strategy (see, Cormak, 1971). This is the case of hierarchical clustering.

Limitations of clustering methods

The particular choices of similarity matrices and clustering strategies give rise to
different cluster groups and this may lead to problems of preferring one method of cluster
to other. Another criticism of clustering method is that it can also force unwanted
structure on a data set suggesting misleading results.

2.2.2 Non-hierarchical clustering

In non-hierarchical clustering, the purpose is to group the units (genotypes or locations)
in a number of disjoint classes chosen in advance using the information on a number of
variables on them. The units with a class are expected to be homogeneous on the basis of
some criterion. In the hierarchical clustering one can cut the dendrogram at a level of
similarity to provide a selected number of groups but the statistical properties of such a
grouping is not yet clear. In non-hierarchical clustering the groups of units are obtained
by optimizing the selected criterion. Some of these are

i. maximization of between -group sum of squares

ii. maximal predictive classification,

iii. minimizing the determinant of the pooled within-class dispersion matrix,

iv. maximizing the total Mahalanobis squared distance between the groups.

2.2.3 Ordination techniques

Ordination techniques are used to simplify multivariate data for a set of individuals by
summarizing relationships among individuals or among attributes describing them. This
is done by producing a simple visual representation of the individuals as points which can
be plotted to portray their relationships acceptably free of distortion. The ordination
techniques try to reduce the dimensionality of the multivariate systems efficiently to
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preserve the relationships among individuals as far as possible, but to provide a
simplified view of those relationships in fewer dimensions than specified by original
variables. There are two methods of ordination.

3.2.4 Principal Component Analysis (PCA).

PCA considers finding a new set of coordinate axes which accounts more effectively for
the variation among individuals than do those based on original variables. PCA represent
a transformation of data from one set of coordinate to another. This may not necessarily
lead to reduction of dimensionality. However, when only (first) few principal
components account for most of the variation, then it becomes effectively useful.
Algebraically, the principal axes are determined by the latent vectors from the matrix of
corrected sums of squares and products among variables. Elements of each vector
specify the linear combinations of original variables necessary to give the corresponding
PC and the associated latent root give the variation attributable to the component. PCA
can also be applied on environment in same way as it could be done to genotypes.
Mandel (1969) considered it for G x E interaction effect.

3.2.5 Principal Coordinate Analysis of genotypes. (PCO)

PCO analysis requires finding a set of rectangular coordinate axes which accounts as
efficiently as possible for variation among individuals and may lead subsequently to a
reduction in dimensionality for simplification. These objectives are similar to PCA but
PCO is based on a much more general approach. It does not automatically assume that
original variables define a multidimensional Euclidian space, in which relationship
between pairs of individuals are indicated by Euclidian distance. Many similarity
measures (e.g. correlation coefficients) or dissimilarity measures (distance) could be
used. PCO involves two steps for computation.

1) presentation of the set of individuals as points in a coordinate space derived from
the original matrix of measures. Gower (1966) showed that the interpoint Euclidian
distances in this space are a simple function of the original measures of relationship
between individuals. The significance of this method is that it refers individuals to
Euclidian coordinate axes even when an initial coordinate framework is unavailable,
and it represents original measures of relationships as Euclidian distances even if they
are non-Euclidian.
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2) carrying out a PCA on the data derived in step (1).

The two steps of PCO combined in one are given by Gower (1967). The only
requirement to guarantee a distortion-free representation by PCO is that the original
matrix of measures must be symmetric (so that no negative latent roots are obtained). In
general, principal axes will not be a linear combination of original variables as in usual
PCA. However, it is possible to investigate the relationship of original variables to each
principal axis by correlating the set of principal coordinate scores for each axis with each
of original variables. A correlation of large magnitude for a particular variable implies
that it is strongly reflected in the axis concerned. Gower (1966) also showed that PCA is
a special case of PCO when measures used in PCO are squared Euclidian distances.

4. Partitioning of GxE interaction
We may present

a) the results of cluster analysis employed for zoning the environments and grouping the
genotypes.

b) partitioning of the GXE interaction using these groupings.

The care must be taken in justifying the groups resulting from a methods in terms of the
number of groups, and the nature of locations and genotypes within. It is recommended
that the groupings must be looked into the light of some other (independent) variables
reflecting the physical properties of the environments and phenological and
morphological traits of the genotypes.

A complete hierarchy should be presented with help of dendrogram when
agglomerative methods of forming groups are used. Let n® and n? be the number of
environment groups and number of genotypes groups respectively. Also let n{ be the
number of genotypes in the i-th genotype group (i=I...n%)and n§ be the number of

nt n?
environments in the j-th environment group (j=1...n°). Note that Zlnj = q and Zln?
J= =

= p. Further, with the reduced G x E data matrix one may present:

(i) Partitioning of the variation related to grouping model.
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Analysis of variance skeleton.

Source d.f. SS MS
Environments (E) q-1

Among E groups n®-1

Within E groups 2. (né-1)

Genotypes (G) p-1

Among G groups nd-1

Within G groups Y (n?-1)

GxE (g-D(p-1)

Among G groups x

among E groups -

Among G groups x
within E groups -

Within G groups x
among E groups -

Within G groups x
within E groups -

Residual -

(ii) Group performance plots and

(iii) Patterns of (G x E) interactions on grouped sets.
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5. Stochastic Dominance of Varieties

This procedure emphasizes the riskiness of (new) genotype or variety. New crop
varieties (or new technologies, in general) may often be regarded by farmers more risky
than traditional ones. Risk may, therefore tend to act as an impediment to their adoption.
Improved varieties that would be preferred by "risk-averse" farmers can be identified by
stochastic dominance procedure under certain assumptions. Anderson (1974) used this
procedure for analyzing data from the Sixth International Spring Wheat Yield Nurseries
administered by CIMMYT. He made following three assumptions.

(i) it makes sense to talk about (or large regional) probability distribution of wheat yields,
(ii) the selection of sites, cooperators, fields and growing and disease conditions is
representative of the relevant world (or regional) domain of production, and

(iii) yield per se provides a reasonable surrogate for the argument of the average farmer's
utility function.

Menz (1980) used cluster analysis of Byth et al (1976) to analyse CIMMYT
International Spring Wheat Yield Nurseries over five years and also used stochastic
dominance. He found considerable degree of agreement in the results based on the two
methods.

6. Additive Main Effects and Multiplicative Interaction Model
The AMMI model stands for additive main effects and multiplicative interaction model.
The data on GxE are fitted using
i. main effects of genotypes and environments,
ii. the interaction GXE is fitted as sum of multiplicative PCA scores for genotype and
environments.

Main advantage of this method is that it facilitates examination of the pattern of
GxE interaction as expressed by a general number of principal components. Further
details are available in a recent series of articles including Gauch (1988), and Gauch and
(1988).

7. Inter-site Transferability of Crop Varieties

Development of varieties and their evaluation often takes place on a limited range of
environments (e.g. experimental stations) but they are actually targeted for production in
much larger set of environments (e.g. farmers' field). Therefore, transferability of variety
response to a new location is an important aspect of variety recommendation. Singh et al
(1996) provided a statistical measure of the transferability of a variety using multi-
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locational data. The approach is as follows. For a given variety say i, its response to the
environment can be modeled as a linear regression on environmental index (often
considered to be sound biological measure and is taken as mean of all the genotypes at
that location). To evaluate transferability of the genotype response to an environment say
j-th, fit the linear regression of yield on environmental index using data on (response,
index) pairs for all locations except the j-th location and compute the difference in yield
response obsevered and predicted response at the j-th location using the above linear
regression. Such a difference has been called inter-site residual (Wood and Cady, 1981)
and predicted residual (Cook and Wiesberg 1982). Such differences can be obtained by
leaving one location at a time. Their (weighted) sum of squares gives inter-site residual
sum of squares. For assessing the inter-site residuals, we may consider plot- residuals as
within-site residuals. A measure (P) of transferability for the genotype (i under
consideration) then is the ratio of inter-site transfer residual sum of square to within-site
residual sum of squares weighted with replications. Statistical distributions of linear
functions of P has been worked out when error variances over locations are
homogeneous/ heterogeneous. Six trials with number of locations varying from 16-53
and variety varying from 21-23 have been presented for barley and wheats in Singh et al
(1996).

8. An Illustration

We list in the following printout from a GENSTAT 5 program written for analyzing data
from multi-locational variety trials conducted in randomized complete block designs.
The program codes are available for designs in complete blocks as well as in incomplete
blocks on diskette.

3 ”
-4
-5
-6 AR AR SR AR R R R AR R R AR R R R R R R R R R A R A R R R R R R R R R R R R A R R R R R R R R R A RS RE RS R 2R 2R R AR R XD )
-7 GENSTAT program for analyzing multi-locational variety trials conducted
-8 in complete blocks. Data from all locations are in a single file.
-9
-10 This includes
-11 i. analysis of data from individual environments
-12 ii. tests for homogeneity of error variances,
-13 iii. combined analysis of data for GXE interaction
~14 under homogeneous/heterogeneous e€rrors
-15 iv. tests for parallelism of regression lines
-16 v. common stability statistics
-17 vi. hierarchical cluster analysis of genotypes
-18 vii, hierarchical cluster analysis of environments
-18 viii. clustering of genotypes and environments into groups which
maximizes
=20 GxE interaction between the groups of genotype and
=21 groups of environments (Corsten and Denis 1990)
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=22
=23
-24
=25
=26
=27
-28
-29
~30
-31
32
33
34
35
36
37
Kl:]
39
40
41
42
43
44
45

46
47

48
49
50
51
52
53
54
55
56
57

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
15
76
17

ix. non-hierazchical cluster analysis of genotypes
X. non-hierarchical cluster analysis of environments
xi. principal component analysis of genctypes
»xii. principal component analysis of environments
xijd. herditability of the traits
Software: GENSTAT 5 Rel 4.1
Q""'QQ'*’**O"".""'t'0000'0'00""""0""’00'010*'0"."Qt"tf*'t"'t'
”"
Open ch=2; fi=in ; "Give the name of the text data file" Name = 'mlvtl_2.txt'
Scal Alpha; 0.05
Scal NRoots;3 " for PCA "
Scal GxEIS ; 60 " % of GXEI explained by between G-group and E-group"
Scal NLoc, NRepMax, NGeno
Skip[ch=2]2 : Read (ch=2] NLoc,NRepMax,NGeno
Identifier Minimum Mean  Maximum Values Missing
NLoc 10.00 10,00 10.00 i 0
NRepMax 3.000 3.000 3.000 1 0
HGeno 15.00 15.00 15.00 1 ]
Fact{levesNLoc] Loc : Fact[leve=HRepMax]Rep : Fact[leve=NGeno)Geno
Skip(ch=2]1 : Read(ch=2) Loc, Rep, Geno, Yield : Clos 2
Identifier Minimum Mean  Maximum Values issing
Yield 150.0 3692 9000 450 1
Identifier Values Missing Levels
Loc 450 0 10
Rep 450 0 3
Geno 450 0 15
Scal NRep[l...NLoc} " replications under individual environments "
For i=l...NLoc ; dr=NRep(l...HNLoc]
Rest Rep ; Loc==i : Calc dr=Max{Rep): Rest Rep : Endf
Scal NRepAvrg : Calc NRepAvrg=VMean{!p(NRep(l...NLoc]})
Scal NObs, NGxNL : Calc NObs=NGeno*VSum(!p(NRepf[l...NLoc]))
Calc NGxNL=NGeno*NLoc : Prin NGxNL,NObs ; deci=0
HGxNL NObs
150 450
Units [NObs]
" momms= Below is only for statistical prograrmers use v
" ======  Below is only for statistical programmers use "
" mam=o= Below is only for statistical programmers use "
" 1. Individual locations analysis "
" 1. Individual locations analysis "
Scal sigma2, ss,df .
Vari[Nval=NGeno] Mean(l...NLoc]}, GenoMean
Vari[Nval=NLoc]}ErrMS,ExrrDF, Weight
Vari[Nval=NGeno] Mean(l...NLoc), GenoMean
Vari[Nval=NLcc]CV%,SEM, LocMean
Fact[Leve=NLoc; Valu=1...HLoc] LocNum
Block Rep/Geno : Treat Geno
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78 For I=l...NLoc ; MN=Mean(l...NLoc]

79 Print '*++esee Location number is = Ty I, teveewewwws
80 Rest Yield; Cond=Loc.EQ.I

81 Anova[prin=a; fpro=y] Yield

82 Akeep Rep.Geno; ss=ss; df=df

B3 Akeep Geno; Means=Thum

84 Calc sigma2=ss/df

B5 Calc ErrMS5([I])=sigma2 : Calc ErrDF${Il=df : Calc Weight$[I]l=NRepl(I)/sigma2

86 Equa TDum;MN

B7 Dele{Rede=Y] TDum

B8 Calc LocMean$[I)=Mean(Yield)

B9 Calc CV3$[I]=100*Sqrt(sigma2)/Mean{Yield)
90 Calc SEM$[I)=sqrt{sigma2/NRep(I))

81

82 Rest Yield
83

94 Endf

1.000 [T TR

1]

+eseses Location number is

*++++ Analysis of variance *****

Variate: Yield

Source of variation d.f. 8.3, m.s. v.r., F pr.
Rep stratum 2 27563. 13781. 0.23
Rep.Geno stratum
Geno 14 666583, 47613, 0.78 0.682
Residual 28 1711141, 61112,
Total 44 2405287,
#e+sess Location number is = 2.000 bAAA LA
- Y

w*#** Analysis of variance *****

Variate: Yield

Source of variation d.£. S.8. m.s. v.r. F pr.
Rep stratum 2 165032. 82516. 0.18
Rep.Geno stratum

Geno 14 5153189. 368085. 0.79 0.672
Residual 28 13060300. 466439,

Total 44 18378521,

..+. other locations' ANOVA dropped .......

#*+*s+4+4 Location number is = 10.00 AR AL AR

*¢+++ RAnalysis of variance *****

Variate: Yield
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Source of variation
Rep stratum
Rep.Geno stratum
Geno

Residual

Total

85

d.f.

14
28

44

86 Prin LocNum,LocMean,CV%, SEM,ErzMS,ErzDF; fiel=9

LocNum LocMean
1409
6069
5417
5324
4086
1264
2816
415
5872
4227

QPO =] Oy UV D W N =

ot

Ccve
17.54
11.25
14.43
24.61
20.23
47.34
13.59
20.48
18.84
23.62

8.5, m. 3.
933760. 466880,
9569067. 683505,
27909973, 996785.
38412800,

SEM ErrMs ErcDF
142.7 61112 28.00
354.3 466439 28.00
451.4 611252 28.00
756.6 1717324 28.00
477.3 683349 28.00
345.4 357816 28.00
221.0 146458 27.00

45.1 7220 28.00
638.7 1223871 28.00
576.4 996765 28.00

& LocMean

97 Hist[ngroup=5]) CV% :& ErrMs :

Histogram of CvV%

- 16
le - 24
24 - 32
32 -~ 40
40 -

Scale: 1 asterisk represents 1 unit.

Histogram of ErzMS

- 400000
400000 - 800000
800000 - 1200000
1200000 - 1600000
1600000 -

Scale: 1 asterisk represents 1 unit,

Histogram of LocMean

- 1500
1500 - 3000
3000 - 4500
4500 - 6000

€000 -

Scale: 1 asterisk represents 1 uniz.

98 Graph{nrows=20; ncolumn=60] CV%; LocMean; symb=LocNum

45.0

30.0
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3 www
5 wkkww
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1

-
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15.0
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0.0 1200.0 2400.0 3600.0 4800.0 6000.0 7200.0

€CVY v. LocMean using factor LocNum
99 Graph[nrows=20; ncolumn=60] ErrMS; LocMean; symb=LocNum

1800000.0

1200000.0

10

600000.0

I
I
I
I
I
I
I
I
1
I
I
I
I
I
I
I
I
I
I 1 7
I

0.0 8
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+
0.0 1200.0 2400.0 3600.0 4800.0 6000.0 7200.0

ErrMS v, LocMean using factor LocNum
100
101 " 2. Bartlette Test for homogeneity of error variances "
102 " 2. Bartlette Test for homogeneity of error variances "
103 Scal Prob, PoolMS, PoolDF
104 Calc PoolDF=Sum(ErrDF): & PoolMS=Sum(ErrMS*ErzDF)/PoolDF
105 Calc Prob=( PoolDF*Log(PoolMS)-Sum(ErrDF*Log(ExrzMS)) )/ \
106 { 1+ (Sum{l/ErrDF)-1/PoolDF)/3/(NLoc-1} )
107 Calc Prob=Cuchi (Prob;NLoc-1)
108 Prin PoolMS,PoolDF, Prob

PoolMS PoOlDF Prob
628886 279.0 0

109 If Prob.lt.Alpha
110 Print ' Location error variances heterogeneous at ' , Alpha,' probability’

Alpha

Location error variances heterogeneous at 0.05000 probability

111 Else

112 Print ' Location error variances homogeneous at ' , Alpha, ' probability*
113 Endif

114

115 Vari[Nval=NLoc] LocMean

116

117 " 3. Combined analysis over locations "
118 " 3. Combined analysis over locations ™

119
120 Bloc Loc.Rep/Geno : Trea Loc*Geno
121 Anova([prin=a,m; pse=m; pfact=l;fpro=y] Yield

P eieanes
*#x¥x* Analysis of variance ***+**

Variate: Yield
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Source of variation d.£f. (m.v.) 5.8, m.s.
Loc.Rep stratum
Loc 9 1.759E+09 1.955E+08
Residual 20 2.625E+07 1.313E+06
Loc.Rep.Geno stratum
Geno 14 2.097E+07 1.498BE+06
Loc.Geno 126 1.193E+08 9.470E+05
Residual 279(1) 1.755E+08 6.289E+05
Total 448(1) 2.101E+09
¢«+++ Tables of means ****+
Variate: Yield
Grand mean 3691.
Loc 1 2 3 4 5
1409, 6069. 5417. 5324. 4086.
Loc 8 9 10
415. 5872. 4227.
Geno 1 2 3 q 5
3167. 3751. 3744. 3737. 4019,
Geno 8 9 10 11 12
3584, 3713. 3635. 3694. 4122,
Geno 15
3458.
*»* Standard errors of means ***
Table Loc Geno
rep. 45 30
d. £, 20 279
e.s.e, 170.8 144.8

{Not adjusted for missing values)

122

123 Fact[Leve=NGeno; Valu=1...NGeno] GenoNum

124 Fact[Leve=NLoc; Valu=l...NLoc] LocNum

125 Calc GenoMean=VMean(!? (Mean[l...NLoc]))

126 For i=l...NLoc : Calc LocMean${i]=Mean(Mean(i])
127

128 Prin GenoNum,Mean[l...NLoc},GenoMean; field=7

GencNum Mean[1] Mean([2] Mean(3] Mean([4) Mean[5] Mean[6]
Mean[10]

1167 6178 4000 5167 41026 660 2107

1333 6044 4933 6635 3173 1457 2308

3 1341 6556 6100 5967 3423 1050 2611

4 1411 5700 5292 6245 4314 699 2785

5 1464 5511 5867 5617 5551 1437 2833

6 1511 5595 6050 5489 3699 1168 3063

7 1411 5933 5350 5737 4987 1451 2740

8 1495 5867 4700 5445 3070 e87 3181

9 1516 6389 5133 5700 3897 1899 2596

10 1576 5611 5167 5056 3423 1565 3061

11 1511 6189 5400 3833 5135 1254 3048

12 1161 6455 6600 5958 5019 1381 3501

13 1357 6389 6117 4278 4750 1469 2845

14 1533 6456 4800 4481 3494 1264 281s

15 1354 6167 5750 4259 3333 1203 2817

GenoMean

3167
3751

29

v.r. F pr
148.92 <«.001
2.09
2.38 0.004
1.51 0,003
6 7
1264, 2821,
6 2
3599, 3784.
13 14
3810. 3542,
: Endf

Mean{[7]) Mean{B] Mean{9])

141.7 3567 4360
381.7 6300 4933
316.7 5813 4267
283.3 6958 3680
333.3 7558 4013
275.0 6003 3133
358.3 5428 4440
375.0 6837 3880
491.7 5387 4120
408.3 6200 4280
575.0 5637 4360
483.3 6280 4373
641.7 6360 3893
366.7 5200 5013
483.3 4558 4653



3744
3737
4019
3599
3784
3584
3713
3635
3694
4122
3810
3542
3458

129 Prin[orie=a] LocMean ;fiel=?7

LocMean 1409 6069 5417 5324 4086 1264 2821 415 5872
LocMean 4227

130

131 " Transpose data matrix for the sake of convenience"

132 Matr (Rows=NGeno; Colu=NLoc] GE : & (Rows=NLoc; Colu=NGeno] EG
133 Equa !P{Mean(l...NLoc]) ; EG

134 Calc GE=Tran({(EG)

135

136 Vari[HNval=NLoc]) GMean(l...NGeno]

137 Equa GE; !P(GMean(l...NGenol)

138

139 Dele GE, EG

140

141 Vvaril Nval=NGxNL]} GEData

142 Equa !P(Mean(l...NLoc]); GEData

i:i B o hkhhhh Ak Analysis of variance LA AR NS R Y]]

145

146 Fact[ Leve=NGeno; Nval=NGxNL] Genol : Fact[ Leve=NLoc; Nval=NGxNL] Locl
147 Gene Locl, Genol

148 Bloc

149 Treat Locl*Genol

150 Anov{prin=a;fpro=y) GEData

**#%4¢+ Bnalysis of variance ****+*

Variate: GEData

Source of variation d.f. 5.5. m.s. v.r. F pr.
Locl 9 5.B640E+08 6.5156E+07
Genol 14 6.9898E+06 4.9927E+05
Locl.Genol 126 3.9774E+07 3.1566E+405
Total 149 6.3317E+08
151
152

153 Vari(Nval=NGxNL]AllWet: Equa !p(#NGeno(#iWeight)); AllWet
154 Anov{weight=AllWet; prin=a;fpro=y) GEData

T et isesreseeererers et et et besasesranaes
veee+* Analysis of variance *+*+*+

Variate: GEData
Weight variate: AllWet

Source of variation d.f. 8.8, m.s. v.r. F pr.
Locl 9 9442.689 1049.188

Genol 14 61.356 4,383

Locl.Genol 126 201.326 1.598

Total 149 9705.370

30



155 Dele[Rede=Y]Locl,Genol : dele(rede=y] AllWet
157 " Note-=-- Mean[l...NLoc) of length NGeno and GMean[l...NGeno] of length NLoc "

159 * 4. Partition GxE Int in heterogeneity of linear regressions"
160 " 4, Partition GXE Int in heterogeneity of linear regressions™

162 " 4.1 Test for heterogeneity of linear regressions: unweighted analysis "
163 Fact{ Leve=NGeno; Nval=NGxNL] Genol : Fact{ Leve=NLoc; Nval=NGxNL) Locl
164 Gene Locl, Genol

166 Bloc Loc.Rep/Geno : Trea Geno*Pol(Loc;l;LocMean) : Anov([prin=a;fpro=y)yield

v*x++* Analysis of variance *****
Variate: Yield
Source of variation d.f.{(m.v.} 8.8, m.s. v.r. F pr.

Loc.Rep stratum

Loc 9 1.759E+09 1.955E+08 14B.92 <.001
Lin 1 1,759E+09 1.759E+09 1340.28 <.001
Deviations 8 0.535E-21 0.669E-22 0.00 1,000

Residual 20 2.625E+07 1.313E+06 2.09

Loc.Rep.Geno stratum

Geno 14 2.097E+07 1.498E+06 2.38 0.004

Loc.Geno 126 1.193E+08 9.470E+05 1.51 0.003
Lin.Geno 14 1,.147E+07 8.192E+05 1.30 0.205
Deviations 112 1.079E+08 9.630E+05 1.53 0.003

Residual 279(1} 1.755E+08 6.289E+05

Total 448 (1) 2.101E+09

157
168

169 Vari(Nval=NGxNL}AllLoc : Equa !P(#NGeno{#LocMean)); AllLoc
170
171 Model GEData : Fit(Prin=m,s,a;fpro=yes]AllLoc+Genol+AllLoc.Genol

*#*+++ Regression Analysis *****

Response variate: GEData
Fitted terms: Constant + AllLoc + Genol + AllLoc.Genol

*** Summary of analysis ***

d.f. 5.8, m.s. v.r. F pr.
Regression 29 5.972E+08 20593622. 68.74 <.001
Residual 120 3.595E+07 299591,
Total 149 6.332E+08 4249436.

Percentage variance accounted for 982.9
Standard error of cbservations is estimated to be 547.
* MESSAGE: The following units have large standardized residuals:

Unit Response Residual
56 3833. -2.73
121 3567. -3.13

* MESSAGE: The error variance does not appear to be constant:
large responses are more variable than small responses

*** Accumulated analysis of variance ***

Change d.f. 5.8, m.s. v.r. F pr.
+ AllLoc 1 5.864E+08 5.B64E+08B  19857.35 <.001
+ Genol 14 6.990E+06 4.993E+05 1.67 0.072
+ AllLoc.Genol 14 3.823E+06 2.731E+05 0.%91 0.549

31



Residual 120 3.595E+07 2.996E+05
Total 149 6.332E+08 4.249E+06

172 "Fit[Prin=*;Cons=o0; fpro=yes; tpro=yjGenol/AllLoc"

173

174 "4,2 Test for heterogeneity of linear regressions: weighted analysis "
175 Vari[Nval=NGxNL]AllWet: Equa !p(#NGeno(#Weight}); AllWet

176 Model [weight=AllWet;disp=1]GEData

177 Fit(Prin=m,s,a;fpro=yes]AlliLoc+Genol+allLoc.Genol

*#%++ Regression Rnalysis **+++
Response variate: GEData

Weight variate: AllWet
Fitted terms: Constant + AllLoc + Genol + AlllLoc.Genol

**+ Summary of analysis ***

d.£f. s.s. m.s. v.r. chi pr
Regression 29 953%.8 328.959 328.96 <.001
Residual 120 165.6 1.380
Total 149 §705. 4 65.137

* MESSAGE: ratios are based on dispersion parameter with value 1

Percentage variance accounted for 97.9
Standard error of cbservations is fixed at 1.00
* MESSAGE: The following units have large standardized residuals:

Unit Response Residual
12 1161.00 -3.03
16 6178.00 3.03
20 5511.00 -2.82
65 5551.00 2.72

* MESSAGE: The following units have high leverage:

Unit Response Leverage

106 441.67 0.92
107 391.67 0.92
108 316.67 0.92
109 283.33 0.92
110 333,33 0,92
111 275.00 0.92
112 358.33 0.92
113 375.00 0.92
114 491.67 0.92
115 408.33 0.92
116 575.00 0.92
117 483.33 0.92
118 641,67 0.92
11¢ 366.67 0.92
120 483.33 0.92

*** Accumulated analysis of variance ***

Change d.£. s.s. m.s. v.r. chi pr
+ Allloc 1 9442.689 9442.689 8442.69 <,001
+ Genol 14 61.356 4.383 4.38 <.001
+ AllLoc.Genol 14 35.762 2.554 2.55 0.001
Residual 120 165.563 1.380
Total 149 9705.370 65.137

* MESSAGE: ratios are based on dispersion parameter with value 1

178 "Fit(Prin=*;Cons=o;fpro=yes; tpro=yjGenol/AllLoc"
179

180 dele AllLoc, AllWet

181

182 " 5. Compute stability indices "

183 " 5. Compute stability indices "
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184

185 Vvari(nvalu=NGeno] GenoCV

186 Calc GenoCV=100.*Sqrt(Vvar(!P{Mean[l...NLoc])))/GenoMear

187

188 Vari( Hval=KGeno] Slope,SeSlop,DeviMS, Wricke,Pla_Pet,Plaisted, Shukla, YauH
189 Vari(lval=NGeno] DevRegDF, Probbl,Probdev

190 Vari[ Nval=KGeno) SlopeW,SeSlopW, ProbblW,DeviSSW,ProbDevW, DevRgDF#
191 Vari(Nval=NGeno]RSq%,RSqW% " Goodness-of-fit % R-squares adjusted for df"
192 For I=l...NGeno ; Y=CMean[l...NGeno)

193 Scal YMeanSq, YMeanSqW : Calc YMeanSg=Var(Y)

194 Calc YMeanSgW=Sum(Weight* (Y-Sum(Weight*Y) /Sum(Weight))**2 )/ (Nval(¥}-1)
185

196 " Yau and Hamblin (1995)'s stability index"

197 Calc YauH$(I)}=Var(Y/LocMean)

198

199 " Unweighted regression analysis"

200 Model Y ; Fitt=F

201 Fit[prin=*) LocMean

202 RKeep ; Est=Est; Se=Se ; Devi=S$S ; DF=df

2023 Cale Slope${I) =Est ${2) : & SeSlop$[I]=SeS$(2) : & DeviMs S$[I] =SS/df
204 Calc DevRegDF$(I)=df : & RSqQS3$([I)}=100*(1-S5/df/YMeansq)

205 *

=206 Graph[nrows=20; ncolumn=60] Y,F; LocMean; symb='o','.'; Meth=p,c
-207 "

208

209 " Weighted regression analysis®

210 Model [Weight=Weight] Y ; Fitt=F

211 Fit[prin=*] LocMean

212 RKeep ; Est=Est; Se=Se ; Devi=S8S ; DF=df

213 Calc SlopeW$[I) =Est ${2] : & SeSlopWS[I]=SeS$[2] : & DeviSSWS[I] =SS
214 Calc DevRgDEWS[I)}=df : & RSqQW$$(I)=100*(1-SS/df/YMeanSqW)

215

216 Endf

217

218 Calc Probbl=abs{Slope-1) /SeSlop : & Probbl=Cut (Probbl;DevRegDF)

219 Cale ProbDev=DeviMS/ (PoolMS/NRepAvzg)

220 Cale ProbDev=Cuf (ProbDev;DevRegDF; PoolDF)

221 " above is based on an average number of replications. Use the weighted
=222 analysis results
-223 *

224

225 Calc ProbblW=Abs (SlopeW-1)/SeSlopW : & ProbblW=Cut (ProbblW;DevRgDFW)
226 Calc ProbDevW=Cuchi (DeviSSW;DevRgDFW)

227

228 " Get GXE interactions for stability indices*

229

230 vari[ Nval=NGxNL) GEInt

231 Bloc Locl.Genol

232 Trea Locl+Genol

233 Anov(prin=*] GEData; Res=GEInt

234 BAKee Locl.Genol ; ss =GxEISS

235

236 Prin GxEISS

GxEISS
39773742

237
238 Calc GEInt=GEInt*GEIrnt
239 Tabu [Class=Genol] GEInt; Tota=TDum

240

241 Equa TDum; Wricke

242 Dele[Rede=Y] TDum
243

244 Scal SsGE

245 Calc SsGE=Sum({Wricke)

246

247 Calc Pla_Pet={NGeno*Wricke+SsGE)/{2* (NGeno-1) * (NLoc-1))

248 Calc Plaisted=(-NGeno*Wricke/ (NGeno=-1)+SsGE)/({NGeno-2)* (NLoc-1))
249 Calc Shukla = (NGeno*Wricke -~ SSGE/{(NGeneo-1))/(NGeno-2)/(NLoc-1)
250

251 " Correlation between indices "
252 Corr[Print=c] GenoMean, Slope, DeviM$,GenoCV,Wricke,Pla_Pet,Plaisted, Shukla, \
253 YauH, SlopeW,DeviSSw

+++ Correlation matrix ***
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GenoMean

Slope
DeviMs -
GenoCV -
Wricke -
Pla_Pet -

Plaisted
Shukla -
YauH -

SlopeW
DeviSSW -
Gen

Shukla
YauH

SlopeW -

DevisSsw

254 Print GenoNum, GenoMean, Slope,SeSlop,Probbl,

255 field=

GenoNum GencMean
3167
3751
3744
3737
4019
3599
3784
3584
3713
10 3635
11 3694
12 4122
13 3810
14 3542
15 3458

WD SO I OY LD WD

1.000
0.763
0.367
0.142
0.352
0.352
0.352
0.352
0.117
0.876
0.151
oMean

1.000
0.497
0.443
0.810
Shukla

8

Slope
0.875
1.062
1.107
1.113
1.097
1.001
0.988
1.007
0.945
0.928
0.920
1.122
1.007
0.925
0.902

1.000
-0.175
0.508
-0.133
-0.133
0.133
-0.133
0.004
0.794
0.048
Slope

1.000

-0.319

0.306
YauH

1.000
0.442
0.9%87
0.987
-0.987
0.987
0.501
-0.472
0.788
Devils

1.000
-0.223
SlopeW

1.000
0.484
0.484
-0.484
0.484
0.285
0.005
0.478
GenoCV

1.000
DevisSsw

SeSlop Probbl DeviMs

0.12606
0.10712
0.06156
0.08666
0.11631
0.08054
0.06195
0.09379
0.05525
0.05189
0.10187
0.05947
0.08812
0.08468
0.058509

0.17s87
0.2893
0.0597
0.1149
0.2150
0.4966
0.4260
0.4698
0.1744
0.1041
0.2266
¢.0370
0.4703
0¢.2013
0.1671

621262
448611
148129
293599
528832
253568
150046
343905
119352
105270
405679
138238
303553
280336
353476

1,000
1.000
-1.000
1.000
0.497
-0.443
0.810
Wricke

ProbDev
0.0034
0.0323
0.6857
0.1959
0.0116
0.2931
0.6776
0.1132
0.8028
0.8543
0.0549
0.7270
0.1764
0.2248
0.1015

1.000
-1.000
1.000
0.497
-0.443
0.810

1.
-1,
-0.

0.
-0.

000
000
497
443
810

Pla_Pet Plaisted

RSq%
83.99
91.53
97.29
94.79
90.71
94.46
96.57
92.70
97.01
97.26
89.94
97.53
93.50
92.93
90.82

62.19
61.36
62.39
63.55
$59.38
59.44
55.27
60.58
53.77
53.93
54.37
57.37
56.74
56.23
56.75

256 Print GenoNum, GencMean, SlopeW,SeSlopW,ProbblW, DeviSSW, ProbDevW,

GenoNum GenoMean
3167
3751
3 3744
4 3737
E] 4019
[ 3589
7 3784
B 3584
9 3713
10 3635
11 3694
12 4122
13 3810
14 3542
15 3458

SlopeW SeSlopW ProbblW DeviSSW ProbDevW

0.841
0.968
1.052
1.036
1.079
1.034
1.022
0.992
0.969
0.982
0.984
1.117
0.986
0.993
0.946

0.06573
0.05322
0.03527
0.04158
0.05987
0.04771
0.03232
0.05240
0.03524
0.03735
0.04245
0.05394
0.04448
0.04376
0.04308

0.0209
0.2809
0.0850
0.2080
0.1105
0.2508
0.2558
0.4402
0.2012
0.3218
0.3550
0.0308
0.3816
0.4367
0.1227

21.76
14.26
6.27
8,71
18.05
11.46
5.26
13.83
6.26
7.03
9.08
14.65
8.97
9.65
9.34

0.0054
0.0751
0.6175
0.3677
0.0208
0.1768
0.7294
0.0863
0.6187
0.5338
0.3359
0.0663
0.2674
0.2908
0.3141

RSqH$
94.76
97.34
99.00
98.57
97.30
98.11
99.11
97.54
98.82
98.71
98.35
97.94
98.20
98,28
98.16

257 Prin Genolum, GenoMean,Wricke,Pla_Pet,Plaisted,Shukla; fiel=8

GenoNum GenoMean
3167
3751
3744
3737
4019
3599
3784
3584
3713
10 3635
11 3694
12 4122
13 3810
14 3542

D<) U W

Wricke
5578639
3739272
1635091
2844787
4596131
2028564
1205943
2753349
1073016
10398503
3497666
1698955
2430222
2461612

Pla_Pet Plaisted Shukla

489894
380408
255159
327165
431412
278580
229615
321722
221702
219707
366027
258365
302488
304357

288860
305704
324973
3138985
297857
321370
328903
314733
330120
330427
307917
324480
317692
317404

690928
455112
165345
340434
564966
235790
130326
328712
113284
108988
424137
192251
287285
291309

34

DeviMS, ProbDev, RSq%, GenoCV,YauH:\

GenoCV  YauH

0.03663
0.02380
0.01585
0.03950
0.02798
0.02250
0.01113
0.01921
0.03144
0.01285
0.03123
0.01526
0.03%40
0.01360
0.01741

RSqW%; fiel=8



15 3458 3200992 348368 310633 386102
258
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259 Graphinrows=20; ncolumn=60} Slope:; GenoMean; Symb=GenoNum

I
1.20 1
I
I
I
I 4 12
I 3 5
1.08 I
I 2
I
I
I 86 13
I 7
0.96 I
I 9
I 14 10 11
I 15
I 1
I
0.84 1
—fmm————— o ——————— Fmm—————— 4= + + +
3000.0 3200.0 3400.0 3600.0 3800.0 4000.0 4200.0
Slope v. GenoMean using factor GenoNum
260 Graph{nrows=20; ncolumn=60} GenoCV; GenoMean; Symb=GenoNum
I
64.0 I
I [
I 3
I 1
I 2
I 8
60.0 I
I 6 5
I
I
I 12
I 15 13
56.0 I 14
I 7
I 11
1 10 9
I
1
52.0 1
—fmm——————— tommem e Fmm—————— fmm——— + + -—+
3000.0 3200.0 3400.0 3600.0 3800.0 4000.0 4200.0
GenoCV v. GenoMean using factor GenoNum
261 Graph(nrows=20; ncolumn=60] DeviMS; GenoMean; Symb=GenoNum
I 1
600000.0 I
I
I 5
I
I
I 2
400000.0 1 11
I 15
I 8
1 4 13
1 14 6
I
200000.0 1
I 7
I 93 12
I 10
I
I
0.01I
e mm————— o ———— + ———————— + —fmmm———— e +
3000.0 3200.0 3400.0 3600.0 3800.0 4000.0 4200.0
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DeviMS v. GenoMean using factor GenoNum

262 Graph(nrows=20; ncolumn=60) Wricke; GenoMean; Symb=GenoNum

I
6000000,0 1
1 1
1
I
I 5
I
4000000.0 I
I 2
I 15 11
I 4
I 8
I 14 13
2000000.0 X 3
i 3 12
I 7
1 10 9
I
I
0.0 1

- $ + +
3000.0 3200.0 3400.0 3600.0 3800.0 4000.0 4200.0

________ R i, el T D— Y

Wricke v. GenoMean using factor GenoNum

263 Graph{nrows=20; ncolumn=60] YauH; GenoMean; Symb=GenoNum

I
0.04 1 4 13
I
I 1
I
I
I 9
0.03 I
I 5
I
I
I 2
I 6
0.02 1 8
I
I 15 3
I 12
I 14 10
I ?
0.01 1

—tm——m o tomm——eeem B o mm e fmmmm e +
3000.0 3200.0 3400.0 3600.0 3800.0 4000.0 4200.0

YauH v. GenoMean using factor GenoNum

Points coinciding with 9

11
264
265
266 Vari[nval=NGeno)RGencMn,RSlope, RDeviMS, RGenoCV,RWricke, \
267 RPla_Pet,RPlaist, RShukla, RYauH

268 For D= GenoMean, Slope, DeviMs,GenoCV,Wricke,Pla_Pet,Plaisted, \
269 Shukla,YauH ; \

270 DD= RGenoMn, RSlope, RDeviMS,RGenoCV,RWricke, \

21N RPla_Pet,RPlaist,RShukla, RYauH

272 Vari{valu=l..._NGeno)Order, DD

273 Sort([dire=d] D, Order
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274 Sort Order, D, DD

275 endf

276

277

278

278 " Correlations between ranks "

280 Corr[Prin=c] \

281  RGenoMn,RSlope,RDeviMS, RGenoCV,RWricke,RPla_Pet,RPlaist, RShukla, RYauHl

*++ Correlation matrix ***

RGenoMn 1.000
RSlope 0.739 1.000

RDeviM$ -0.189 -0.207 1.000

RGenoCV -0.014 0.486 0.404 1.000

RWricke -0.200 -0.136 0.968 0.475 1.000

RPla_Pet -0.200 -0.136 0.968 0.475 1.000 1.000

RPlaist 0.200 0.136 -0.968 -0.475 -1.000 ~1.000 1.000

RShukla -0.200 -0.136 0.968 0.475 1.000 1.000 ~1.000
RYauH 0.018 0.046 0.493 0.304 0.507 0.507 -0.507

RGenoMn  RSlope RDeviMS RGenoCV RWricke RPla_Pet RPlaist

RShukla 1.000
RYauH 0.507 1.000

RShukla RYauH

282

283 dele RSlope,RDeviMS, RWricke,RPla_Pet, RPlaisted, RShukla, RYauH
284 dele DevRegDF, Probbl,ProbDev

285 dele SlopeW%,SeSlopW, ProbblW,DeviSSW,ProbDevW, DevRgDFW

286 dele RSq%,RSqW%

287

288 " 6. Hierarchical Clustering of Genotypes "

289 " 6. Hierarchical Clustering of Genotypes "

290 Symm[Rows=NGeno) Simi

291 Fsim([Simi=Simi) Mean{l...NLoc); Test=Eucl

292 Hclus (prin=a,d; method=average] Simi ; AmalgeMatSimi ; Permu=PermSimi

**++ Average linkage cluster analysisg #+***
*¢ Merging clusters **

10 95.3
13 95.2
15 94.3
93.9
93.8
91.5
91.5
90.5
89.2
89,2
85.6
84.7
81.5
74.3

[ el
(TR XN U EREN NRT RN XN RO .
- —

-
N E&ENNYaEOW-IN

**** Hierarchical clusters ****

¢+ Level 95.0
8 10
11 13

** Ungrouped
1 2 3 9 14 15 4 6 S 7

12

** Level 90.0
2 3

9 14 15
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4 6 8 10
5 7
11 13
** Ungrouped
1 12
** Level 85.0
2 3 9 14 15
4 6 8 10 5 7
11 13 12
** Ungrouped
1
** Level 80.0
2 3 ] 14 15 4 6 8
7 11 13 12
** Ungrouped
¢* Level 75.0
2 3 9 14 15 L} 6 8
7 11 13 i2
** Ungrouped
1
** Level 70.0
1 2 3 9 14 15 4 6
5 7 11 13 12
++++ pendrogram ****
** Levels 100.0 90.0 80.0 70.0
D enes
2 ..... )
3 L) )
9 .. ) )
14 ..... )y ) )
15 ..... | I B }
4 ... } }
6 ciiea) } }
8 .. ) } )
10 ..)..).. } )
S .L.... ) ) }
i I R | )
11 .. ) )
13 .)eeaen ) )
) I IS O
293 DDENDROGRAM [order=given; style=Average])
294 Title=' Clustering of genotype’
295 Dele[Rede=Y} Simi , MatSimi, PermSimi
296

10

10
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MatSimi ; permu=PermSimi

2
2
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297
298
299
300
301
302

*+** Average linkage

Cluslering of genolype

" 7. Hierarchical Clustering of Environments "
" 7. Hierarchical Clustering of Environments "

Symm[Rows=NLoc])
Fsim(Simi=Simi)
Helus [prin=a,d;

Simi
GMean[l...NGeno); Test=Eucl
method=average] Simi ; Amalg=MatSimi

cluster analysis ****

** Merging clusters **

=R NN U W

NP JDWODWON

899.7
97.5
97.5
897.5
96.9
96.3
93.7
84.5
57.9

++++ Hierarchical clusters ***+

** Level
1 6
2 3
5 10

** Ungrouped
7

*+* Level
1 [
2 3

$5.0

90.0

40
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** Level 85.0

S 10 7
*+ Level 80.0
1 [ 8

*+ Level 65.0

** Level 60.0

** Level 55.0
1 [ 8 2 3 g 4 5 10 7

**** Dendrogram **+*
** Levels 100.0 90.0 80.0 70.0 60.0

T

.
e R ]

)
vl ) )

[UPIPR IS eresenrsnansliiiians

[
=1 O B A0 W BN OO O =
.
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303
304
305
306
307
308
309
310
-311
-312

Cluslering of locolicns

(I

5

DDENDROGRAM [order=given; style=Average] MatSimi ; permu=PermSimi ; \
Title=' Clustering of locations'

Dele[Rede=¥] Simi , MatSimi, PermSimi

"

8. Clusters genotypes and environments into groups which maximizes
GXE interaction between the groups of genotype and groups of environments

{Corsten and Denis 199%0)

-313
-314

8. Clusters genotypes and environments into groups which maximizes
GxE interaction between the groups of genotype and groups of environments

{Corsten and Denis 1990)

-315
316
317

-318

-319

-320

-321

-322

-323

-324

o

Scal VarMean : Calc VarMean=PoolMS/NRepAvrg
Scal SSThres : Calc SSThres=(1-GxEI%/100) *GxEISS

Tabu([Class=Genol, Locl] GEData; Means=TabGE
CINTERACTION [prin=sort, aov,summ,vari,dend ; \
Vari=VarMean; DF=PcolDF; SSTHRES=3SThres]) Table=TabGE
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325
326
327
328
329
330
331
332

333
334
335
336
337
338
339
340
341
342
343
344
345

347
348
349
350
351
352
353
354
355
356
357

V

&[

2
? 10002000 zaggp 30006000 40000008
] e — 1

ey

" 10. Non-hierarchical clusters of environments "
" Changes are required if more than 3 groups are required”

If NLoc.lt.NGeno
Print

Number of environments less than number of genotypes

resulting in a singular variance-covariance matrix

endi

If NLoc.ge.NGeno

Fact[leve=3; nval=NLoc] Grp[3]

Number of environments less thar number of genotypes °*
' resulting in a singular variance-covariance matrix

¢ & [leve=2; nvalu=NLoc) Grp(2]

Pointer(Valu=GMean[l...NGeno]) EG_data

Cluster(prin=c,0; data=EG_data; cri=maha)Ngroups=3,2 ; groups=Grp(3,2]

For i=1...3

Rest LocNum,GMean{l...NGeno)
Prin Grp(3),LlocNum,GMean{l..
Rest LocNum,GMean{l...NGeno]
Endf

For i=1l...2

Rest LocNum,GMean{l...NGeno]
Prir Grp(2),LlocNum,GMean{l..
Rest LocNum,GMean(l...NGeno]
Endf

Endi

; Grp(3].eq.i

.NGeno]

;fiel=6

; Grpf(2).eq.i

.NGeno}

;fiel=6
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358 " 9. Non-hierarchical clusters of genotypes
~359 9. Non~hierarchical clusters of genotypes

-360

361 " Changes are required if more than 3 groups are required "

362

363 1If NGeno.lt.NLoc

364 Print ' Number of genotypes less than number of environments' , \
365 M resulting in a singular variance-covariance matrix'

366 Endif

367

368 If NGeno.ge.NLoc

369 Fact{leve=3; nval=NGeno] Grp[3] : & [leve=2; nvalu=NGeno] Grp[2)

370 Pointer[Valu=Mean([l...NLoc]] GE_data

37 Cluster{prin=c,0; data=GE_data; cri=mahalNgroups=3,2 ; groups=Grp(3,2]

D

#+#++ Non-hierarchical Clustering *****

*+»+ Mahalanobis distance criterion *+*

*+¢ Optimum classification ***

*“+*¢ Nurber of classes = 3

*** Class contributions not printed ***

*** (Criterion value = 8934.36114

*+¢ Classification of units ***

2 1 2 2 2 2 2 2 3 2 3

3 1
3 3

*+* QOptimum classification ***

+¢* Number of classes = 2

*¢+ (Class contributions not printed ***
*»* (Criterion value = 2444.85203

*+* (Classification of units ***

2 2 1 1 2 1 2 1 2 2 2 3 2
2 2

372

373 For i=1...3

374 Rest GenoNum,Mean(l...NLoc) : Grp(3).eq.i

375 Prin Grp[3],GenoNum,Meanfl...NLoc) ;fiel=6

376 Rest GenoNum,Mean([l...NLoc)

377 Endf

Grp[3) GenoNum Mean([l] Mean(2] Mean[3]) Mean[4] Mean(5) Mean{6] Mean[?7) Mean(8)
Mean[9) Mean{10]}
1 2 1333 6044 4933 6635 3173 1457 2308 391.7 6300 4933
1 4 1411 5700 5292 6245 4314 699 2785 283.3 69858 3680

Grp[3) GenoNum Mean{1] Mean[2] Mean{3] Mean[d4] Mean[5]) Mean(6] Mean[?] Mean(8)

Mean[9] Mean[10]

13541 6556 6100 5967 3423 1050 2611 316.7 5813 4267
1464 5511 5867 5617 5551 1437 2833 333.3 7558 4013
1511 5595 6050 5489 3699 1168 3063 275.0 6003 3133
1411 5833 5350 5737 4987 1451 2740 358.3 5428 4440
1495 5867 4700 5445 3070 987 3181 375.0 6B37 3880
1516 €389 5133 5700 3897 1899 2596 491.7 5387 4120
1576 5611 5167 5056 3423 1565 3061 408.3 6200 4280
1161 6455 6600 5958 5019 1391 3501 483.3 6280 4373

NNMNDNNRNON
NQUOUOJA LW

s
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Grp{3] GenoNum Mean[l] Mean[2} Mean{3] Mean{[4]) Mean[S) Mean([§) Mean[7]) Mean(8)
Mean{9] Mean(10]

1 1187 €178 4000 5167 4026 660 2107 441.7 3567 4360
11 1511 €189 5400 3833 5135 1254 3048 575.0 5637 4360
13 1357 €389 6117 4278 4750 1469 2845 641.7 6360 3893
14 1533 6456 4800 4481 3494 1264 2816 366.7 5200 5013
15 1354 6167 5750 4259 3333 1203 2817 483.3 455B 4653

W Wwiww

378

379 Fer i=1...2

380 Rest GenoNum,Mean[l...NLoc) ; Grpl2].eq.i
381 Prin Grp[2),GenoNum,Mean[l...NLoc] :fiel=6
382 Rest GencoNum,Mean(l...NLoc)

383 Endf

Grp[2] GenoNum Mean[1l] Mean(2] Mean([3] Mean[4] Mean[5] Mean(6) Mean[7] Mean(8)
Mean[9] Mean[10)

3 1341 6556 6100 5967 3423 1050 2611 316.7 5813 4267
4 1411 5700 5292 6245 4314 699 2785 2B3.3 6958 3680
6 1511 5595 6050 5489 3699 1168 3063 275.0 6003 3133
8 1495 5867 4700 5445 3070 987 3181 375.0 6837 3880
2 1161 6455 6600 5958 5019 1391 3501 483.3 6280 4373

= b i e pai

1

Grpl[2) GenoNum Mean(l) Mean{2] Mean(3) Mean{4) Mean{5] Mean[6] Mean[7] Mean(8]
Mean[9] Mean([1D]

2 1 1167 6178 4000 5167 4026 660 2107 441.7 3567 4360
2 2 1333 6044 4933 6635 3173 1457 2308 391.7 €300 4933
2 5 1464 5511 5867 5617 5551 1437 2833 333.3 7558 4013
2 7 1411 5933 5350 5737 4987 1451 2740 358.3 5428 4440
2 9 1516 6389 5133 5700 3897 1899 25396 491.7 5387 4120
2 1¢ 1576 5611 5167 5056 3423 1565 3061 408.3 6200 4280
2 11 1511 618% 5400 3833 5135 1254 3048 575.0 5637 4360
2 13 1357 6389 6117 4278 4750 1469 2845 641.7 €360 3893
2 14 1533 6456 4800 4481 3494 1264 2816 366.7 5200 5013
2 15 1354 6167 5750 4259 3333 1203 2817 483.3 4558 4653

384

385 Endif

386

387

388

389 Y 11, Principal component analysis for genotypes "

390 * 11. Principal component analysis for genotypes "

391

392 Pointer({values=Mean({l...NLoc]])Data_Loc
393 Matr[rows=NGeno; Colus=NRoots]PCScore
394 Vari[nval=NGeno] PCS[1l...NRoots]

386 PCP[Print=l,r,t; nroots=NRoots] Data_Loc; Scores=PCScore

*x*** Principal components analysis v

*** TLatent Roots ***

1 2 3
19652260 11338087 5721755
*+* Percentage variation ***
1 2 3
42,02 24.25 12.24
* %ok Trace whw
46763498
*+«* TLatent Vectors (Loadings) ***
1 2 3
Mean[1] -0.01595 -0.00287 0.11513
Mean[2] 0.12483 0.08662 -0.06460
Mean(3) -0.34907 0.30239 0.10301
Mean{4] -0.29299 -0.66406 -0.60624
Mean{5] -0.317%4 0.63791 -0.63810
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L2 2]

N

397

398 Calc PCS(l...NRoots} =PCScore$[*;1..

Mean([ 6}
Mean (7]
Mean[8]
Mean (9]
Mean(10]

Significance tests for equality of final K roots

o. (K)
Roots

2
3
4
5
6
?
8
9
0

1

=-0.05731
-0.14832
0.02140
=-0.78072
0.20030

Chi
squared

11.51
32.02
37.26
42.67
59.62
73.35%
84.70
105.01
129.82

df

2
5
9
14
20
27
35
14
54

0.06721
0.13131
0.07354
-0.16108
-0.00525

0.02572
0.24152
0.01506
0.34760
-0.13124

399 Graph[nrows=20; ncolumn=60] GenoMean;PCS[1]

400

I
4500.0 1
I
I
I
I
1 12
4000.0 I 5
I
I 13
1 4 27 9
I 10 11
I 6 8 14
3500.0 1
I 15
I
1
I 1
I
3000.0 1
B trmmennce et ———— $mmmmmmm e i $m— o +
-3000.0 -2000.0 -1000.0 .0 1000.0 2000.0 3000.0
GenoMean v. PCS[l) using factor GenoNum
Points coinciding with 2
3
Graph{nrows=20; ncolumn=60) PCS[2];PCS[1] :; Symbol=GenoNum
I 11
1500.0 1
I 13
I
I
I 5 12 15
I 7 14
0.0 I 1
1 6 10 9
I
I 4 3
I 8
I
=-1500.0 I
I 2
I
I
I
I
=-3000.0 I
e e cncnfe e ———— $m—m——m— e fmmm—————— el +
-3000.0 =-2000.0 ~-1000.0 0.0 1000.0 2000.0 3000.0
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PCS[{2] wv. PCS([l) using factor GenoNum

401 Graph{nrows=20; ncolumn=60] PCS(3]);PCS{l] ; Symbol=GenoNum

I
1000.0 I 8
1 10
I 15
1 6 14
I
1 11
0.0 I 3

I
1 5 4 2 9
I
1 12
I

-1000.0 I 7 1
I
I
I
I
I

-2000.0 1
S ceefemm—————— B e tmmccccce b ————— tmmmmmmman +

-3000.0 -2000.0 ~1000.0 0.0  1000.0  2000.0  3000.0

PCS[3) v. PCS{1) using factor GenoNum

Points coinciding with 6
13

402 Graph([nrows=20; ncolunn=60} PCS[3);PCS{2) ; Symbol=GenoNum

1
1000.0 I 8
1 10
I 15
1 6 14 13
1
1 11
0.01 3

1
1 2 4 9 5
1
1 12
I

-1000.0 I 17
1
1
1
I
1

-2000.0 I
—tmmmcrrrce e e ———— Fmmm e fmmmmmm——— tmmm—n Rt L L +

-2400.0 -1600.0  -B00.0 0.0 800.0  1600.0  2400.0

PCS[3) v. PCS(2] using factor GenoNum

403 Dbele Data_Loc

404
405 * 12, Principal component analysis for environments “
406 " 12. Principal component analysis for environments "

407 Pointer(values=GMean[l...NGeno)]Data_Gen

408 Matr[rows=NLoc; Colu=NRoots)PCScore

409 Vari[nval=NLoc) PCS({1l...NRoots]

110

411 PCP(Print=l,z,t; nroots=NRoots) Data_Gen; Scores=pPCScore
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L 3 ettt isrestatese ettt s astaneans

+»+++ Pprincipal components analysis ****+*
++*+ Latent Roots ***

1 2 3
590271617 13246608 10841600

*** Percentage variation **+*

1 2 3
94.27 2.12 1.73

- Trace LA R}
626176149

**+ Latent Vectors (Loadings) ***

1 2 3
GMean (1] -0.22466 ~0.52192 0.03860
GMean{2] -0.27343 -0.05691 0.53187
GMean{3] ~0.28493 -0.10886 0.17753
GMean (4] -0.28683 0.32571 0.16508
GMean[5] -0.28277 0.46215 -0.20718
GMean (6] -0.25788 0.23251 0.01987
GMean (7] ~0.25422 -0.07736 -0.08669
GMean(B] =0.25951 0.20937 0.29682
GMean (9] -0.24309 -0.13974 0.13184
GMean([10] -0.23917 0.08706 0.11551
GMean([11] -0.23638 ~-0.07437 -0.51634
GMean([12] -0.28886 0.05121 -0.17524
GMean([13]) -0.25907 0.09627 ~0.40939
GMean([14) -0.23759 =0.33745 -0.00923
GMean([15] -0.23171 -0.36133 =0.14441

**+ sSignificance tests for equality of final K roots ***
The last € latent roots are (effectively) zero
and have been excluded from the tests.

No. ({K) Chi
Roots squared df
2 0.92 2
k) 2.40 S
4q 4.48 9
5 11.85 14
6 17.98 20
7 27.14 217
8 33.37 35
9 135.61 44
412

413 Calc PCS[l...NRoots] =PCScore$(*:1...NRoots]
414 Graph{nrows=20; ncolumn=60} PCS[2]:PCS[1] ; Symbol=LocNum

4000.0

2000.0

0.0 16 8

HHHKHAHPB PR AR M-
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415

416

417
418
419
420
421
422

I 10
-2000.0 I 2

—-—f———

+ tom—m—mma pommm————— +
-10000.0 -5000.0 0.0 5000.0 10000.0 15000.0
PCS[2) wv. PCS[1l) using factor LocNum

Graph[nrows=20; ncolumn=60] PCS[3];PCS[1l) ; Symbol=LocNum
I 4
2000.0 1
I
I
I
I
I 9 10 16
0.01I ]
I 2 7
I
I 3
I
I
-2000.0 1 5
I
I
I
I
I
-4000.0 I
—fmmmmmm——— o ———— fmmm———e- ctemmmm——ae o +
-10000.0 -5000.0 0.0 5000.0 10000.0 15000.0
PCS(3] wv. PCS[l] using factor LocNum
Graph[nrows=20; ncolumn=60] PCS(3]);PCS[2] ; Symbol=LocNum
I 4
2000.0 1
I
I
I
I
I 10 1 9
0.0 1 8
I2 7
I
I 3
I
I
=-2000.0 I 5
I
I
I
I
I
-4000.0 ¥
e ——————— mm——————— e B i pmmm—m———— o
-2000.0 =1000.0 0.0 1000.0 2000.0 3000.0
PCS[3] v. PCS(2] using factor LocNum
Points coinciding with 1
* 13. Estimation of variance components and heritabilities"
* 13. Estimation of variance components and heritabilities"
" 13.1 From individual environments"
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423

424 Vari[Nvalu=NLoc]RCBSGg2, RCBSGe2,RCBHerit,RCBBias, RCBSeh2
425

426 SCAL 5Gg2,5Ge2,h2

427 Scal Vgg,Vge,Vee,Bias, Seh2

428 symm[2]} Veov_r

429

430 For i=l...NLoc

431

432 Rest Yield; Loc.eq.i

433

434 VCOMP[fixed=Rep)} RANDOM=Rep+Genoc ; cons=pos

435 REML([print=*] Yield

436

437 VKEEP([SIGMA2=SGe2;vecovsVcov_r] Geno; COMP=SGg2

438 EQUA Vcov_r ; !p(Vgg,Vge,Vee)

439 CALC h2=5Gg2/(SGg2+5Ge2)

440 CALC One_h22={(1-h2)**2

441 CALC Bias=One_h22*((1~h2)*Vgg-h2*Vge)/(h2*5Ge2*5Ge2)

442 CALC Seh2=(1-h2)*SQRT(One_h22*Vgg-2+h2* (1-h2) *Vge+Vee*h2**2) /SGe2
443 Calc (RCBSGg2,RCBSGe2,RCBHerit,RCBBias, RCBSeh2)$[i)= SGg2,5Ge2,h2,Bias,Seh2
444 rest Yield

445 Endf

¢++s G5W0001 **** Warning (Code CA 7). Statement 10 in For Loop

Command: CALC Seh2=(1-h2)*SQRT(One_h22*Vgg-2+h2* (1~-h2)*Vge+Vee*h2*+2) /SGe2
Invalid value for argument of function

The first argument of the SORT function in unit 1 has the value 0.0000

446 Corr(prin=c)LocMean,RCBHerit,RCBSGg2, RCBSGe2
*¢+ Correlation matrix ***
LocMean 1.000
RCBHerit =-0.168 1.000
RCBSGg2 0.483 0.483 1.000
RCBSGe2 0.704 =-0.210 0.418 1.000
LocMean RCBHerit RCBSGg2 RCBSGe2

447 Print LocNum,LocMean,RCBHerit,RCBBias, RCBSeh2,RCBSGg2,RCBSGe2 ; fiel=l0

LocNum LocMean RCBHerit RCBBias RCBSeh2 RCEBSGg2 RCBSGe2

1 1409 0.0000 0.0000 0.0000 1] 56612
2 6069 0.0000 0.0000 M 0 433654
3 5417 0.2913 0.1184 0.1731 251218 611261
4 5324 0.0424 0.6085 0.1603 75969 1717368
5 4086 0.3887 0.0924 0.1677 434517 683351
6 1264 0.0000 0.0000 0.0000 0 343770
7 2821 0.3243 0.1100 0.1735 69855 145541
B 415 0.5432 0.0645 0.1471 8587 7220
9 5872 0.3166 0.1105 0.1722 567058 1223885
10 4227 0.0000 0.0000 0.0000 0 892353

448

449 " 13.2 Overall environments"

450

451 SCALAR SGg2,SGe2,S$GiZ2,SGb2,Vgg,Vee,Vii,Vgi,Vge,Vie, h2, Bias,Seh2

452 Symm[3] Vcov_r

453

454 VCOMP(abso=Loc; Fixed=Loc/Rep] RANDOM=Loc+Loc.Rep+Genot+Geno.Loc ; cons=pos

455 REML [print=*} Yield

456

457 VKEEP{SIGMA2-SGe2;vcov=Vcov_r] Geno+Geno.Loc; COMP=5Gg2,5Gi2

458 EQUA Vecov_r ; !p(Vgg,Vgi,Vii,Vge,Vie,Vee)

459 CALC h2=SGg2/(SGg2+5Gi2+SGe2)

460 CALC Bias =h2* (Vgg-h2* (Vgg+Vgi+Vge)) /5Gg2/5Gg2

461 CALC Seh2=Vgg+Vii+Vee+2* (Vgi+Vge+Vie)

462 CALC Seh2=Vgg+h2*h2*Seh2-2*h2* (Vgg+Vgi+Vge)

463 CALC Seh2=h2*SQRT (Seh2)}/SGg2

464 Print([iprin=*] ‘heritability = ', h2, ' Bias = ', Bias, ' SError= ', Seh2

heritability = 0.02438 Bias = 0.02661 SError= 0.02535

465

466 Clos
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