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Abstract: Homozygosity of long sequence genotypes are a result of parents transmitting identical
haplotypes, which can be used to estimate their auto-zygosity. Therefore, we used high-density SNP
Chip data to characterize the auto-zygosity of each breed according to the occurrence and distribution
of runs of homozygosity (ROH). Subsequently, we identified the genomic regions with high runs of
homozygosity frequencies within individuals of each breed. We selected 96 sheep samples from five
local Chinese sheep breeds belonging to different geographical locations. We identified 3046 ROHs
within the study breed individuals, among which the longer segments (>1–5 Mb) were dominant.
On average, ROH segments covered about 12% of the genomes; the coverage rate of OAR20 was
the lowest and that of OAR2 was the highest. The distribution analysis of runs of homozygosity
showed that the detected ROH mainly distributed between >26 and 28 Mb. The Hetian and Hu
sheep showed the lowest ROH distribution. The estimation of homozygosity level reflects the
history of modern and ancient inbreeding, which may affect the genomes of Chinese indigenous
sheep breeds and indicate that some animals have experienced recent self-pollination events (Yabuyi,
Karakul and Wadi). In these sheep breeds, the genomic regions were assumed to be under selection
signatures frequently in line with long ROH. These regions included candidate genes associated with
disease resistance traits (5S_rRNA), the innate and adaptive immune response (HERC2 and CYFIP1),
digestion and metabolism (CENPJ), growth (SPP1), body size and developments (GJB2 and GJA3).
This study highlighted new insights into the ROH patterns and provides a basis for future breeding
and conservation strategies of Chinese sheep breeds.
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1. Introduction

The inheritance of consecutive homozygous fragments, identical haplotypes, of genome by the
offspring from a common ancestor is known as runs of homozygosity (ROH) [1]. ROH is a useful
indicator of genomic inbreeding and for identifying genomic regions that are potentially under
historical selection pressure [2]. This is because the selection process may result in a high level of
homozygosity, which is also known as homozygous operation [3,4]. Genetic diversity is a necessary
raw material of evaluation and breeding and is the basis of natural and artificial selection [5]. However,
to the best of our knowledge, the extent of ROH has not been widely investigated in the genome of
different sheep breeds in China. This makes it crucial to assess and record levels of genetic variation
within and between populations indicated by the inbreeding, heterozygosity, average minor allele
frequency and single nucleotide ratio of polymorphisms. These indicators also provide information
for breeding and conservation programs to effectively improve the production and reproductions
levels, as well as to manage and conserve genetic resources [6]. Scanning the auto-zygosity may
present inbred as well as non-bred populations due to several population phenomena, e.g. inbreeding,
consanguineous matings, population bottleneck, genetic drift and natural and human-mediated
selection [7,8]. Revealing the homozygosity of cattle genome, using high-density SNPs, has been an
effective way to identify non-auto-zygosity identical by state (IBS) segments from auto-zygotic (IBD) [9].
Therefore, the description and identification of run of homozygosity may help in understanding
the population structure, demographic history and evolution progress up to the present as well as
unveiling footprints of natural or human-driven selection. In addition, the frequency and length of
ROHs are both important parameters for determining causative forces for genomic changes over time.

Effective population size (Ne) is a population genetics basic concept. It determines the rate of
evolutionary change caused by genetic drift and the equilibrium level of genetic variation and effective
selection. Ne is often much lower than census size [10]. Ne is an important parameter for evaluation of
population genetic diversity and can provide a powerful method to characterize and understand the
genetic architecture underlying complex traits. It is very relevant to the conservation biology matrix
because it is used to estimate of genetic drift rate and inbreeding rate as well as influence of systematic
evolution such as selection, mutation, and migration and other demographic factors. Low Ne leads to
inbreeding and reduces genetic variability [11].

Identification of long regions of homozygous genotypes in genome using high density SNP arrays
has been considered an effective method for identifying the identity by descent (IBD) haplotypes [12,13].
In this regard, SNP arrays can provide information on past and more recent demographic changes,
that is population size reflects founder effects and bottlenecks [3,14], which allow comparing the
degree and pattern of homozygosity between populations with difference degrees of isolation and
inbreeding [15,16] Different methods of inbreeding level estimation using genomic information were
adopted. The importance of ROH in quantifying and understanding inbreeding in livestock, humans
and plants was emphasized. The intense selection of livestock has alerted the scientific community to
the need to protect the population [17], characterize and monitor auto-zygosity and maintain genetic
diversity in long-term animal breeding programs [18,19]. Multiple studies have also shown that there
is a relationship between ROH in the genome and the occurrence of recessive disorders (mainly, in
humans) [13,20–22]. In recent years, the distribution and occurrence of ROH have been studied in
cattle [4,23,24], pigs [3,25,26], goats [7] and sheep [27–31]. Population structure and selection could be
evaluated according to the distribution and location of ROH. Inbreeding, population size reduction and
selection could result in the long homozygous region in the genome [32,33]. In general, the similarity
between the individuals at the whole genome level could be attributed to selection. Hence, ROH has an
important role in recessive alleles mapping, which is related to the occurrence of diseases, as ROH has
an increased risk of carrying IBD deleterious recessive alleles to disease occurrence. The risk of ROH
carrying harmful recessive alleles of IBD increases, thus reducing the viability of organism [12,18,19].
However, there is limited information about genome selection and distribution of ROH throughout
the genome and the effect of genome selection on inbreeding rate. Therefore, the purpose of this
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study was to characterize the run of homozygosity and identify ROH patterns as well as effective
population sizes in the genomes of five local Chinese sheep breeds adapted to extremely dry and humid
environment using high-density SNP chip data, which is essential for formulating new strategies
and protecting genetic resources of sheep breeds. Our results provide insights into the patterns,
evolutionary mechanisms and population demographics history of ROH.

2. Materials and Methods

All experiments carried out on animals in this study were fully approved by the Animal Protection
and Use Committee (IAS-CAAS) of the Institute of Animal Science, Chinese Academy of Agricultural
Sciences, Reference No: IASCAAS-AE-03, on 1 September 2014.

2.1. Samples Collection and DNA Extraction

In total, 96 Chinese sheep of five different local sheep breeds, four flocks for each breed, were
selected and five individuals from each flock were sampled randomly. Ear tissue and/or whole blood
samples were collected from Hetian, Karakul and Yabuyi sheep distributing in arid environment and
Hu and Wadi sheep in humid environment (Figure 1 and Table 1). Ear marginal tissue samples were
stored in 2 mL microcentrifuge tubes containing 75% ethanol. Genomic DNA was extracted from the
ear tissue using a standard phenol–chloroform method [34]. Around 10 mL of blood were collected
from the jugular vein of each animal into vacutainer tubes containing EDTA as anticoagulants and
stored in ice/liquid nitrogen (−196 ◦C). DNA from the whole blood was extracted using DNeasy Blood
and Tissue kit (Qiagen, Dusseldorf, Germany). The concentration and purity of DNA were measured
by Nano-Drop 2000 spectrophotometer (Thermo Fisher Scientific Inc., Waltham, MA, USA) and stored
at −20 ◦C for genotyping.
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Table 1. Description of five native Chinese fat-tailed sheep breeds and their agro-ecological locations.

Breeds Hetian (HT) Karakul (KK) Yabuyi (YY) Wadi (WD) Hu (HU)

Coat Color White with
pigmentation

Mainly black or
grey White white with

Pigmentation
White with

Pigmentation
Body size Medium Large Medium Medium Medium
Tail types Short fat-tail Long fat-tail short fat-tail Short fat-tail Short fat-tail

Uses Meat/Carpet
wool Lamb fur/meat Meat Meat/fur Meat/lamb fur

Agro-ecology Arid, lowland
Arid,

semi-desert,
Lowland

Arid, low land Subhumid,
lowland Moist lowland

Community Xinjiang/Hetian Xinjiang Xinjiang Shandong/Binzhou Jiangsu
/Xuzhou

Temperature (◦C) −28.9 to 43.2 −20 to 33 −26 to 43 −16 to 39 −9.9 to 38.3
Average rainfall

(mm) 150 150 35 592 930

2.2. Genotyping and Quality Control

DNA samples were genotyped using Ovine Infinium HD SNP Bead Chip (Beijing KPS
Biotechnology CO Ltd., China), which contained 606,006 SNPs (600 K) of the Oar_v4.0 Ovine genome
assembly. We used PLINK v1.9 software [35] for quality control (QC) of these SNPs. According to the
procedures in [24], SNPs with call rate 95%, MAF < 0.05 and Hardy–Weinberg equilibrium (HWE)
(p < 10−5) were filtered out. In addition, more than 10% of the samples missing genotyping (–geno)
were deleted from the dataset. Finally, according to the suggestion of Zhang et al. [36] in PLINK manual,
the indep-pairwise command parameters (SNP window size: 50; SNP moves per step: 5; r2 threshold:
0.2) were used to prune SNPs with high linkage disequilibrium (LD), which left 502,072 autosomal
SNPs and 96 animals for further analysis. Pruning is necessary to produce a better comparison between
populations, as some extended of SNPs have a lower minor allele frequency. LD decay patterns which
can inform population demography were investigated for each sheep breed, with r2 values calculated
with the parameter –r2–ld–window 1000–ld–window–r2 0 commands in PLINK software.

2.3. Runs of Homozygosity Analysis

ROHs were identified and characterized in each of five sheep breeds using –homozyg function in
the program PLINKv1.90, and the following conditions were adopted: minimum SNPs density were set
to one SNP every 1 kB, and the maximum gap length was 1 Mb. For each ROH, one heterozygote and
two missing genotypes were accepted. The total number of ROHs, the length of ROHs (in megabases)
and the sum of all ROH segments (in megabases) were measured for all animals classified by breed
and ROH length category. To compare the distribution of ROH among sheep breeds, we categorized
the length of ROH into four classes (1–5, 5–10, 10–15 and >15 Mb). The average length of ROH was
estimated by summing all ROH segments for each ROH length class per breed and divided by the
total number of individuals of that respective breed. The genome inbreeding coefficients (FROH) were
calculated using the method previously described by McQuillan et al. [37]. The calculation method
of FROH was as follows: FROH = (LROH/LAUT), where LROH refers to the total length of ROH of each
individual in the genome and LAUT is the specific length of the autosomal genome covered by SNPs
of sheep chips (2452.06 Mb). To verify the accuracy of (FROH), we also used PLINK program and
command –het to calculate the expected E(HOM) and observed O(HOM) number of homozygous
genotypes and calculated the inbreeding coefficient (FROH).

2.4. Detection of Common Auto-Zygosity Islands

The –homozyg group functions implemented in PLINK v1.90 [35] was used to evaluate the
shared ROH islands among individuals in order to identify the most common genome regions and
candidate genes associated with ROH in five Chinese sheep breeds adapted to extremely humid
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and dry environments. The OAR_Rambouillet_V 1.0 model, detected on Ovine genome Ensembl
(https://www.ensemble.org/Ovis_aries_rambuillet/info/index?db=core), was used for the identification
of genes in ROH regions. In addition, the genome regions most commonly associated with ROH
were identified by selecting the first top 0.5% (occurring in over 45% of the samples) of the common
SNP observed in ROH [31,38]. Adjacent single nucleotide polymorphisms (SNPs) and incidence of
ROH exceed the threshold used to form genomic regions called Island [36]. The percentage of SNPs
present in ROH was calculated by counting the number of times the SNPs were detected in those ROH,
which was plotted against the position of the SNP along the chromosomes. The candidate regions
for highest ROH island identified were used for functional annotation of genes that were fully or
partially continued within each selected region using DAVID v6.8 tools [39,40], and they were also
used to identify significant (p ≤ 0.05). Gene Ontology (GO) terms and KEGG pathways used the list
of genes from ROH islands and Ovine annotation file as backgrounds. Finally, we investigated the
functional enrichments analysis for annotated genes in ROH Island from accurate literature and NCBI
(https://www.ncbi.nlm.nih.gov/gene/) database.

2.5. Effective Population Size

The historical and modern effective population size (Ne) for each of five sheep breeds was

evaluated based on the following formula: Ne = 1
4c

(
1

E(r2)
− 1
)

[41], where Ne is effective population

size, c is the genetic distance in Morgan and E (r2) is the expected r2 for distance c, implemented in
the software SNeP v1.1 [42]. The Ne time points representing the number of generations ago (T) was
calculated as T = 1

2c [43]. Ne was estimated for each chromosome and generation in the past.

3. Results

3.1. SNPs Filtration, Minor Alleles Frequency and Linkage Disequilibrium

In this study, 606,006 SNPs were used before quality control; after filtering, the final number of
animals and SNPs retained for analyses were 96 and 502,072, respectively, of the loci distributed over
27 autosomal chromosomes, which were used for downstream analysis. Zero SNPs were removed
based on their results for Hardy–Weinberg Equilibrium (<10−5), minor allele frequency (<0.05) and
call rate (<0.95). About 250,487 SNPs were removed using LD-based pruning when an r2 threshold of
5 was exceeded. After filtering, the 251,404 remaining SNPs were used for LD analysis. Minor allele
frequencies were almost similar across the five breeds, inbreeding coefficients ranged between −0.004
in Wad sheep and −0.04 in Karakul sheep (Table 2).

Table 2. Summary of samples, inbreeding coefficients and minor allele’s frequency in five Chinese
sheep breeds.

Breed Name Acronym Location Sample Size (n) Ecology FIS MAF < 0.05

Hetian HT Xinjiang 19 Arid land −0.02 0.269
Karakul KK Xinjiang 20 Arid/Desert −0.04 0.267
Yabuyi YY Xinjiang 20 Arid −0.027 0.266
Wadi WD Shandong 17 Sub-Humid −0.004 0.270
Hu HU Jiangsu 20 Humid −0.03 0.268

Note: FIS, inbreeding coefficient; MAF, minor allele frequency.

3.2. Runs of Homozygosity (ROH) Patterns

The distribution of the relative number of ROH in different lengths between and within two
sample groups in the five sheep breeds from extremely dry and humid environments is shown in
Table 3. The average ROH category across the four classes was calculated; the lowest and highest length
were observed on Hetain (11.56 Mb) and Yabuyi sheep (26.29 Mb), respectively (Table 3). In almost all

https://www.ensemble.org/Ovis_aries_rambuillet/info/index?db=core
https://www.ncbi.nlm.nih.gov/gene/
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breeds, most ROHs were >1–5 Mb class, followed by >5–10, 10–15 and ≥15. However, the proportion
of major class groups (>1–5) varies between breeds: at least 80% of ROH length classes are in Yobuyi
and Wadi sheep; 70% in Karakul breed; 50% in Hu sheep; and 28% in the Hetian sheep breed (Table 3
and Figure 2). In addition, Karakul and Yabuyi breeds had the highest frequencies in length classes
(5–10 Mb). The higher levels of ROH classes (≥1–5) across breeds ranged from 23.84 Mb in Hetian to
90.17 Mb in Yobuyi breeds from dry environments, while the lowest levels of classes (≥15) ranged
from zero in Karakul to 3.12 Mb in Yabuyi sheep from dry environments.

Table 3. Summary of ROH segments proportions at different length categories across five Chinese breeds.

Length Category (Mb) Hetian Karakul Yabuyi Wadi Hu

FROH (1–5) 28.14 73.27 84.82 81.53 49.66
FROH (5–10) 9.24 14.45 14.15 12.28 9.64

FROH (10–15) 7.05 8.24 3.06 2.59 1.86
FROH ≥ 15 1.81 0 3.12 1.03 1.21
Average 11.56 23.99 26.29 24.35 15.59
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Figure 2. Genome-wide distribution of the mean sum of F(ROH) coverage different length categories
per breed across five Chinese breeds. For each animal, within each ROH length category, ROH was
summed up and then averaged per population.

According to the set parameters, 3046 ROHs were detected in five sheep breeds, with an average
of 35.84 per individual. The genome length ranged between 273 and 984 Mb in five populations
including 96 individuals who had at least one ROH. The number of ROH differed significantly between
breeds. The Wadi sheep displayed the largest number of ROH (796), followed by Yabuyi (790) on
average (means of 46.8 and 46.5 Mb respectively). The lowest number of ROH (259) was found in the
Hetian sheep breed on average (mean of 15.23 Mb) (Figure 3).

The average length of ROH was 2.27 Mb and the longest segment across breeds detected on
chromosome OAR2 was 633.04 Mb, which was composed of 121,567 SNPs, followed by OAR3 with
628.49 Mb and 116,049 SNPs. The shortest length of ROH was detected in OAR20 (67.63 Mb) having
13,838 SNPs. In general, the total number of ROHs per chromosome reduces with decrease in
chromosome length. The highest percentages of ROH per chromosome was observed on chromosome
OAR2 (11.39%) and OAR3 (11.31%), whereas the lowest length was on chromosome OAR20 (1.23%)
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(Figure 4). The correlation between the number of ROH (n ROH) and the sum of all ROH segments
was R2 = 0.683 (Figure S1).Genes 2020, 11, x FOR PEER REVIEW 8 of 17 
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3.3. Genomic Regions with a High ROH Frequency

Auto-zygosity islands are obvious across the whole genome and their distributions varied in
length and location on chromosomes (Table S1). The most common genomic regions associated with
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high frequency of ROHs occurrences were detected in five sheep breeds, and the percentage of SNPs
was assessed by calculating the frequency of SNPs in these ROHs on the autosomal chromosomes,
as shown in the Manhattan plot (Figure 5). To identify genomic regions that were most commonly
associated with ROH in all individuals, the top 0.5% of SNPs [44] with the common highest occurrences
(occurring in over 45% of the samples) in ROH were considered as candidate SNPs (Figure 5). In total,
eight ROH island regions including 28 genes were identified across the 26 autosomes. The strongest
candidate regions were identified on chromosomes OAR2, OAR10, OAR21 and OAR6 spanning several
genes, e.g. ANXA10, CRYL1, PAG4 and 5S_rRNA genes, respectively (Table 4). The top three GO terms
and KEGG pathways were connexin complex (GO: 0005922), aspartic-type endopeptidase activity (GO:
0004190) and protein digestion and absorption (oas04974) (Table S2).
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Table 4. The candidate genes located in genomic regions with the highest ROH frequency associated
with important traits.

CHR Positions Gene Name Functions Gene Description

10 36,271,774–36,272,454 GJB2 Body
size/development

gap junction protein
beta 2

10 36,304,573–36,305,769 GJA3 Body
size/development

gap junction protein
alpha 3

10 36,669,829–36,713,175 CENPJ Protein implements centromere protein J
2 11,175,0152–11,175,0269 5S_Rrna Disease resistance 5S ribosomal RNA

2 11,247,8388–11,272,0769 HERC2 Innate immune
response

HECT and RLD
domain containing

E3 ubiquitin protein
ligase 2

2 11,283,9853–11,294,4326 CYFIP1 Innate immune
response

cytoplasmic FMR1
interacting protein1

6 79,425,129–79,425,234 5S_rRNA Disease resistance 5S ribosomal RNA

3.4. Effective Population Sizes

Ancient and modern effective population sizes (Ne) were obtained in these populations.
We observed a rapid increase in Ne over the past 1000 generations and then a slow increase up
to 2000 generations ago (Figure 6). Its decay over time indicated that the ancestral population based on
2000 past generations had a much larger Ne displayed for Hetian (n = 3563) and Hu (n = 3432) animals,
compared to the most current generations. The Ne for the last 2000 generations showed the same
value (n = 3133) shared in Wadi, Yabuyi and Karakul populations, falling above the minimum value
(n = 30) of individuals for any livestock species to ensure the viability and genetic improvement in
breeding programs.
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4. Discussion

In previous studies, we revealed the genomic diversity, population structure and selection signature
characteristics of five sheep populations in China [45]. Here, we extended our analysis using runs of
homozygosity, LD and Ne as useful tools for detecting genomic relatedness, providing population
assessment historical information over time and predicting underlying genome architecture [46]. In this
study, we used 600,000 high-density bead chips data to study the genome-wide runs of homozygosity,
linkage disequilibrium and effective population size of five Chinese sheep breeds adapted to extreme
dry and humid environments. The measurement of linkage disequilibrium provides some allelic
frequency dependence in a limited sample size [47]. Secondary allele frequency is important because
Linkage disequilibrium is a function of allelic frequency independent of the measures used, and low
MAF may correspond to larger differences in coupled allele frequencies, which may result in lower LD
estimates measured by r2 or D’ [48]. Therefore, filtration via quality control standards and thresholds
could affect the distribution and extent of LD [49] because there is an important correlation between
high levels of LD and high proportions of SNPs with high MAF value. However, in this study, we found
that the MAF values ranged from 0.266 to 0.270, with an average mean of 0.268. These results are
consistent with the previously observed MAF of 0.26 in Bonsmara and Drakensberg cattle and lower
than the 0.28 value observed in Angus and Holstein cattle [50]. Inbreeding coefficient measures the
percentage of the increase in homozygous gene pairs relative to the average number of breeds [51].
In the current study, the inbreeding coefficient ranged between −0.004 and −0.04, which is lower than
the previous report of FIS = 0.04 for Brazilian Santa Inés sheep [52], as well as lower than the values
reported in Chinese Merino sheep, Italian sheep and Spanish sheep breeds [36,53,54]. In addition,
it was lower than 0.29 value found of various cattle breeds in South Africa [50]. The main reason is
that sheep from dry and wet environments have not been strictly selected and the effective population
scale is large [10]. When the number of homozygous loci observed is lower than expected, a negative
inbreeding coefficient will appear, which indicates the heterogeneity of the population is greater than
expected. This may be due to the compound characteristics of breeds [52].

4.1. Linkage Disequilibrium

The linkage disequilibrium (LD) decay analysis showed that the breeding histories of five Chinese
sheep breeds were distinct. Wadi, Karakul and Yabuyi displayed the highest LD decay, while Hetian
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and Hu sheep had the lowest LD across all genetic distance intervals (Figure S2). In general, the mean
r2 values decreased rapidly with increasing genome distance and were constant after 200–300 kb.
The most rapid decrease in r2 was observed for the first five bins. The phenomenon may be caused by
the mixing effects. This result is consistent with that reported by Gibbs et al. [55].

4.2. Effective Population Size

Effective population size is one of the most important parameters in population genetic and
conservation biology. Its transforms census size of the actual population into the size of the ideal
population, showing the same loss rate of genetic variation, increases of inbreeding, mutation
accumulation and determination of the accuracy of genome selection [56]. Our results show a rapid
growth trend in Ne of the five research groups in the past 1000 generations, and then it slowly increased
up to 2000 generations ago across the five studied populations [11]. Interestingly, Hetian and Hu sheep
showed higher Ne estimates before 2000 generations. Wadi, Karakul and Yabuyi sheep breeds had
lower Ne estimates in all generations due to population admixture within the breeds [57]. Therefore,
it is beneficial to consider our results in historical demographic context of Chinese sheep population.
This finding is in line with our previous studies of genomic diversity, population structure and selection
signature, in which we observed that principal component and admixture analysis clustered population
corresponding to their geographical distribution and breeding history [45]. In general, the increase
of the estimated Ne value across five sheep breeds generations ago suggest that these animals can
ensure viability within breeds in breeding programs [58]. In addition, maintaining sufficient Ne is very
important for maintaining heterozygosity and heterosis of Chinese animal breeds [59].

4.3. ROHs

Estimation of ROH is useful tool for exploring genetic diversity, providing information about the
history of population demographic assessment and predicting potential genome structure [6,16,60].
As presented by Purfield et al. [6], relatively shorter ROH are most likely to be associated with ancestral
inheritance or potential bottlenecks, while long ROH are more likely associated with relatively recent
inbreeding. Our results show that ROH is common in all breeds, and some ROH length categories
can be used as indicators of blood relationship and breed population history; selection pressures and
breeding management impacts on sheep genome may potentially leave an imprint on ROH length.

The total length of ROH in Yabuyi, Karakul and Wadi sheep were higher, which indicated that
their genetic diversity was low. In general, the average ROH of all breeds ranged from 11.56 to
26.29 Mb, which was consistent with the results obtained in Swiss sheep [61]. The distribution patterns
of ROH in Yabuyi, Karakul and Wadi sheep are different. They show that the average value of ROH is
higher (>1–5 Mb) in the longer species, which is the performance of population reduction and recent
inbreeding [62]. Therefore, the accumulation of long ROH in the genome of those breed enables them
to carry harmful homozygous mutations [21]. The highest FROH value is Yabuyi sheep, followed by
Wadi and Karakul sheep, which indicates that the inbreeding rate of these sheep breeds is very high.
This may be due to a small number of rams being widely used in herds breeding. Therefore, extensive
mating among relatives may be the reasons for the high proportion of fixed alleles, resulting in the
low genetic diversity in Yabuyi, Karakul and Wadi. Attention should be paid to prevent loss of sheep
genetic resources. However, Hetian sheep have limited inbreeding, followed by Hu sheep breeds,
which reflects the proper management of breeds, sufficient effective population size (Ne) and large
number [63].

The maximum frequency of Yabuyi, Karakul and Wadi sheep in the longest ROH category reflect
that recent inbreeding probably exists in these breeds. Generally, the high proportion of long ROH
segments in the population indicated strong inbreeding in recent generations. In animal breeding,
if there is a genetic relationship between individuals, it will inevitably result in increased homozygosity
of selective region and stronger genome selection signals [64]. In addition, these results are supported
by the authors of [65] who reported that the number of ROH per individuals in the non-selected
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Holstein population is significantly lower than that of the two heavily selected populations in the
United States.

The distribution of ROH on each chromosome has a certain regularity. The first three chromosomes
have the largest number of ROH, while the number of ROH gradually reduce with the decrease of
chromosome length. The number of ROH on chromosome OAR20 is the lowest, with 13,838 segments.
Our results are consistent with those reported in sheep [66] and goats [7]. The coverage of each
chromosome is greatly different among different populations, suggesting that it may be species specific.

4.4. ROH Candidate Genes

To identify genomic regions with the highest frequency of ROH and thus harboring candidate
genes potentially under selection, we examined ROH genomic regions with inbreeding coefficients
that span a variety of candidate genes directly or indirectly associated with adaptation to extremely
dry and humid environments. Genes associated with innate and adaptive immune responses include
humid and thermo-tolerance, disease resistance, energy and digestive metabolism and performance in
extreme dry and humid environments.

4.4.1. Genes Related to Adaptive and Innate Immune Response

Several overlapping genes related to innate and adaptive immunity in mammals, such as HERC2
and CYFIP1, were identified in this study, which are reported to regulate innate and acquired immune
response, as well as cytokine signaling. In addition, HERC2 and CYFIP1, which are involved in
hemostasis regulation and mucosal defense, are also detected, which are of great significance in
protecting sheep from parasites [67]. Furthermore, HERC2 is a marker gene reported for biological
predictions, some of which are unique and need functional verification [68].

4.4.2. Genes Associated with Disease Resistance

Multiples candidate genes have been found in the genomic regions involved in host defense
mechanism, diseases resistance and inflammation. The most significant genes include 5S_rRNA, which
is a gene detected in several overlapped regions (OAR2 and OAR6) with high statistical significance
under warmer and humid climates conditions. It causes changes in the distribution and abundance of
the five most common ticks in livestock in northern Xinjiang region of China. These ticks can transmit
Borrelia disease in domestic animals [69]; control Lyme disease caused by Borrelia (Burgdorferi sensu lato
complex is an important endemic zoonosis) in human, sheep and cattle [70]; and control Mycoplasma
in sheep [71].

4.4.3. Genes Associated with Body Weight and Digestive Metabolism Traits

Growth and body weight are the most important economic traits of livestock specially used
for meat production. Several breeds from dry area or tropics tend to have small body weight/size
and growth rate compared to humid or temperate breeds [72]. Bodyweight is one of the important
characteristics of meat-type animals, which can be measured at birth or other life stages. Therefore,
natural and artificial selection may leave genetic traces in the genome region of Chinese sheep related to
wet and dry environments. We found overlapped candidate genes on the OAR10 chromosome, such as
GJB2 and GJA3, which are related to body size and developments [29]. Another gene, Centrosomal
P4.1-associated protein (CPAP, also named CENPJ), is a centrosomal protein that participates in the
assembly of centrioles and is very important for centrosome functions such as mitosis, motility or
intracellular communication [73].

5. Conclusions

In this paper, we highlight the homozygosity patterns, population inbreeding levels and effective
population size of five diverse Chinese sheep breeds from dry and humid environments. Based on the
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study of the occurrence and distribution characteristics of ROH, different numbers and lengths of ROH
were found. Through ROH analysis, we revealed different genomic regions and candidate genes, which
are highly correlated with important traits. Yabuyi, Karakul and Wadi sheep had higher homozygosity,
whereas the inbreeding of Hetian sheep was low, followed by Hu sheep, which shows that the breeding
management is proper, and the effective population size is sufficient. Our work contributes to a better
understanding of genetic variation among different domestic sheep breeds and provides new insights
into the genetic inbreeding aspects of selection and population demographic events.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/11/12/1480/s1,
Figure S1. A correlation between the numbers of ROHs (n ROH) and the sum of all ROH segments; Figure S2.
Linkage disequilibrium (LD) decay by distance across the five Chinese sheep breeds Hetian, Hu, Karakul, Wadi
and Yabuyi. Table S1. Autozygosity islands were evident across the genome; Table S2. Go Terms with High
ROH frequencies.
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