17<sup>th</sup> Steering Committee Meeting of the CGIAR Regional Program for Central Asia and the Caucasus, 13-14 September, 2016

### The CGIAR Collaborative Research & Capacity Building Program for the Development of Sustainable and Resilient Agricultural Production Systems in Central Asia under the Conditions of Changing Climate



# Integrated water and land management to sustainably use natural resources

17<sup>th</sup> Steering Committee Meeting of the CGIAR Regional Program for Central Asia and the Caucasus

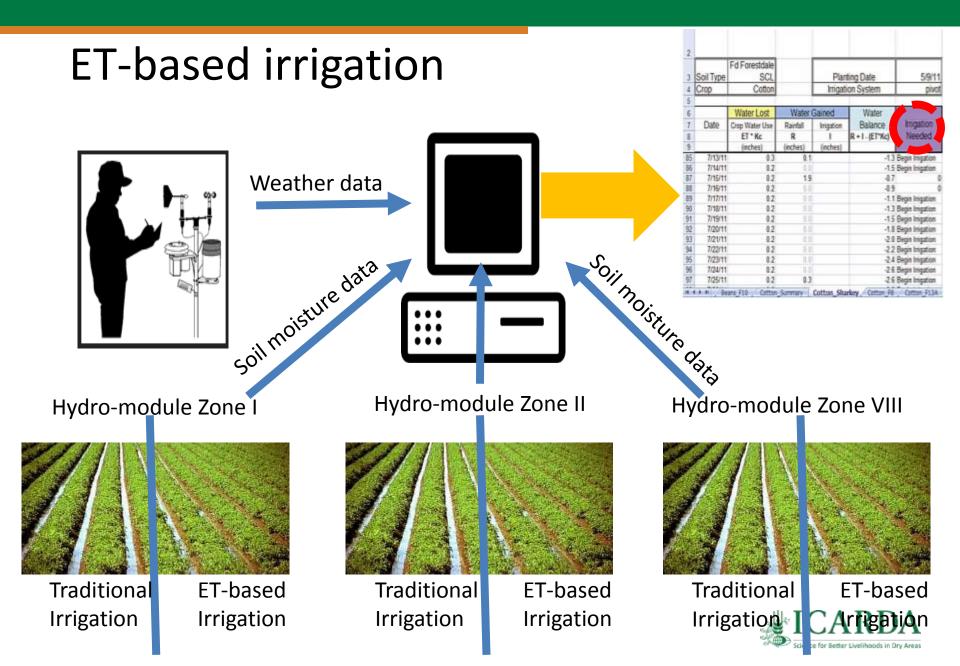
ICARDA Integrated Water and Land Management Program activities: Akmal Akramkhanov, Vinay Nangia, Usman Khalid, Bogachan Benli

### Akmal Akramkhanov

Moscow, Russia 13 September 2016



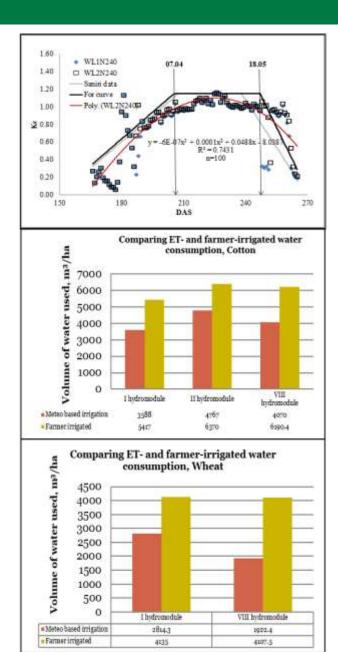
### **Intermediate Development Outcomes**


- 1. More resilient livelihoods for vulnerable households in marginal areas
- 2. More sustainable and higher income and well-being of per capita for intensifiable households
- 3. Women and children in households have year-round access to greater quantity and diversity of food sources
- 4. More sustainable and equitable management of land, water resources, energy and biodiversity
- 5. Women and youth have better access to and control over productive assets, inputs, information, market opportunities and capture a more equitable share of increased income, food
- 6. Increased and sustainable capacity to innovate within and among low income and vulnerable rural community systems, allowing them to improve livelihoods, and bring solutions to scale.



PROGRAM ON Dryland Systems




### Improving water use efficiency through innovative technologies



### Improving water use efficiency through innovative technologies

## Results

- There was on average 32% saving of irrigation water and 50% increase in water productivity
- There was excellent match between modelpredicted and literature-reported values of Kc
- The pilot area selected for research is representative of 35% of irrigated areas in Fergana Valley and 50% in Aral Sea Basin
- Saved water can be used for supporting ecosystem services, expanding agriculture or for industrial and municipal purposes

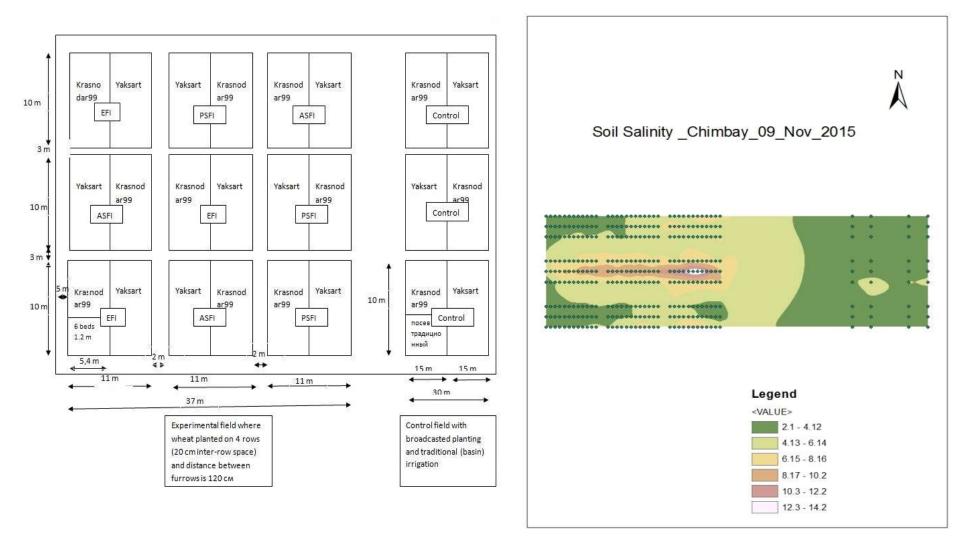


Examine performance of conventional and ET based irrigation scheduling for wheat and mungbean varieties and crop rotation options

Mung bean trials complete (yield, biomass, LAI, soil characteristics, irrigation scheduling, groundwater data, kc, ET, phenological observations) Wheat trials (Yaksart, Elomon and Tanya varieties) are implemented on raisedbeds **Farmers Practice ET based irrigation resulted in higher** yields (+ 17%), higher WP (+37%) and higher revenue (+17%)

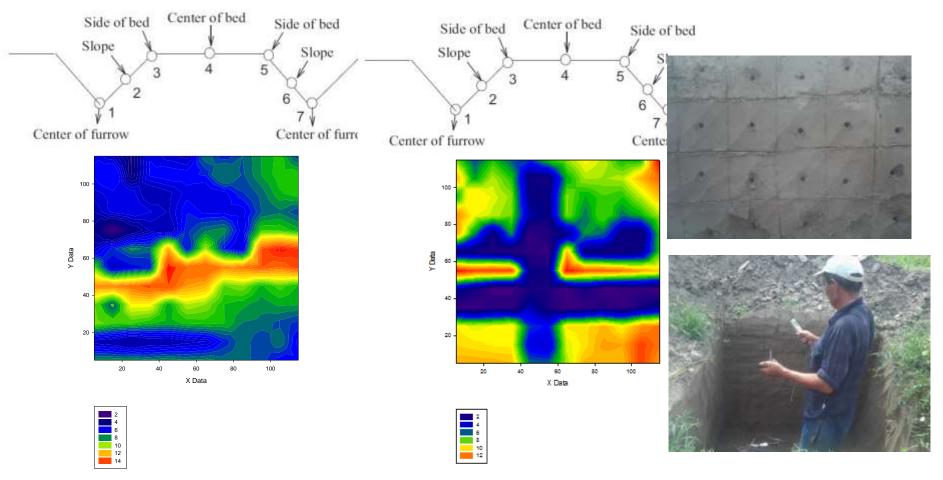
45 cm




### Treatments

- 1. 2 wheat seed varieties (Yaksart + Tanya)
- Every Furrow, Alternate Furrow Raised bed irrigation and Control (traditional basin irrigation)

Main goal is to investigate the performance of two furrow raised bed irrigation methods on salt dynamics of the soil and wheat agriculture.




### Layout of site and soil salinity map





### Soil salinity on raised beds



Every furrow irrigation

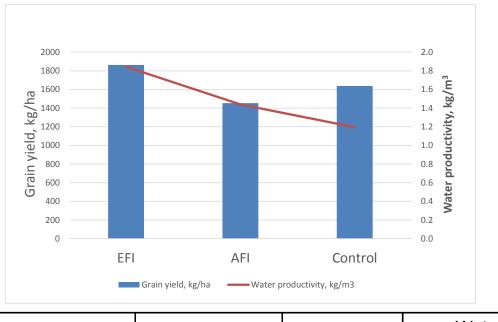
Alternate furrow irrigation



### **Irrigation regime**






#### Irrigation rates applied for different treatments

| Treatment | First Irrigation<br>(13.05.16) | Second<br>irrigation<br>(1.06.16) | Total irrigation rate |
|-----------|--------------------------------|-----------------------------------|-----------------------|
| EFI       | 284                            | 800                               | 1084                  |
| AFI       | 283                            | 705                               | 988                   |
| Control   | Control 583                    |                                   | 1369                  |



### **Yields of wheat**






| Treatment | Irrigation rate,<br>mm | Yield, kg/ha | Water<br>productivity,<br>kg/m3 |  |
|-----------|------------------------|--------------|---------------------------------|--|
| EFI       | 101                    | 1863         | 1.8                             |  |
| AFI       | 100.9                  | 1453         | 1.4                             |  |
| Control   | 137                    | 1637         | 1.2                             |  |

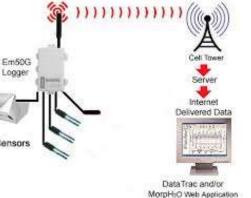
Raised bed technology demonstrated 20-54% higher Water Productivity



## Determining optimum water and nutrients leaching requirements for the saline areas



- Data collected
  (groundwater table, groundwater salinity, soil texture, climate
   data and soil salinity)
- Site selection completed
- Calibration/validation of HYDRUS is on-going



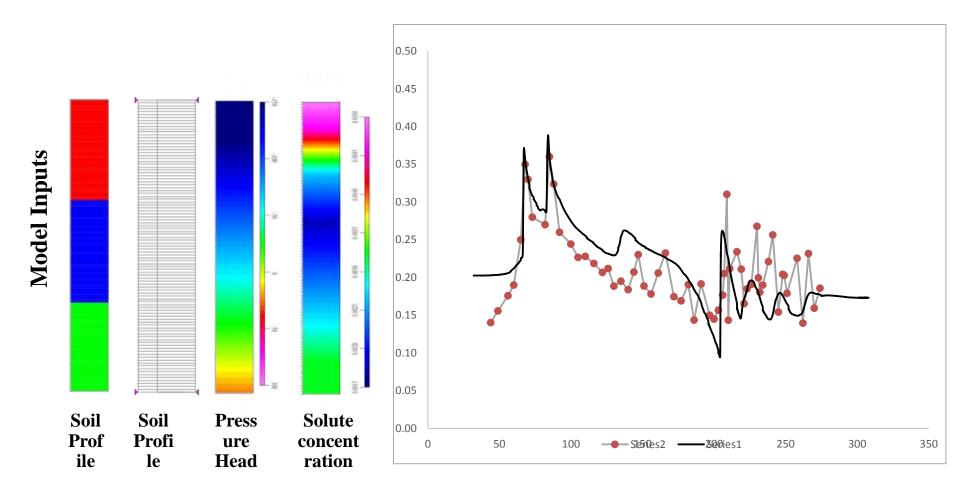

## Determining optimum water and nutrients leaching requirements for the saline areas



Research field of the training site of the SANIIRI scientific-production organization in the Nauhas Water Users' Association

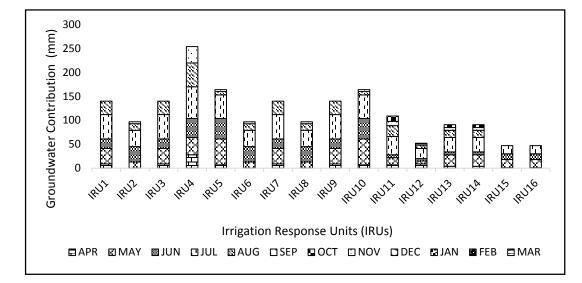
EM50G Monitoring Soil Salinity, Moisture and Temperature with Telemetry (GSM Module)






5TE Soil Salinity, Moisture and Temperature Sensors

CTD-10 Groundwater salinity and depth sensors


PROCHECK Irrigation water salinity

## Determining optimum water and nutrients leaching requirements for the saline areas





### Conjunctive water management using canal and groundwater



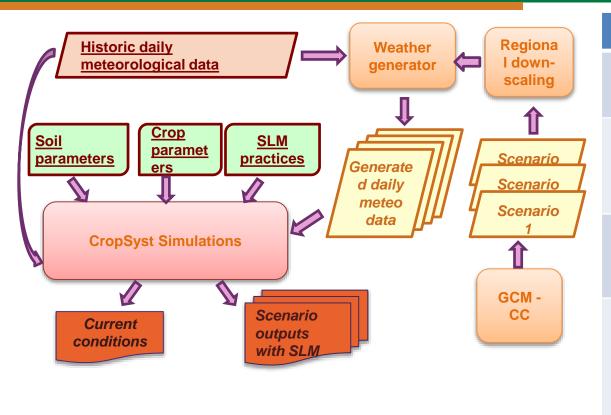
- Controlled drainage.
- Saving of surface water of 45- 50%
- Reduction of the drainage outflows near to a target value of 10 to 15%
- Journal publication Impact of controlled drainage on crop yield and soil salinity





### **Crop modeling to determine SLM options**




Area of degraded land in the Khorezm Province - 20,000 ha

Soil organic matter (humus) is very low 0,4-1,2 %, total content of organic matter in depth of 0-50 cm is 29 -70 t/ha.

Photos: ZEF/UNESCO Khorezm project



## Assessment of the impacts of climate change and the effects of adoption of SLM technologies on crop productivity (modeling)



#### Outputs

Calibrated crop model for cotton and wheat

Manual on processing and using CORDEX climate change data and crop models

Quantified climate change impact on crop production

Capacity building of scientists in processing and using CORDEX climate change models

The CropSyst model (Stockle et al., 2003), version 4.19.06

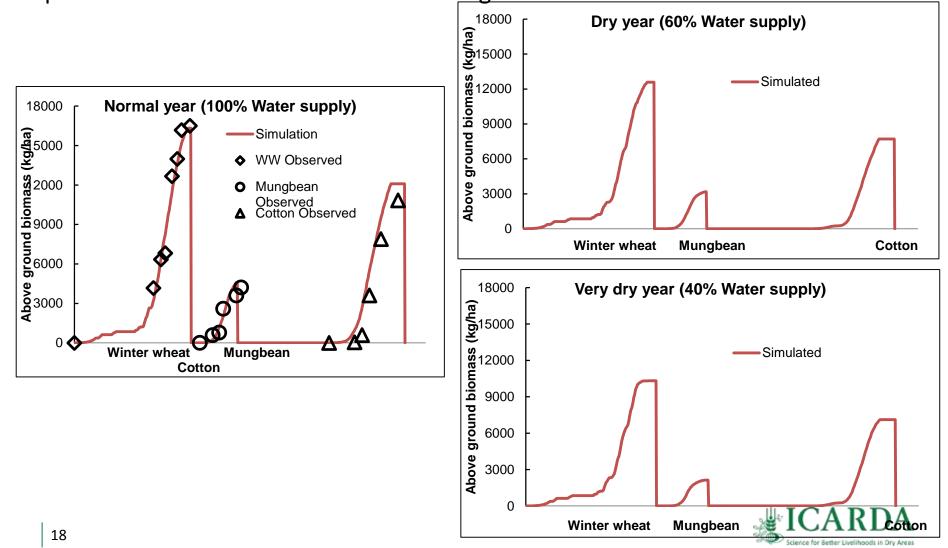
Climate change from IPCC (2013) CMIP5 scenarios RCP 2.6, RCP4.5-6.0 and RCP 8.5



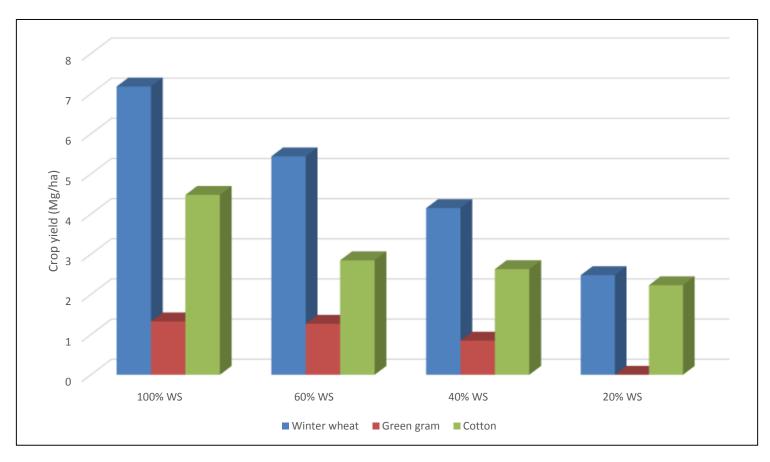
### **Crop modeling to determine SLM options**



Winter Wheat


Mungbean

Cotton




### **Crop modeling to determine SLM options**

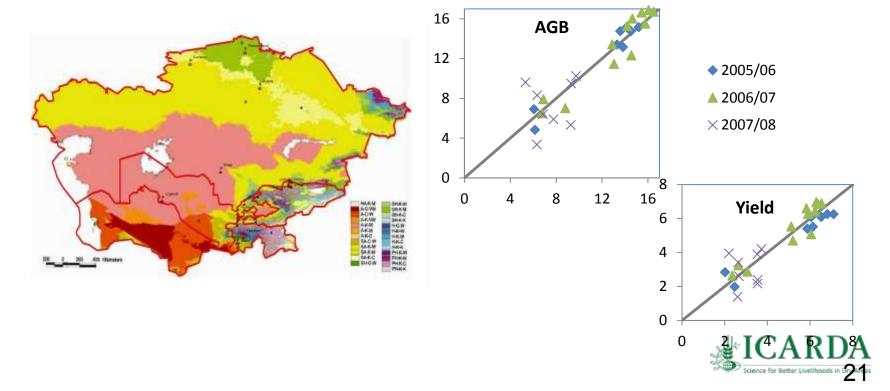
Good fit between the simulated and empirical values for the various parameters in crop rotation "winter wheat - summer mungbean – cotton"



#### Crop yield in the treble rotation under different irrigation water availability scenarios






### **Crop modeling to determine SLM options**

- Good simulation estimates of higher yields of winter wheat and cotton on the higher fertility soil (7.2 t ha<sup>-1</sup> of wheat grain and 4.5 t ha<sup>-1</sup> of seed-lint cotton) compared to the soil with lower fertility (less 12% for wheat and 31% for cotton)
- Deficits of irrigation (40 and 20% of 'normal', respectively) could decrease yields up to 65%.
- Even though groundwater is basically very shallow in Khorezm, full irrigation according to crop demand is prerequisites to achieve high yields of the crops in the treble rotation unless the water table is higher than 2 meters.
- Contribute to decision making whether or not to concentrate or to spread-out (thin) the available irrigation water resources in dryer years. At the same time this distinction mimicked differing levels of access to water (up-stream vs. down-stream)



### Assessment of wheat yield gap in Central Asia

- Goal to estimate yield gap in wheat between the potential yield and actual yield of wheat in Central Asia and find out reasons for such a gap and identify package technologies to eliminate this Gap
- 18 sites in rainfed and irrigated (saline and non saline) agro ecological zones



## Calibration CropSyst model

### **Farmers Yield**

Survey, National Agricultural Research Centers (1991-2015)

### **Research Yield** Review of Existing Studies

**Potential Yield** CropSyst (Crop, soil and irrigation management) Identification of the causes of gaps

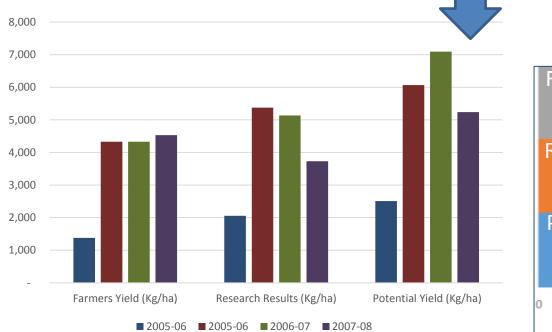
Management options to reduce the gaps



### Assessment of wheat yield gap in Central Asia

Sample of agroecological zones (out of total 18)

| Country    | Province                          | AEZ    | Agro Cilmat Explanation                | Salinity_D                   |  |
|------------|-----------------------------------|--------|----------------------------------------|------------------------------|--|
| Kazakhstan | Kyzylordinskaya                   | A-k-W  | Arid, cold winter, warm summer         | Irrigated -Low salinity      |  |
| Kazakhstan | Kustanayskaya                     | SA-K-W | Semi-arid, cold winter,<br>warm summer | Rainfed-Low salinity         |  |
| Kazakhstan | Sever-<br>Kazakhstanskay          | SA-K-W | Semi-arid, cold winter,<br>warm summer | Rainfed-Medium<br>Salinity   |  |
| Kazakhstan | Jambylslkaya                      | A-K-W  | Arid, cold winter, warm summer         | Rainfed - High Salinity      |  |
| Kyrgyzstan | Bishkek province<br>(Chiu Valley) | SA-K-W | Semi-arid, cold winter,<br>warm summer | Irrigated - High<br>Salinity |  |
| Tajikistan | Bokhtar                           | SA-C-W | Sub-humid, cold winter,<br>warm summer | Rainfed-High Salinity        |  |
| Uzbekistan | Syrdarya province                 | A-K-W  | Arid, cold winter, warm summer         | Irrigated-High Salinity      |  |
| Uzbekistan | Khorezm province                  | SA-K-W | Semi-arid, cold winter,<br>warm summer | Irrigated-Medium<br>Salinity |  |
| Uzbekistan | Bukhara                           | A-C-W  | Arid, cool winter, warm summer         | Irrigated - Low Salinity     |  |
| Uzbekistan | Bukhara                           | A-C-W  | Arid, cool winter, warm summer         | Irrigated-High Salinity      |  |


#### Assessment of wheat yield gap in Central Asia Irrigated Medium Salinity – Khorezm, Uzbekistan

**Farmers Practices** 

- Planting date: Sep -Dec; Mainly Cotton & Wheat Rotation
- No Land levelling
- Hydro Module Zone Approach in Irrigation

Research Results (Ibragimov et al. 2009)- 600 mm of IRR and N240





| Fa | rmers    | yield  |                   |                   |      |      |
|----|----------|--------|-------------------|-------------------|------|------|
| Re | search   | result | ts – 7%           |                   | Yie  | eld  |
| Рс | otential | yield  | - 39%             |                   | Ga   |      |
| 0  | 1000     | 2000   | 3000<br>Grain Yie | 4000<br>d (kg/ha) | 5000 | 6000 |

Technology development and delivery through international collaboration in the CAC region: Improved soil and crop management practices

• How long does it take for innovation to take off? ~ 5–10–15 years?



**Conservation Agriculture in rainfed** areas of Kazakhstan 2000 – 2010?



Laser-guided land leveling in irrigated areas of Uzbekistan 2005 – 2016?

What does it take for innovation to take off? Inter/Multi-disciplinarity?



## Thank you for attention!

