
 1 

 

 

 
Assessing crop model improvements through comparison of sorghum 

(sorghum bicolor L. moench) simulation models: A case study of West 

African varieties 
 

F.M Akinseyea,b,∗, M. Adamb,e, S.O Agelec, M.P. Hoffmannd, P.C.S Traore b, A.M. 

Whitbreadd,f 

 
a Department of Meteorology and Climate Science, Federal University of Technology, PMB 704, Akure, Ondo State, 

Nigeria 

 
b International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), WCA Region, Bamako, Mali 

 
c Department of Crop, Soil and Pest Management, Federal University of Technology, PMB 704, Akure, Ondo State, 

Nigeria 

 
d Crop Production Systems in the Tropics, Georg-August-Universität Göttingen, Grisebachstraße 6, 37077 Göttingen, 

Germany 

 
e CIRAD- UMR AGAP, Avenue Agropolis, 34398 Montpellier Cedex 5, France 

 
f International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru 502324, Andhra Pradesh, 

India 

 

  Field Crops Research 

Volume 201, 1 February 2017, Pages 19–31 

 

DOI: http://dx.doi.org/10.1016/j.fcr.2016.10.015 

This is author version post print archived in the official Institutional Repository of 

ICRISAT http://oar.icrisat.org/  

Full Title: Assessing crop model improvements through comparison of sorghum 

(sorghum bicolor L. moench) simulation models: A case study of West African varieties 

  

Article type: Review 

Authors: F.M Akinseyea, b,, M. Adamb,e, S.O Agelec, M.P. Hoffmannd, P.C.S Traoreb, 

A.M. Whitbreadd, f 

  

http://dx.doi.org/10.1016/j.fcr.2016.10.015
http://oar.icrisat.org/
http://www.sciencedirect.com/science/article/pii/S037842901630524X#aff0005
http://www.sciencedirect.com/science/article/pii/S037842901630524X#aff0010
http://www.sciencedirect.com/science/article/pii/S037842901630524X#aff0010
http://www.sciencedirect.com/science/article/pii/S037842901630524X#aff0025
http://www.sciencedirect.com/science/article/pii/S037842901630524X#aff0015
http://www.sciencedirect.com/science/article/pii/S037842901630524X#aff0020


 2 

Affiliation: a Department of Meteorology and Climate Science, Federal University of 

Technology, PMB 704, Akure, Ondo State, Nigeria 

b International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), WCA 

Region, Bamako, Mali 

c Department of Crop, Soil and Pest Management, Federal University of Technology, 

PMB 704, Akure, Ondo State, Nigeria 

d Crop Production Systems in the Tropics, Georg-August-Universität Göttingen, 

Grisebachstraße 6, 37077 Göttingen, Germany 

e CIRAD- UMR AGAP, Avenue Agropolis, 34398 Montpellier Cedex 5, France 

f International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) Patancheru 

502324, Andhra Pradesh, India 

 

* Corresponding author: F.M Akinseye, International Crops Research Institute for the 

Semi-Arid Tropics (ICRISAT), WCA Region, Bamako, Mali. 

 

E-mail addresses of authors: F.Akinseye@cgiar.org  

Key words Sorghum bicolor L. moench; Photoperiod sensitivity; APSIM; DSSAT; 

Samara 

 

mailto:F.Akinseye@cgiar.org


1 
 

Assessing crop model improvements through comparison of sorghum 1 

(sorghum bicolor  L. moench) simulation models: a case study of West African 2 

cultivars 3 

Abstract 4 

Better defining niches for the photoperiod sensitive sorghum (sorghum bicolor L. Moench) 5 

cultivars of West Africa into the local cropping system might help to improve the resilience of 6 

food production in the region. In particular, crop models are key tools to assess the growth 7 

and development of such cultivars against climate and soil variability. In this study, we 8 

compared the performance of three proceed-based crop models (APSIM, DSSAT and 9 

Samara) for prediction of diverse sorghum (Sorghum bicolor L. Moench) germplasm having 10 

widely varying photoperiod sensitivity using detailed growth and development observations 11 

from field trials conducted in West Africa semi-arid region. Our results confirmed the models 12 

capability to reproduce diverse PPSen for the selected cultivars. Simulated phenology and 13 

morphology organs during calibration and validation were within the closet ranged of 14 

measured values with the evaluation of model error statistics (RMSE and R2). With the 15 

exception of high PPSen cultivar (IS15401), APSIM and Samara estimates indicate the 16 

lowest value of RMSE (< 7days) against the observed values for phenology compared to 17 

DSSAT model. Across the cultivars, there was over-estimation for simulated leaf area index 18 

(LAI) while total leaf number (TLN) fitted perfectly into the observed values. Samara 19 

estimates were found to be the closet with the lowest value for RMSE (< 3leaves for TLN 20 

and < 1.0m2/m2 for LAI) followed by DSSAT and APSIM respectively. Contrary to the good 21 

performance of Samara model for simulating phenology and morphology, there was a 22 

significant variability and large error estimates between model-simulated and field-observed 23 

values for total grain yield and biomass. For both calibration and validation, the estimates by 24 

APSIM were found to be closer to the observed with the lowest RMSE, NRMSE (%) and R2 25 

followed by DSSAT and Samara models. The uncertainty and large error against the 26 

http://en.wikipedia.org/wiki/Sorghum_bicolor
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observed values were traced to the models ability to better simulate final biomass and grain 1 

yield rather than early vegetative phase of the crop growth (above-ground biomass).  2 

Keywords: Model calibration and validation, comparison and improvement, sorghum bicolor 3 

L. moench, photoperiod sensitivity. 4 

 5 

1. INTRODUCTON 6 

Sorghum (sorghum bicolor L. MOENCH) is the fifth most important cereal crop in the world 7 

and is a dietary staple food of more than 500 million people in more than 30 countries 8 

(ICRISAT 2009). Besides, its primary staple food for humans, it serves as an important 9 

source of feed and fodder for animals particularly in semi-arid regions. It makes 10 

comparatively quick growth and gives not only good yield of grain but also enormous 11 

quantities of fodder. In West Africa, sorghum production is primarily grown under rainfed 12 

conditions and length of the growing period (LGP) is mainly a function of the date of the first 13 

rains (Sivakumar, 1988), which is delayed with latitude and varies widely from year-to-year. 14 

Sorghum is a short day photoperiod sensitive crop. Progress towards flowering is 15 

accelerated when daylength decreases (Folliard et al., 2004). In West Africa, favourable 16 

conditions for sorghum cultivation usually extend from May to November. Most of the plant 17 

growth thus takes place under decreasing daylength, explaining why cycle duration shortens 18 

when sowing is delayed. Farmers use the photoperiod (PP) sensitive varieties, that allows 19 

for grouped flowering at the end of the rainy season for a wide range of planting dates 20 

(Traore´ et al., 2000). This feature is useful to minimize grain mold and insect and bird 21 

damage, which typically affect early maturing varieties. Furthermore it, avoids incomplete 22 

grain filling, a problem for late maturing varieties faced with soil water shortage at end of 23 

season (Vaksmann et al., 1996). The extensive genetic and phenotypic diversity of sorghum 24 

(Clerget et al., 2008; Murray et al. 2008) and its adaptation to harsh climatic and cropping 25 

conditions (Nasidi et al., 2010) offers the opportunity to develop Food-Fodder-Fuel(FFF) 26 
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plants for a multitude of environmental conditions, including the semi-arid environments 1 

found in West Africa. 2 

Traditionally, conducting field trials are used to evaluate the performance of the different 3 

planting material under a range of climate conditions. However, field trials are time 4 

consuming and financially demanding and are difficult to extrapolate to other sites and 5 

seasons. Hence, crop-climate models can help with the interpretation of experimental data 6 

and, after careful calibration and validation, can be used in a prospective way in conjunction 7 

with field data to draw recommendations for improved climate-induced risk adaptation 8 

strategies. For sorghum, there are crop models implemented in simulation frameworks such 9 

as DSSAT - Decision supportfor Agro-Technology Transfer (Jones et al., 2003), APSIM - 10 

Agricultural Productions Systems sIMulator (Holzwoth et al.,2014) or Samara (Dingkuhn et 11 

al. 2011). These models differ in the description of the processes and consequently in their 12 

outputs. Thus, comparison of different modelling approaches can help reveal the 13 

uncertainties relating to crop growth and yield predictions (Palosuo et al., 2011). These 14 

include the uncertainty related to the model structure, which is the most difficult source of 15 

uncertainty to quantify (Chafield, 1995). Also, comparison can help to identify those parts in 16 

the model that produce systematic errors and require improvements (Adam et al., 2012). 17 

Recently, there is a growing body of studies comparing models and outputs (Asseng et al., 18 

2013, Bassu et al. 2014, Li et al. 2015).  Though, the selected models are widely used in 19 

Africa and elsewhere, our findings show that the models are not very well calibrated and 20 

validated for the diverse photoperiod sensitivity sorghum cultivars found in West Africa. 21 

Considering the growing importance of crop simulation models in assessing the impacts of 22 

current and future climatic conditions, improving the ability of the models to simulate more 23 

accurately the response of crops to environmental conditions is an important step in making 24 

realistic assessment of impacts of climate and other management practices on crop 25 

performance Therefore, the objectives of this study are to; (i) calibrate and validate sorghum 26 

modules implemented in the model framework of APSIM, DSSAT and Samara for the 27 

photoperiod sensitivity cultivars given the detailed crop growth data obtained from the field 28 
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trials (ii) and finally identify major strengths and weaknesses among the models to give 1 

recommendations for improvements. 2 

 3 

2. Materials and  Methods 4 

2.1 Calibration and validation data 5 

The experimental data used for model calibration were collected from on-station field trial 6 

during 2013 growing season at the International Crops Research Institute for the Semi-Arid 7 

Tropics (ICRISAT), Bamako, Mali Republic (12.520N and -8.070W). The experimental 8 

protocol was designed to observed crop phenology, morphology and above ground dry 9 

matter dynamics, yield and yield components under non-limited water and nutrient supply. 10 

The experiment had cultivar (ten) and sowing date (3) as treatments in a randomized 11 

complete block design (RCBD) with four (4) replications. The cultivars were sown on June 12 

14 represents early planting date (PD_1), July 9 represent medium planting date (PD_2) and 13 

August 5 represents late planting date (PD_3) respectively. These sowing dates covered the 14 

widest range of farmer’s sowing window for sorghum in the Sudano-sahelian zone. Plant 15 

population was 67,000 hills/ha (0.75m between rows and 0.20m between hills), and was 16 

thinned to 1plant/ hill15 days after planting (DAP). The crop was fertilized using 100kg/ha of 17 

Di-ammonium phosphate at sowing and 50kg/ha of Urea (46%N) at 40 days after planting. 18 

Insecticides were used according to local recommendations and weeding was done 19 

manually. Each plot was 8 m long by 5.25 m wide and consists of seven (7) rows. The outer 20 

two rows were excluded from sampling in order to prevent border effect on the 21 

measurements. Leaf area index (LAI) and above-ground biomass (separated into leaf, stem 22 

and panicle) were sampled within the three rows at 1m2 per sampling time at every 15days 23 

interval beginning from  25DAP for PD_1, 27 DAP for PD_2 and 30 DAP for PD_3  until 24 

grain filling stage. The samples were oven dried at 72 0C for 72 h. At maturity, harvest was 25 

done on 4 m2 area within each plot (4-replication per cultivar) for the determination of final 26 

biomass and grain yield. The fresh weights of these samples were taken and thereafter sub-27 

sample of 20 % of the total harvested leaves and stems together with the total harvested 28 
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panicles grain were oven-dried at 72 0C for 72 h. Phenology and leaf development were 1 

recorded as emergence, 50% flag leaf date, 50% flowering and maturity dates, total leaf 2 

number (TLN) and leaf area index (LAI). Also, the soil of the experimental plot was sampled 3 

at a depth of 0- 30cm prior to sowing and application of fertilizers. The soil is a well-drained, 4 

sandy loam(55% sand, 35% silt, and 20% clay)Soil organic carbon content was low at 5 

0.24%.Nutrient analyses provided 224.5mg/kg total N, available phosphorus (Bray- P1) 6 

94.94mg /kg, 2.47cmol/kg CEC and pH of water 5.3. 7 

Four (4) out of ten (10) genotypic plant materials experimented were selected and directly 8 

calibrated in three contrasted process-based models (as described in section 2.2)from 9 

observed data collected over three planting dates in 2013 growing season. The cultivars 10 

were CSM63E, CSM335, Fadda and IS15401 respectively. These four cultivars were 11 

selected for their sharply contrasting phenology and morphology as well as their responses 12 

to photoperiod. The duration of their crop growing cycle varies from early to late maturity and 13 

characterized as Guinea landrace plant group (Harlan and de Wet, 1972). Their 14 

geographical origin emerged from both Mali and Burkina Faso. CSM63E, locally named 15 

“Jakumbe”, is an early (85-100days) maturity, an intermediate height type, low biomass, 16 

enough grain and low photoperiod sensitivity (PPSen). CSM335 otherwise called “Tieble”, is 17 

a traditional local variety with medium physiological maturity ranging from 105 to 135 days, 18 

an intermediate plant height, high biomass, low grain and moderate PPSen. Fadda is an 19 

improved hybrid, medium maturity days (100 – 135), high-yielding dual purposes (biomass 20 

and grain), intermediate plant height and also moderate PPSen. IS15401 also called 21 

Soumalemba is a late maturity cultivar varied from 100 to 155 days, improved traditional tall 22 

variety, high-yielding dual purposes (biomass and grain), and high PPSen.  23 

In addition to these data, we gathered a large data set for validation of the models by using 24 

results from field experiments carried out between 2000 and 2008. These experiments were 25 

part of research study on sorghum physiology project developed by CIRAD and ICRISAT for 26 

two locations (Bamako and Cinzana, Mali) and during different cropping seasons. Details of 27 
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these experiments have been reported by Clerget et al., (2005; 2007). The agronomic 1 

practises and relevant observations used for this study are presented in Table 1. 2 

 3 

[Insert Table 1 near here] 4 

 5 

2.1.1 Environmental conditions 6 

Daily climatic condition was monitored during 2013 growing season using automatic weather 7 

station (AWS) installed within the station (less than 500m to the experimental site). The data 8 

observed include rainfall, solar radiation, maximum and minimum temperature relative 9 

humidity wind speed and direction. Also, the long-term (1970- 2010) daily climatic data was 10 

obtained to establish comparison with the cropping year at the station. The record shows 11 

that 2013 total rainfall (1190mm) was above long-term average (1970-2010) and classified 12 

as a wet year. Also, the analysis of monthly rainfall at the station indicates a distinct mono-13 

modal pattern with the peak amount in August and varied between May and October (Figure 14 

1). It was found that over 50% of the total rainfallwas received in the month of July and 15 

August, while both minimum and maximum temperatures decrease uniformly throughout the 16 

growing season. 17 

 18 

[Insert Figure 1 near here] 19 

 20 

To further define the climatology of the station (Table 2), the onset date of growing season 21 

was computed after Omotosho et al., (2000), while cessation of rainy season was computed 22 

after Traoré et al., (2000).Average monthly air temperature varies from 26.2 0C to 32.3 0C; 23 

average solar radiation observed was 18.7MJ/m2/day. Also, growing season astronomical 24 

day length varies from 11 h 15 min to 12 h 45 min and civil daylength from 12 h 10 min to 13 25 

h 38 min.  26 
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[Insert Table 2 near here] 1 

 2 

2.1.2 Calculation of derived parameters  3 

Additional parameters for calibration data calculated as follows: 4 

Daily growing degree-days (GDD, 0C day) were calculated as (Streck, 2002): 5 

GDD = (Tmean–Tb) /day   ....................................................................................................... (1) 6 

where Tb is the base temperature, assumed 110C as found in most literatures for sorghum 7 

(Folliard et al., 2004; Clerget et al., 2004)  and Tmean is the daily mean temperature. The 8 

accumulated growing degree-days from planting (AGDD) was calculated by adding up the 9 

GDD values, i.e. AGDD = Σ GDD. 10 

Phyllochron was calculated for each planting date and cultivar by the linear regression 11 

between the number of leaves produced and the thermal time in each sampled period. The 12 

thermal time (°C) necessary for the appearance of a leaf is equal to 1/b, where b is the slope 13 

t of the regression. 14 

The coefficient of light extinction was computedfromLAI-2000 plant canopy analyzer (LI-COR 15 

Inc., Lincoln, NB, United States). The LAI2000 estimates light transmitted by the ratio of 16 

radiative measurements below and above the canopy. The fraction of radiation intercepted 17 

was calculated by multiplying the instrument output DIFN (Diffuse Not Intercepted) by a 18 

value of 0.94 assuming only 6% of visible light reflected by green canopy (Dingkun et al., 19 

1999). The reliability of this assumption was confirmed by the analysis of spectral reflectance 20 

data obtained by field spectroradiometer, data not showed, (Stroppiana et al., 2005). Light 21 

extinction coefficient k is then calculated inverting Lambert-Beer’s law as: 22 

Kdf = −ln (0.94PARtransmitted)* LAI −1     .................................................................................................. (2) 23 

Representative values of k for the two cultivars at different development stages were in both 24 

cases derived by regressing of ln (PARtransmitted) vs LAI (Casanova et al., 1998; Dingkuhn et 25 

al., 1999). Also, Radiation Use Efficiency (RUE) was calculated as the slope of the linear 26 

regression between values of above ground biomass and cumulated APAR - Absorbed 27 

photosynthetically active radiation (calculated using Eq. 3) (Sinclaire and Muchow, 28 
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1999).The Photosynthetic Active Radiation (PAR) was calculated from daily solar radiation 1 

(SR; obtained from weather station records during growing period), assuming that PAR 2 

comprised 45 % of SR (Howell et al., 1983). Meanwhile, daily fAPAR time series was 3 

estimated by Lambert-Beer formula using the k values in Lambert- Beer’s law  4 

APARd = PARd× fAPARd    ........................................................................................................................................... (3) 5 

In the equation the subscript letter d refers to the daily value and fAPARd =1-exp-k*LAI. 6 

 7 

 8 

2.2 Model Descriptions 9 

The three process-based models were examined for comparison and recommendation for 10 

improvement in this study; they are DSSAT, APSIM and Samara. Table 3 provides an 11 

overview of the modelling approaches applied regarding the major processes that determine 12 

crop growth and development relative to their similarities and differences. All the models 13 

used were designed for sorghum crop, and also capable of simulating crop phenology, total 14 

above-ground, LAI, leaf number, grain yield, and field water balance components in daily 15 

time steps. 16 

 17 

2.2.1 Model calibration and analysis of differences 18 

Models were calibrated by matching directly both the observed and derived parameters from 19 

2013 field experiment. The calibration procedure followed four phases which include 20 

phenology, morphology, above-ground biomass and grain yield. All the models considered 21 

thermal time after planting and it was computed using an algorithm by Jones and Kiniry 22 

(1986), considering that growth speed increases as a linear function of temperature between 23 

a base and an optimal temperature, and then decreases linearly between an optimal and 24 

maximal temperature. Thus, the cardinal temperatures used across the models were 110C 25 

for base temperature below which no development takes place (Lafarge et al., 2002; Clerget 26 
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et al., 2004); and 440C for maximum temperature, above which development is also nil 1 

(Ritchie and Alagarswamy, 1989). Instead of a single value for the optimum temperature 2 

(340C according to Ritchie and Alagarswamy, 1989; confirmed by Clerget et al., 2004), 3 

resulting in a sharp maximum for development rate, we used an optimal range of 4 

temperatures between 28 and 360C (Dingkuhn et al., 2008). These cardinal temperatures 5 

form a doubly broken stick model with a plateau between the two optimal temperatures 6 

(Kouressy et al., 2008). The daily civil day length (sun 60 below the horizon at beginning and 7 

end of the day) was calculated according to Keisling (1982) based on latitude and Julian 8 

calendar date. Plant available water capacity was derived from field measurements. 9 

Parameter in APSIM related to water dynamics such as runoff curve number and 10 

evaporation terms were defined as Hoffmann et al. (accepted). In DSSAT and APSIM, the 11 

nitrogen related parameters in the soil modules were according to soil analysis data obtained 12 

from experiment which include organic carbon and initial nitrogen. The Samara model used 13 

model default does not need this input as it does not account for nitrogen. Calibration of leaf 14 

number in the model followed the leaf appearance rate (phyllochron) calculated from the 15 

field-observed data. Also, derived light extinction coefficient (k), and radiation use efficiency 16 

(RUE) served as input for the calibration of above-ground biomass and grain yield. The 17 

simulated output for each cultivar for different parameters of crop growth and development 18 

were analyzed compared to the observed data and relate to the modelling approaches used. 19 

While the main differences and similarities in model predictions led to the recommendations 20 

for model improvements as provided below. 21 

 22 

[Insert Table 3 near here] 23 

 24 

2.3 Evaluation of the models 25 

We first calibrated the models using the information from the detailed field trial during 2013. 26 

Thereafter, we used the additional data set to independently validate the models (Clerget et 27 



10 
 

al. 2005, Table 1). In the calibration process we aimed to achieve a good agreement with the 1 

observed. For calibration and validation we assessed the goodness-of-fit between model 2 

simulated and observed values of yield and above-ground biomass as well as phenological 3 

events Model-estimated (simulated) were compared with observed using the following listed 4 

statistics; 5 

1. Root mean square error (RMSE): 6 

RMSE = [n-1Σ (simulated – observed) 2]0.5 .....................................Eqn. (4) 7 

2. The normalized root mean square error (NRMSE) express in percent, calculated 8 

according to Loague and Green (1991) with eqn.(4) 9 

NRMSE = [n-1Σ (simulated – observed) 2]0.5X    
100

𝑀
 ................................Eqn. (5) 10 

M is the mean of the observed variable. NRMSE gives a measure (%) of the relative 11 

difference of simulated versus observed data. The simulation is considered excellent 12 

with a NRMSE less than 10%, good if the NRMSE is greater than 10% and less than 13 

20%, fair if the NRMSE is greater than 20% and less than 30% and poor if the 14 

NRMSE is greater than 30% (Jamiesonet al., 1991). 15 

3. Linear regression (1:1) plot was taken as an indicator to inform whether the models 16 

under- or overestimated measured yields, i.e. the direction and magnitude of bias. 17 

4. Additionally, for comparison, the traditional R2 regression statistic (least-squares 18 

coefficient of determination) was calculated though it does not take into account 19 

model bias, which is central when assessing the performance of simulation models. 20 

 21 

[Insert Table 4 near here] 22 

 23 

 24 

 25 

 26 
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3. Results 1 

3.1    Calibration 2 

3.1.1  Photoperiod sensitivity 3 

After careful calibration, all models reproduced the diverse photoperiod sensitivity (PPSen) 4 

of the cultivars satisfactorily. Furthermore, estimated model-fitted for crop developmental 5 

phases (Figure 2a) showed how the cultivars response to PPSen between the emergency 6 

and flag leaf initiation (E-FI) stage. These ranged from low PPSen for CSM63E to high 7 

PPsen for IS15401. The results show a decrease in thermal time (E-FL) with the late PD_3 8 

observed reducing day length hour, which signified the level of PPSen of across cultivar. 9 

CSM63E indicated as low PPSen cultivar with the lowest thermal time E-FI across the 10 

sowing dates ranging from 103 to 570Cdays. Also, CSM335 and Fadda indicate as the 11 

moderately PPSen cultivars with the observed thermal time E-FI at a medium ranged 12 

between 330 and 1170Cdays while the high PPSen cultivar (IS15401) observed the longest 13 

thermal time E-FI ranging from 464 to 1960Cdays.  14 

 15 

[Insert Figure 2a near here] 16 

 17 

Also, Table 4 presents the final calibrated genetics coefficients for cultivar’s PPSen. In 18 

APSIM, the critical photoperiod hours 1&2 were the same for all cultivars; the values were 19 

adjusted to 12.8h for photoperiod_crit_1 and 13.2h for photoperiod_crit_2. The calibrated 20 

photoperiod slope varied between 1500C/H (CSM63E) and 9000C/H (IS15401). Also, DSSAT 21 

presents the photoperiod hour ranging from 12.6H (CSM335 and IS15401) to 13.2H for 22 

Fadda with lowest PPSen coefficient (P2) for CSM63E (50 0Cday) and highest value for 23 

IS15401 (4500Cdays). The PPSen calibration in Samara followed a different modelling 24 

approach by using a dimensionless value ranging from 0.3 for highly sensitive cultivars to 25 

0.95 for insensitive cultivars (Dingkuhn et al., 2008). The low PPSen cultivar (CSM63E) was 26 

calibrated with coefficient value of 0.85 while high PPSen cultivar (IS15401) obtained a 27 
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coefficient value of 0.5. As shown on the Table 4, APSIM and DSSAT followed similar 1 

pattern in the photoperiod slope values while Samara indicates opposite for the same 2 

purpose. For instance, the low coefficient value (0.5) in Samara indicates high PPSen 3 

cultivar which contrasts to APSIM and DSSAT models. Also, the calibrated photoperiod 4 

critical hours (lower and upper limits) expressed similar pattern for APSIM and Samara.  The 5 

same values were calibrated for all the cultivars, while DSSAT was calibrated by the 6 

photoperiod critical hours (P2O) as a single value for each cultivar, varied from 12.6 hrs 7 

(CSM335 and IS15401) to 13.2 hrs (Fadda). 8 

 9 

[Insert Table 4 near here] 10 

 11 

3.1.2 Development phases 12 

Table 5 presents calibrated cultivars genetics coefficients for the crop development phases, 13 

although the models were very similar but name identification was different. The genetics 14 

coefficients were obtained by matching the observed phenology with the model-simulated. 15 

The models were calibrated for about six or seven coefficients that defined their growth 16 

stages between emergence and maturity. In APSIM, CSM63E obtained the lowest value 17 

(1900Cday) from emergence to end of the juvenile phase followed by medium cultivars 18 

(Fadda and IS15401) while CSM335, the late maturity obtained the highest value of 19 

2200Cday. End of juvenile varied across the cultivars, the least value (500Cday) was 20 

obtained by CSM63E while the highest value (1800Cday) was obtained from late maturity 21 

cultivar (IS15401).  All the cultivars observed similar characteristics from flag leaf to 22 

flowering and also from flowering to start of grain, the calibrated values are 170 and 23 

800Cday. DSSAT-CERES-sorghum model coefficients parameter also varied among the 24 

cultivars, the early maturity cultivar CSM63E had the lowest value (1900Cday) indicates as 25 

P1 (thermal time from seedling emergence to the end of the juvenile phase) while the late 26 

maturity cultivar IS15401 had the highest value of 5500Cday. P2 indicates as end of the 27 
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juvenile phase to panicle initiation, the obtained values ranged between 500Cday (CSM63E) 1 

and4500Cday (IS15401). P2O (critical photoperiod or the longest daylength hour at which 2 

development to occurs at maximum rate) ranged from 12.6h (for CSM335 and IS15401) to 3 

13.2h for Fadda. Also, cultivars expressed similar characteristics, thermal time from  end of 4 

tassel initiation to  anthesis (PANTH) except for late variety (IS15401) that differs with 5 

calibrated value of 640.50Cday The values of  P3 (thermal time from the end of flag leaf 6 

expansion to anthesis) and P5 (thermal time from beginning of the grain-filling to 7 

physiological maturity)  varied between cultivars. The calibrated values ranged from 170.5 to 8 

300.50Cday for P3 and 400 to 4800Cday for P5. 9 

 10 

[Insert Table 5 near here] 11 

 12 

For Samara model, only the basic vegetative phase (BVP) differed among the cultivars, the 13 

calibrated values ranged from 2600Cday for CSM63E to 4500Cday for IS15401. Maturation 14 

phase #1 (SdjMatu1) and maturation phase #2 (SdjMatu2) did not varied much among the 15 

cultivars. SdjMatu1 ranged from 3500Cday to 4000Cday andSdjMatu2 obtained a fixed value 16 

of 400Cday across cultivars. Thus, Figure 2b indicates DSSAT total thermal time estimates 17 

to be the closest to the field-calculated thermal time for all the cultivars (with exception of 18 

IS15401). The differences between the model-simulated and field-calculated could be linked 19 

to the modelling approaches described earlier in Table 3. 20 

 21 

[Insert Figures 2b near here] 22 

 23 

Furthermore, the simulated phenology (flowering and maturity) were observed to be in good 24 

agreement with the field-observed values (Table 6). The models captured the strong effect of 25 

planting date on growth development to a wide extent. Across the cultivars, APSIM and 26 

Samara simulations showed the lowest value of RMSE against the observed values for 27 
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flowering and maturity compared to DSSAT. Also, there were no significant differences of 1 

mean between the model-simulated and observed for most of the cultivars except for 2 

CSM335 (P<0.02 for flowering) and also Fadda and IS15401 (P<0.03 for maturity).  3 

 4 

[Insert Table 6 near here] 5 

3.1.3 Leaf appearance rate and light interception 6 

As displayed in Table 7, APSIM cultivar’s genetics coefficients for leaf appearance rate 7 

followed two steps i.e. leaf appearance to develop most leaf ligule (leaf_app_rate_1) and last 8 

leaf ligule (leaf_app_rate_2). The calibrated values (530Cd/leaf and 26.50Cd/leaf) were the 9 

same for all the cultivars. The values justified the increase in the observed leaf number (>20) 10 

per plant most of the cultivars; it also prevented over-simulation of TLN against the observed 11 

values. DSSAT and Samara followed a similar pattern for all the cultivars; both models 12 

expressed the leaf appearance rate as PHINT and Phyllochron interval. DSSAT calibrated 13 

values varied from 55 to 600Cd/leaf while Samara varied from 38 to 400Cd/leaf. The 14 

calibrated value was the same for CSM63E, CSM335 and Fadda in both model, 600Cd/leaf 15 

in DSSAT and 400Cd/leaf in Samara. IS15401 indicates slightly lower value of 550Cd/leaf for 16 

DSSAT and 380Cd/leaf for Samara. This value justified the longer thermal time of vegetative 17 

phase resulting to more leaf produced by the cultivar. Although, none of the models 18 

reproduced the estimated phyllochron values for PD_3 that had no effect of PPsen but the 19 

simulated leaf number showed a close match with observed values for all the cultivars with 20 

lowest error statistics estimated (Figure 3). The RMSE and R2 ranging from 1.3 to 2.2 leaves 21 

and 0.66 to 0.97 for the simulated leaf number of all the cultivars and models. Samara and 22 

DSSAT simulations showed to be the most accurate for most cultivars while, APSIM 23 

performance was the best for IS15401 as indicated by the estimates of RMSE and R2 24 

(Figure 3).  Furthermore, the models captured the differences in observed leaf number 25 

relative to the sowing dates (Figure 4). There was no significant difference of means (P< 26 

0.05) between the mode-simulated and observed values. Across planting date, the highest 27 
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TLN was obtained at early (PD_1) which was significantly higher than medium (PD_2) and 1 

both were significantly higher than TLN at late (PD_3). Due to shortening of the vegetative 2 

phase, late (PD_3) observed a reduction of about seven (7) leaves compared to early 3 

(PD_1) resulting from cultivar’s response to variation of sowing date. This result implicated 4 

that the end of vegetative phase could be largely dependent on temperature and variation in 5 

planting date.  6 

 7 

[Insert Table 7 near here] 8 

 9 

The simulated LAI for the cultivars show over-estimation against the observed LAI with the 10 

high values of estimated error statistics.  The RMSE and R2 ranging from 0.56 to 1.46m2/m2 11 

and 0.3 to 0.83 for the LAI simulated by all the models (Figure 5). For most cultivars, Samara 12 

estimates were closer to the observed values compared to APSIM and DSSAT. The over-13 

estimation could be linked to early senescent rate observed from the field trial for all the 14 

cultivars with exception of CSM63E (Figure 6). Leaf senescence might not be properly 15 

simulated by the models. Samara simulation was different from APSIM and DSSAT due to 16 

its ability to simulate based on organo-genesis of plant growth which including the senescent 17 

rate of the leaf production. 18 

 19 

[Insert Figure 3 near here] 20 

 21 

The light extinction coefficients, k values showed that there was no significant difference 22 

between cultivars but it slightly differed across the planting dates (result not shown). Pooling 23 

the sowing dates together for each cultivar, the estimated mean value of k was 0.8. In 24 

addition, observed the analysis of covariance at different growth stages (Akinseye, 2015) 25 

indicate no significant difference in k-value among the four cultivars but slightly differed 26 

across sowing dates despite the large differences in plant height between the early and late 27 
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maturity cultivars. The result suggests that aspects of canopy architecture likely to affect k, 1 

such as leaf angle distribution, did not differ among these diverse cultivars. As shown on 2 

Table 7, the k value of 0.85 was used in DSSAT for all cultivars and Samara (except for 3 

Fadda). The high k-value used by the models prevents against under-estimation of above-4 

ground biomass and grain yield outputs. The model-calibrated was closed to the field-5 

estimated which was in agreement to previous studied by Porter et al., (1993) who found 6 

that the higher the crop will intercept the value of k, the more of the incident PAR particularly 7 

at low LAI, and thus dry matter production could be over-estimated. 8 

 9 

[Insert Figure 4 near here] 10 

 11 

3.1.4 Radiation use efficiency, and partitioning for yield formation 12 

There was a strong effect of variation of sowing date on estimated RUE between PD_1 and 13 

PD_3 from field trial with the high values obtained from early PD_1 and decreased with late 14 

PD_3. On the average, the highest value was observed for Fadda (6.9g/MJ), followed by 15 

IS15401 and CSM335 (5.8g/MJ and5.0/MJ) while CSM63E gave the lowest value of 3.3g/MJ 16 

respectively. The model-calibrated values confirmed the genotypic differences as estimated 17 

from field experiment (Table 7). This estimated RUE was significantly higher than those 18 

found in the literatures for sorghum (Kiniry et al., 1989; Muchow, 1989). The high RUE 19 

values (>3.0 g/MJ) obtained could be linked to the cultivar–specific traits especially for the 20 

PPSen sorghums found in West Africa. For APSIM, RUE was determined as individual value 21 

between emergency and maturity during the crop growth period while DSSAT and Samara 22 

determined as a single value between emergency and maturity. The APSIM calibrated 23 

coefficients ranged from 1.25 g/MJ (CSM63E) to 1.85 g/MJ (Fadda - improved hybrid). In 24 

DSSAT, the calibrated RUE value was 3.8 g/MJ for CSM63E, CSM335 and IS15401 while 25 

Fadda obtained higher value of 5.2g/MJ, which justified for the high biomass production as 26 

hybrid. Also, the T-conversion signifies RUE in the Samara, the values ranged from 4.5g/MJ 27 
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forCSM63E to 6.9g/MJ for Fadda. Across the models, only Samara calibrated RUE were 1 

closer to the field-estimated (except for CSM63E). The model-calibrated was found to be 2 

higher than the commonly used range found in the literatures e.g. Sinclair and Muchow, 3 

(1999) used 1.2–1.4 g/MJ as calibrated value for sorghum. 4 

 [Insert Figure 5 near here] 5 

 6 

Interestingly, there was a relatively good agreement between the model-simulated and 7 

observed for total above-ground biomass (Figure 7a). APSIM estimated the lowest RMSE 8 

(1536 kg/ha), NRMSE (11.5%) and very strong coefficient of determination (R2- 0.9) followed 9 

by DSSAT with RMSE (1708 kg/ha), NRMSE (12.8 %) and very strong R2 (0.9) and Samara 10 

gave RMSE of 1849 kg/ha, NRMSE (13.8 %) and strong R2 (0.8). 11 

 12 

[Insert Figure 6 near here] 13 

 14 

[Insert Figure 7a near here] 15 

 16 

The simulated grain yield was a product of grain number and grain size. Maximum grain 17 

yield number is a function of the change in plant biomass between panicle initiation and the  18 

start of grain filling, while grain size is determined by grain growth rate, the effective grain-19 

filling period, and the re-distribution of assimilates post-anthesis. For DSSAT, the G2 (scale 20 

for partitioning of assimilates to the panicle ranged from 0.5 mg/day for CSM63E to 21 

2.5mg/day for improved hybrid Fadda and IS15401. Samara estimated as function of 22 

Coeff_Pan_Sink_Pop*Pan_Struct_Mass_Max/1000-grain weight. Panicle structure mass 23 

maximum (Pan_Struct_Mass_Max) was calibrated between 3.0g (CSM63E and CSM335) 24 

and3.5g (Fadda and IS15401. The simulation outputs showed that APSIM and Samara 25 

estimates for grain yield were closer to the observed values compared to DSSAT (Figure 26 
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7b). Across the cultivar, APSIM indicated a better agreement relative to the observed values 1 

with estimated lowest RMSE (397 kg/ha), NRMSE of 20.3% and R2 of 0.8. Samara and 2 

DSSAT slightly over-estimated with the RMSE (538 and 771 kg/ha), NRMSE (27.6 and 39.5 3 

%) and R2 (0.6 and 0.5) respectively. 4 

 5 

[Insert Figure 7b near here] 6 

 7 

3.2 Validation 8 

3.2.1 Phenology, total leaf number, total biomass and grain yield 9 

 The valuation results for the simulated phenology and total leaf number (TLN) against 10 

observed values over the different growing seasons for all the cultivars showed a good 11 

matched with a minimum statistical error (Figure 8). For the duration to flowering (Figure 8a), 12 

Samara estimated observed  the lowest RMSE of 6.6 days and R2 of 0.8 while APSIM and 13 

DSSAT estimates were close with RMSE of 8.3 and 8.7 days.  In the case of duration to 14 

physiological maturity (Figure 8b), APSIM showed  the lowest RMSE value of 7.6days and 15 

followed by DSSAT with RMSE of 8.9 days, both had correlation (R2) of 0.9  while Samara 16 

estimates was the highest with the RMSE of 9.2 days and correction (R2) of 0.8. In general, 17 

the model-simulated for phenology shows a slight overestimation against the observed with 18 

a reasonable bias error. Samara estimates was the most accurate compared to APSIM and 19 

DSSAT for flowering while APSIM estimates indicate the best accurate compared to DSSAT 20 

and Samara for physiological maturity. For TLN, Samara estimates indicate the lowest 21 

RMSE (0.7 leaf) followed by APSIM and DSSAT (Figure 8c). 22 

 23 

[Insert Figure 8 near here] 24 

The model-simulated for both grain yield and total biomass showed significant variations 25 

against the observed data (Figure 9). None of the models could closely reproduce 26 
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observations across the cultivars. The simulated grain yield was slightly under-estimated by 1 

APSIM and DSSAT while Samara slightly over- estimated it. The results showed no 2 

significant difference of mean at 5% level of probability (P<0.05) between the models and 3 

observed values for grain yield. Similarly, average total biomass showed over-estimation for 4 

all the models against observed values and well as significantly difference of mean between 5 

the models and observed. As displayed in Figure 10, the statistical errors found APSIM 6 

estimates to be well corresponds to the observed values with the lowest RMSE, NRMSE (%) 7 

and R2 compared to DSSAT and Samara. For both grain yield and total biomass, APSIM 8 

results showed the RMSE (472 and 2452 kg/ha), NRMSE (22.6 and 23.3%) and R2 (0.7 and 9 

0.8). Meanwhile, Samara indicates the highest RMSE (762 and 4058 kg/ha), NRMSE (35.7 10 

and 38.8 %) and weak R2 (0.4 and 0.5) respectively. 11 

 12 

[Insert Figure 9 near here] 13 

 14 

4 Discussion 15 

A comparison of crop simulation models served two purposes in this study which include: (i) 16 

the modelling assessment for their ability to predict crop growth and development with detail 17 

information linked to photoperiodism during calibration and (ii) possible identification of the 18 

parts that produce systematic errors for further improvements. When an error has been 19 

identified, steps can be taken to improve model performance on the basis of better analysis 20 

of the processes involved. Then, complementary processes of the model development and 21 

experimentation become cyclic and mutually supportive (Palosuo et al., 2011). Some 22 

aspects of the performance of the models were very satisfactory (e.g. Phenology and leaf 23 

number) but there was also a clear indication for model improvements should be sought for 24 

the parts that present high significant error (e.g. LAI and grain yield).  25 

 26 
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[Insert Figure 10 near here] 1 

 2 

4.1 Improvements to simulated phenology 3 

The calibration process over the three planting dates showed that model-simulated for the 4 

phenological phases (duration to flowering and physiological maturity) were well 5 

corresponds to the observed values (Table 6). This result underlined the capability of the 6 

models to predict crop duration for the agronomic relevant range of sowing dates under 7 

varying daylength period. However, the results confounded the models adaptability to predict 8 

West African diverse photoperiod sensitivity varieties. Large error (>7days) estimated for the 9 

high PPSen cultivar (IS15401) by all models, which suggests further improvement on 10 

cultivar’s photoperiodism for phenological growth stages. 11 

In addition, the validation presented over different growing seasons (non-limiting water and 12 

nutrients supply) and locations (Bamako and Cinzana) corroborates the strength of models 13 

for simulating phenology growth of sorghums for semi-arid cultivars (Figure 8a&b). The 14 

results showed a near perfect fit of for the model-simulated phenology (flowering and 15 

maturity) against the corresponding observed values. The large error estimated by APSIM 16 

and DSSAT for flowering, DSSAT and Samara for maturity could be linked to the high 17 

PPSen cultivar among them. The imperfect model fit can be expected to have significant 18 

effect on other parts of the simulation results for example LAI. The result found suggests that 19 

crop models be used to determine the crop duration for the widest range of sorghum 20 

varieties in West African semi-arid region, reinforcing the studied by Traoré et al., (2007). 21 

 22 

4.2 Improvements to leaf area development, biomass partitioning and yield 23 

formation 24 

Model-estimated for TLN agreed jointly with the observed values both for the calibration and 25 

validation. Samara ranked as the best estimates with the lowest RMSE, NRMSE (%) and R2 26 

seen for most cultivars except IS15401, followed by APSIM and DSSAT respectively. Also, 27 
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the model-simulated errors across the cultivars for LAI were seen to be very large with the 1 

estimated RMSE and NRMSE (%).In general, the model over-estimated against the 2 

observed that could be as a result of early senescent leaves observed. But Samara gave the 3 

lowest RMSE and NRMSE (%) and strong R2 for all the cultivars (with exception CSM63E) 4 

compared to APSIM and DSSAT. As observed from the calibration, APSIM and DSSAT 5 

simulation for LAI show more response to biomass accumulation development but Samara 6 

response to the detail organogenesis procedure for the plant growth beginning from crop 7 

emergency.  Also, the performance of Samara could be linked to limited crop platform (only 8 

sorghum and rice) parameterized in model. In addition, Samara addressed the drawback 9 

already mentioned in the literatures by Ewert et al., (2002), Traoré et al., (2007) and Adam et 10 

al., (2011) in order to better represent the leaf area development in crop model. The 11 

approach chosen was derived from the plant level model ECOMERISTEM (Dingkuhn et al., 12 

2006) which included the capability to simulate competition for assimilates (supply) among 13 

growing organs (demand) and to adjust accordingly the growth rate and final size of different 14 

organs in the plant. 15 

Furthermore, simulation for above-ground biomass and grain yield suggest a need for 16 

significant improvement. The model performances were contrary to the results obtained for 17 

the phenology and TLN. APSIM was more accurate in terms of both calibration and 18 

validation of grain yield and total biomass compared to DSSAT and Samara. For calibration 19 

(Figure 7), the model errors estimated by APSIM were seen to be the lowest values with the 20 

RMSE (397 and 1536 kg/ha), NRMSE (20.3 and 11.5 %) and strong R2 (0.8 and 0.9) 21 

respectively. The validation demonstrated a significant variation between the model-22 

simulated and observed values. The results confirmed further that the model uncertainty lied 23 

in the prediction of above-ground biomass and grain yield relative to the measured-observed 24 

values (Figure 9). Samara estimates for grain yield resulted a slight over-estimation (with 25 

high variability against the measured values) while APSIM and DSSAT predicted slight 26 

underestimation and less variability. In the case of total biomass, model-simulated showed 27 

overestimation with less variability against the observed values. The model error estimated 28 
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by APSIM was found to be better and accurate in the prediction of grain yield and total 1 

biomass compared to DSSAT and Samara models. As observed during the calibration 2 

process, the time-course results (figures not shown) across the cultivars indicated only 3 

Samara model exhibited ability to reproduce close to the measured-observed values of 4 

above-ground biomass at early vegetative stage of the crop sampled at different times 5 

during growing season. Due to the large errors estimated for both grain yield and biomass 6 

across models, it is therefore suggested that more efforts are still required on model 7 

partitioning for simulating aboveground biomass and grain yield formation especially PPSen 8 

sorghums.  9 

 10 

4.3      Sources of uncertainties 11 

As observed from this study, the model uncertainty lied majorly on partitioning for simulating 12 

above ground biomass at the early growing phase (vegetative) and grain yield formation 13 

particular for the PPSen cultivars. Although, the models captured final biomass and yield 14 

values, but the estimated error was too larger compared to phenology and morphology 15 

simulation. This uncertainty could be attributed to three possible sources; (i) model structure 16 

(ii) bad parameterization or (iii) quality of field trial data. On model structure, all the models 17 

simulated above-ground biomass based on light interception/absorbed coefficient (k) and 18 

radiation use efficiency (RUE) and water demand but Samara was built on model 19 

ECOMERISTEM (Dingkuhn et al., 2006).This platform shows better capability to simulate 20 

competition for assimilates (supply) among growing organs (demand) and to adjust 21 

accordingly the growth rate, this approach led to reproduction of early growing phase. 22 

However, APSIM and DSSAT respond to soil parameterization (e.g. SLPF in DSSAT and 23 

initial nitrogen in APSIM) as well nutrients supply. As observed during calibration, there was 24 

a carryover effect of soil parameterization and nutrients applied to APSIM and DSSAT 25 

resulting to model over-estimation of LAI against the field observed values. The measure 26 

was used to prevent model underestimating the final biomass and grain yield. On model 27 
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parameterization, we pointed out the difficulties to assess critical parameters such as GDD 1 

from emergence to end of the juvenile stage. Another factor that observed to be responsible 2 

for significant variations between the simulated and observed results was plant population. 3 

For instance, the calibrations were performed on a specific planting density 4 

(67000plants/hills), thereafter validated with different planting densities. This approach was 5 

observed to introduced large error between the models for the simulated grain yield and total 6 

biomass e.g. Samara. We thereby suggest that validation of the models could be better for 7 

total biomass and grain yield, if the same level of plant populations is considered, the way 8 

model response to different level of nutrient supply. Finally, the quality of field trial data, we 9 

can discuss the importance of sowing dates trials to assess the phyllochron (Clerget et al., 10 

2007) properly while in our case though the late PD_3 sowing was a late sowing, it might not 11 

late enough to assess the phyllochron properly. The field trials used for evaluation were 12 

considered to be non-limited by nutrients, however, the strong contrast to the simulated yield 13 

led to the suspension that there were potentially hidden nutrient deficiencies. 14 

 15 

 16 

5. Conclusion 17 

A novel and apparent merit of this study is that commonly used crop growth models for 18 

sorghum were tested for diverse PPSen cultivars for calibration and validation. The results 19 

established the capability of the process-based models to predict crop duration for the 20 

agronomical relevant range of farmer’s planting window and photoperiod sensitivity for 21 

sorghums cultivars in the region. All the models showed minimum error estimates for 22 

phenology and morphology parameter against observed ones obtained over different 23 

growing seasons. However, differences in the simulating yield and biomass with the lowest 24 

possible error estimates like what we observed for phenology could be trace to the 25 

contrasting ways in model partitioning for this parameters. In conclusion, the level of 26 

uncertainty in simulating final grain yield and biomass were found to be lower in APSIM and 27 
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DSSAT compared to Samara. This further confirmed their reliability to predict climate 1 

impacts on yield and yield variability. Longer yield series for clearly defined growth and 2 

management conditions for calibration that used in this study would greatly enhance the 3 

outcome of model comparison studies for subsequent model on the level of uncertainty. 4 
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 Figure 1: Comparison of the long-term (1970-2010) monthly rainfall, minimum air temperature and maximum air 

temperature and cropping year 2013 
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Figure 2a: Estimated model-fitted crop growth stages between emergency and flag leaf initiation 

(E-FI) indicating cultivar’s response to photoperiod sensitivity (PPSen). 
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Figure 3: Model-simulated leaf number (LN) against the observed LN over the three planting dates. (a) CSM63E: 

APSIM – RMSE = 2.1 leaves, R2 = 0.66; DSSAT- RMSE= 1.7 leaves, R2= 0.71; Samara - RMSE= 1.6 leaves, 

R2= 0.84. (b) CSM335: APSIM – RMSE = 1.7 leaves, R2 = 0.92; DSSAT- RMSE= 1.5 leaves, R2= 0.93; Samara 

- RMSE= 1.5 leaves. (c) Fadda: APSIM – RMSE = 1.7 leaves, R2 = 0.95; DSSAT- RMSE= 1.4 leaves, R2= 0.94; 

Samara - RMSE= 1.3 leaves, R2= 0.95. (d) IS15401: APSIM – RMSE = 1.5 leaves, R2 = 0.97; DSSAT- RMSE= 

1.8 leaves, R2= 0.97; Samara - RMSE= 2.2 leaves, R2= 0.96. 
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Figure 2b: Comparison of model-estimated growing degree days (GDD) with the calculated 

field-observed between emergence and maturity [exclusive of photoperiod sensitivity phases 

(PSP)] of the cultivar 
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Figure 4: Comparison between the model-simulated and observed for leaf number over the three sowing 

dates. The significance difference of mean between the models and observed at 5% level of probability 

(P<0.05) are as follows; 0.24(CSM63E); 0.37(CSM335); 0.77(Fadda) and 0.32 (IS15401) respectively. 
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Figure 5: Model-simulated leaf area index (LAI) against the observed LAI over the three planting dates. (a) 

CSM63E: APSIM – RMSE = 0.56 m2/m2, R2 = 0.62; DSSAT- RMSE= 0.81 m2/m2, R2= 0.64; Samara - RMSE= 

0.68, R2= 0.87. (b) CSM335: APSIM – RMSE = 1.4 m2/m2, R2 = 0.45; DSSAT- RMSE= 1.1 m2/m2, R2= 0.62; 

Samara - RMSE= 0.8 m2/m2, R2= 0.83. (c) Fadda: APSIM – RMSE = 0.92 m2/m2, R2 = 0.73; DSSAT- RMSE= 0.92 

m2/m2, R2 = 0.89; Samara - RMSE= 0.87 m2/m2, R2= 0.91. (d) IS15401: APSIM – RMSE = 1.46 m2/m2, R2 = 0.31; 

DSSAT- RMSE= 1.4 m2/m2, R2= 0.68; Samara - RMSE= 0.9 m2/m2, R2= 0.78. 
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 Figure 6: Observed average senescent leaves over four replications for each cultivar in three 

sowing dates 
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Figure 7b:  Simulated grain yield against observed grain yield for all cultivars over the three 

planting dates. APSIM: RMSE=397kg/ha, NRMSE (%) =20.3, R2= 0.8; DSSAT: RMSE=771kg/ha, 

NRMSE (%) = 39.5, R2= 0.5; Samara: RMSE= 538kg/ha, NRMSE (%) =27.6, R2= 0.6. 
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Figure 7a:  Simulated total biomass against observed total biomass for all cultivars over the 

three planting dates. APSIM: RMSE=1536kg/ha, NRMSE (%) =11.5, R2= 0.87; DSSAT: 

RMSE=1708kg/ha, NRMSE (%) =12.8, R2= 0.85; Samara: RMSE= 1840kg/ha, NRMSE (%) 

=13.8, R2= 0.82 
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Figure 8: Model comparison for simulated phenology and total leaf number (TLN) against observed 

values for all the cultivars over different growing seasons, planting density and planting dates. (a) 

Flowering: APSIM - RMSE= 8.3 days; R2= 0.9; DSSAT- RMSE= 8.7 days; R2= 0.8; Samara - RMSE= 

6.6 days; R2= 0.8. (b) Maturity: APSIM - RMSE=7.6 days; R2= 0.9; DSSAT- RMSE= 9 days; R2= 0.9; 

Samara - RMSE= 9.2 days; R2= 0.8. (c) TLN: APSIM - RMSE=1.2 leaves; R2= 0.96; DSSAT- RMSE= 

1.3 leaves; R2= 0.97; Samara - RMSE= 0.7 leaves; R2= 0.99. 
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Figure 10: (a) Model comparison for simulated grain yield and total biomass against the observed values 

for all the cultivars over different growing seasons, planting density and planting dates.(a) Grain yield: 

APSIM - RMSE= 472 kg/ha; NRMSE (%) =22.6; R2= 0.68; DSSAT- RMSE= 719 kg/ha; NRMSE (%) = 

34.8; R2= 0.4; Samara - RMSE= 762 kg/ha; NRMSE (%) =35.7; R2= 0.4.(b) Total biomass: APSIM - 

RMSE= 2452kg/ha; NRMSE (%) =23.3; R2= 0.75; DSSAT- RMSE= 3138kg/ha; NRMSE (%) =36.8; R2= 

0.66; Samara -RMSE= 4058 kg/ha; NRMSE (%) =38.8 %; R2= 0.45. 
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Figure 9: Model-simulated variability for grain yield and total biomass against the observed 

values for the all cultivars over different growing seasons, planting density and dates. Boxes 

indicate the inter-quartile range (25-75 percentiles) and whiskers show the high and low 

extreme values. The significance difference of mean between the models and observed at 5% 

level of probability (P<0.05) are as follows; 0.25 for grain yield and 0.00008 for Total biomass. 


