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SUMMARY

In this paper we consider analysis of two experimental data sets for evaluating lentil genotypes.
One of these data sets comes from an incomplete block design and the other one from a complete
block design. The incomplete blocks contribute to the experimental error reduction and spatially
correlated plot-errors can be modeled using autoregressive scheme that may lead to further improve-
ment in the assessment of the genotypes. Such an approach was applied in several other studies to
model the linear trends and spatially correlated errors. However, the assumption of a constant error
variance restricts the scope of the analysis in many agricultural field trials, and in other situations
in general, where heterogeneity of error variances is a reality. In this study, we have approached the
problem first by fitting a model with constant error variance and generating the residuals. Using
the squared residuals, we use K-cluster means technique to group the experimental units for similar
squared-residuals. Next, we allow the error variances to vary with the group of the experimental
units which need not require any spatial restrictions to model the error variances. The number of
heterogeneous errors and the experimental units belonging to the heterogeneous clusters are obtained
using the AIC criterion values followed by a groups merger scheme based on insignificant change in
the residual maximum log likelihood values. The final models with heterogeneous variances were used
to evaluate the precision of the genotype means comparisons. We found a substantial improvement
on the efficiency of the pair-wise comparisons over the other ways of analysis. We recommend the
application of this procedure in any general situation permitting unstructured heterogeneity.

Key words: Heterogeneous error variances; Spatially correlated errors; Variogram; Clustering;
Field trials.

1. INTRODUCTION

Control of field variability is normally done by
applying blocking methods where experience with
the obvious landscape configuration guides the for-
mation of the blocks for assigning the treatments
such as genotypes of a crop to the field-plots,
i.e. the experimental units. Furthermore, the de-
sign may consist of complete blocks or incomplete

blocks allowing a certain degree of balance under
a constant error variance model. Such approaches
are discussed in standard texts on design and anal-
ysis of experiments (see for example, Fisher 1990,
Cochran and Cox 1992, Cox and Reid 2002 and
Hinkelmann and Kempthorne 2007). In the con-
text of field experiments, the experimental units
on a rectangular layout would generally be corre-
lated due to their fixed physical proximity, and, in
addition, there might be presence of local fertil-
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ity trends. Analysis approaches in these situations
have been developed in order to account for block-
ing effects and correlated errors in space and time
(see Gilmore et al. 1997, Cullis and Gleeson 1991
and Grondona et al. 1996). Various criteria such
as Akaike information criteria (AIC) have been
used for selection of appropriate covariance mod-
els in these areas (see Wolfinger 1996 and Singh et
al. 2003).

The approaches used in the analysis to capture
spatial variability in field trials have been found
useful in enhancing the breeding efficiency of crop
variety improvement programs (Sarker et al. 2001,
Malhotra 2004). The underlying models in most
of these analyses have assumed homogeneous error
variances across all the plots of the layout. We be-
lieve that in reality, experimental errors need not
be homoscedastic even after accounting for various
local fertility trends and or autocorrelations across
various directions in the layout. This may be due
to variety of reasons. In field trials, lack of homo-
geneity may be attributed to ineffective cover crop-
ping in the preceding season, or the farmers’ fields
used for experimentation having been subjected to
the application of crop management input factors
to the where-needed plots or sections of the field.
In a well designed blocking experiment, the uni-
form application of the management practices over
the whole of a block might have been overlooked
or ignored. It is also possible that the prevalence
or distribution of underground parasites such as
orobanche in legume fields or striga in the sorghum
fields, may follow irregular pattern and make the
nearest neighbor adjustment unreliable (Wilkinson
et al. 1983). Therefore, it is essential to allow
for heterogeneous error variances in the field tri-
als in addition to accounting for the other factors.
The heterogeneous error variance need not follow
any spatial structure on the field layout. The gen-
eral objective of this study, therefore, is to address
the unstructured heterogeneity of error variances
in evaluation of variety trials and apply on lentil
data.

The identification of the sources and the struc-
ture of heterogeneity is based on residuals from the

fitted model found most suitable when the hetero-
geneity was ignored. The squared residuals were
used to form clusters or groups of homoscedas-
tic experimental units and to identify the struc-
ture of homogeneity, if any, by using an empirical
or non-parametric approach. The use of squared
residuals for studying the homogeneity of variances
have also been found robust to the departure from
normality (Levene 1960). Since, no clear struc-
ture is expected in the residuals, non-hierarchical
approach or K-means clustering could be applied
to obtain the prevailing clusters of units with ho-
moscedastic units. Other alternative methods of
clustering could also be used (Everitt et al. 2001).
The most appropriate cluster could be determined
from the trend of a criterion values and the change
in the log-likelihood value for the heterogeneous
models. This study uses data from two lentil tri-
als with relatively high coefficient of variation that
are described in Section 2. The statistical methods
for identifying the structure of heterogeneous er-
rors are given in Section 3, computational details
appear in Section 4 and results are summarized in
Section 5.

2. EXPERIMENTAL DATA

Two trials consisting of genetic materials for a pre-
liminary yield trial (PY T ) and an advanced yield
trial (AY T ) were evaluated in block designs at
an experimental station of the International Cen-
ter for Agricultural Research in the Dry Areas
(ICARDA) at Breda in northern Syria. Data on
seed yield were examined. Trial 1, a PY T, had
25 genotypes and was evaluated in a square lat-
tice with 4 replications on a 4 × 25 rectangular
layout in 2005. In field trials, the coefficient of
variation (CV ) is normally used as an indicator or
a measure of experimental error variability. The
analysis using randomized complete block design
resulted in a CV of 51% for seed yield. Trial 2,
an AY T, was conducted in randomized complete
blocks with 30 genotypes and 3 replications on a
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3×30 layout in 2003 and gave a CV of 41% for seed
yield. In the PY T, the plot size was 4m × 1.5m,
and in the AY T it was 4m× 3m with a standard
row-to-row distance of 30cm for lentil crop. How-
ever, at maturity, actual harvest area per plot was
4.5m2 and 9m2 for the PY T and the AY T , re-
spectively. Analysis was performed based on net
harvested area per plot.

3. MODELING HETEROGENEITY OF
SPATIALLY CORRELATED ERRORS

The two data sets were first analyzed by fitting the
best spatial models described in Singh et al. (2003)
to screen the AIC best model out of the group of
models generated by various combinations of com-
plete or incomplete blocks, fixed linear, random
cubic spline or no trend, and first-order autocorre-
lated along rows and columns or independent er-
rors. In the two trials, the best model for seed
yield was found to be randomized complete blocks
with first-order autoregressive errors along rows.
At this stage, each model was based on the as-
sumption of homogeneous error variances. In order
to examine any possible indication of heterogene-
ity, the residuals obtained from the fitted models
in above can be plotted and their variograms can
be examined as well (see Sarker et al. 2001 for de-
tails on obtaining the variograms). Figures (1−4)
exhibit 3D plots of residuals and their variograms
for the two trials. We noticed no clear spatial pat-
terns in the residuals (Figures 1 and 2). This can
be expected since we have screened various mod-
els accounting for the presence of linear trends in
the field layout and the residuals are computed
from the best models as obtained using Singh et
al. (2003). Another way to explore the variabil-
ity is in terms of the variograms, which indicate
the presence of different levels of variability be-
tween the residuals over the layouts. For instance,
in Fig. 3, the variogram of the residuals in the
PY T (2005) indicates that there is a variation in
the variances of the plot residuals: 0.40− 0.65 for

plots within 2 plot-units, fluctuating values within
0.4− 0.6 for distances from 3− 22 units and vari-
ation from 0.2 to 0.6 for plots separated by more
than 22 plot-units. There is no clear spatial pat-
tern to allow modelling of the variogram with dif-
ferent values for nearly the same distances. In
Fig. 4 (AY T, 2003), the variogram indicates differ-
ent levels of variances: less than 0.3 for distances
within 5 plot-units, between 0.3−0.4 is fairly con-
stant between 5 to 23 plot-units, while a higher
value of nearly 0.48 and low values close to 0.2
are observed for distances exceeding 23 plot units.
Here also, there is no clear spatial pattern for dis-
tances more than 23 units. Thus, these cases sup-
port the need of examining non-spatial or unstruc-
tured heterogeneity in the plot error variances.

In addition to the visual approach of exploring
heterogeneity in the above data, we also applied
the method presented in Chaubey (1981) for de-
tecting the presence of heterogeneity of variances
in the data. The residuals were ordered based on
their absolute values. The variances were com-
puted using these ordered residuals from (a) two
groups formed from the highest/lowest 50% of the
residuals, and (b) three groups from lowest/highest
33% of the residuals. The F -test was used with
residual degrees of freedom equally allotted. As
can be seen in Table 1, there is an indication of
presence of the heterogeneous error variance in the
data.

In the presence of heterogeneity, the next ques-
tion is to identify the experimental units groups
with heterogeneous errors variances. For this pur-
pose, we follow the following two-step procedure.

Step-1 : Formation of clusters: Based on
the best model selected using Singh et al. (2003),
we first applied K-means clustering on its squared
residuals using the criterion which maximizes be-
tween group sum of squares. The number of
groups, set a priory, varied from K = 2, ...10.
The change in the criterion values were noted
with successive values of K, the number of groups
or clusters of the experimental units. The value
of K, for which the change was not substantial
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was considered as the potential number of clus-
ters. For each set of clusters of the experimental
units, we modeled the data using the spatial er-
rors as per the best model and a random factor
where error variances were allowed to vary with
the cluster of units obtained for a chosen value of
K. For example, if K = 3, there were three error
variances, σ2

1, σ
2
2 and σ2

3. For such a fitted model,
we computed the likelihood value in terms of −2ln
(REML: residual maximum likelihood) value and
the successive increase in its values with a unit
increase in k. At this stage, it is not likely to have
a nested structure defining the heterogeneous with
increase in the number of groups, we can not apply
a test of significance (such as chi-square) on the de-
crease in the −2ln(REML), however, we can use
Akaike information criterion (AIC) to decide on
the number of groups, smaller AIC is better. We
used Genstat (Payne et al. 2009) for the compu-
tation which produces a quantity called ’deviance’
which is equal to −2ln(REML) ignoring a con-
stant which depend on the fixed effect terms. We
used the quantity AICD which expresses AIC in
terms of the deviance where AICD = deviance -
2q where q is the number of covariance parameters
(Singh et al. 2003).

Step-2: Fusion of the clusters: Step-1 pro-
vides a number of clusters, say K, with hetero-
geneous error variances (σ2

j , j = 1...K). Let the
deviance at this step be D0. The error variances
were arranged in order, we merged those two clus-
ters which were the closest for the values of their
error variance estimates. Then the model was
fitted with, now, the reduced number of clusters
(K − 1) and the deviance was computed, say D1.
Since the fusion of the clusters presents a nested
structure of the units, it is possible to test the
hypothesis of the equality of the variance compo-
nents of the two merged clusters. In the case of
equality of the variances, the difference D1 − D0

will follow a chi-square distribution with 1 degree
of freedom. If the observed difference is greater
than the chi-square value at the chosen level of sig-
nificance, then the number of clusters K available

at Step-1 will be taken as final, and the estimation
of the genotypes effects will proceed with theK er-
ror variances. If the observed difference is smaller
than the chi-square value, then the K − 1 merged
clusters will be considered for further analysis re-
peating the process of fusing the clusters with
closest error variance estimates, and evaluating
the change in the deviance against the value of
chi-square with 1 degree of freedom.

4. ESTIMATION OF THE VARIANCE-
COVARIANCE PARAMETERS

We present here a general model and a compu-
tational procedure for estimation of the variance-
covariance parameters. Let y = (yijk) be the vec-
tor of responses or yield from the plot receiving
the i-th genotype (treatment) in the k-th incom-
plete block of the j-th replication of the design
used. The vector y can, equivalently, be denoted
also by y = (yRC) as well where R,C denote the
row and column coordinates of the plot associated
with indices i, j, k. The model for yijk is given by:

yijk = µ+ πj + βjk + τi + εRC

where µ is the general mean, πj is the effect of
replication j, βjk is the effect of block k in the
replication j, τi is the effect of treatment i, and
εRCs are random errors with an auto-covariance
structure along/across rows/column. Let N be the
number of the experimental units. The N errors
presented as the vector ε = (εRC) may have the
heterogeneous variances, σ2

l (l = 1, ...,K), where
K is the number of clusters of the N experimental
units. The diagonal matrix of variances for the N
errors can be written as σ2δ using the associated σ2

l

for a given plot. Further, suppose that the model
selection using Singh et al. (2003) resulted in an
auto-correlated errors across columns with correla-
tions expressed as corr(εRC , εR′C′) = φ|C−C′|, then
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the above model can more compactly be written
as:

y = Xα+ Zβ + ε

where X is the design matrix associated with fac-
tors with effects assumed as fixed, α say, consisting
of genotypes effects τi’

s and µ, and Z is the design
matrix with factors with effects assumed random,
β say, consisting of replication effects, πj ’

s etc. The
variance-covariance of the plot-error vector ε can
be written as

R = σδ(corr(εRC , εR′C′))σδ

The computation of the estimates of the param-
eters associated with the fixed effects α, variance
components of the factors in β, correlation param-
eter φ are given in the various computing software

such as GENSTAT and SAS. Generally, the matrix
R has a structure of correlations and variances. In
the two datasets, while the correlations between
the plot errors εRC have a spatial structure, the
(plot) error variances do not. For example, nei-
ther there is an assumed structure in terms of σ2

l

over the positions of the units nor the variances are
totally unstructured as there are K ¿ N distinct
variances. Let REP, GENO, ROWS and COLS
stand for the replication, genotype (treatment),
rows and columns factors and YIELD for the re-
sponse variate. Let HGROUP stand for the factor
with the K levels representing heterogeneous vari-
ances units. The key Genstat directives to com-
pute the variances, autocorrelation and standard
errors are:

Vcomponents[Fixed=GENO]REP+HGROUP.ROWS.COLS ; constraints=positive

VStructure[Term=HGROUP.ROWS.COLS]diag, AR; Factor=HGROUP, COLS

Reml[prin=m,c,w,mean,d; workspace=50; maxcycle=150;pse=d] YIELD

The above codes produce a common σ2
e (er-

ror variance) and other variances as ratios dl or
σ2
l where σ2

l = (dl + 1)σ2
e signifies the error vari-

ance corresponding to the lth cluster, which varies
with the level of the grouping factor HGROUP,
l = 1...K.

5. RESULTS & DISCUSSION

Following the test by Chaubey (1981), Table 1
gives estimates of error variances based on or-
dered absolute residuals for assumed two and three
groups. As can be noted from the computed F -
values for all the three data sets, there is an indi-
cation of the heterogeneity in the error variances.
This supports our venture to explore the heteroge-
neous clusters of units.

Table 2 gives the information on distribution of
experimental units with homogeneous error vari-

ances obtained using a K-cluster means and the
AICD (AIC values expressed as deviance, see
Singh et al. 2003). It may be seen that the number
of heterogenous groups inferred at this step are 3
for each of the two trials. Table 3 provides the es-
timates of the variance components at Step -1 (i.e.
when selected using AIC criterion) and Step -2 (i.e.
closest groups were fused and tested for the change
in deviance values against chi-square). For Trial
1, fusion of two closest clusters resulted in signif-
icant increase in deviance (P < 0.001), therefore,
the three heterogeneous groups with 60, 13 and 27
units were considered for using the models for the
evaluation of the genotypes. For Trial 2, the three
clusters obtained from Step - 1 were fused into
two clusters with an insignificant increase in the
deviance. When merged again (now into a sin-
gle group), there was a significant increase in the
deviance, implying the presence of only two het-
erogenous groups of units.
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Table 1: Preliminary indication of heterogeneity of error variances using
approximate F-tests in the data on seed yields of the two trials at Breda, Syria

(a) Trial 1: Preliminary yield trial, 2005

Two groups: s21 = 10.01 s22 = 20.26 F36,36 = s22/s
2
1 = 2.02 P−value= 0.0204

Three groups: s21 = 10.0 s23 = 30.23 F24,24 = s23/s
2
1 = 3.02 P−value= 0.0046

(b) Trial 2: Advanced yield trial, 2003

Two groups: s21 = 10.00 s22 = 20.21 F29,29 = s22/s
2
1 = 2.02 P−value= 0.033

Three groups: s21 = 10.00 s23 = 36.85 F13,14 = s23/s
2
1 = 3.02 P−value= 0.0093

Note: F-test is based on Chaubey (1981) adapted to the fitted models.

Table 2: Clusters of experimental units with heterogeneous error variances on seed yield data
in the two trials

k Cluster sizes Criterion value Change in criterion value q Deviance AICD

(a) Trial 1: Preliminary yield trial, 2005

1 100 - - 3 71 77
2 78, 22 10.23 - 5 48.06 58.06
3 60, 13, 27 5.75 -4.48 6 33.76 45.71
4 5, 49, 30, 16 2.85 -2.90 7 32.02 46.02

(b) Trial 2: Advanced yield trial, 2003

1 90 - - 3 43.54 49.54
2 12, 78 7.64 - 5 17.33 27.33
3 10, 19, 61 4.19 -3.45 6 5.82 17.28
4 2, 8, 19, 61 1.28 -2.91 7 NC

Note: Bold letters indicate that the corresponding clusters were identified with heterogeneous
error variances. q = number of covariance parameters.
AICD = AIC (Akaike information criterion) expressed in terms of deviance (Singh et al. 2003).
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Table 3: Number of experimental units and estimates of variance components for
various groups when the heterogeneous groups were selected using AIC criterion
or fused using the change in the deviance, and corresponding deviance from the fitted
model for seed yield data from the two trials conducted at Breda, Syria.

(a) Trial 1: Preliminary yield trial, 2005

(i) Overall grouping: Deviance = 33.76,DF = 68
Group (l) No. of Units (Nl) σ̂2

l

1 60 0.15
2 13 2.12
3 27 0.85

(ii) Groups 1 and 3 merged: Deviance = 54.3,DF = 69

Group (l) No. of Units (Nl) σ̂2
l

1 87 0.371
2 13 2.587

Change in deviance = 20.54, DF=1 , P-value < 0.001

(b) Trial 2: Advanced yield trial, 2003

(i) Overall grouping: Deviance = 5.28,DF = 54
Group (l) No. of Units (Nl) σ̂2

l

1 10 1.515
2 19 0.973
3 61 0.0998

(ii) Groups 1 and 2 merged: Deviance = 3.88,DF = 55
Group (l) No. of Units (Nl) σ̂2

l

1 29 1.0642
2 61 0.0961

Change in deviance = −1.4,DF = 1,P− value = 1.00

(iii) All the groups merged: Deviance = 43.54, DF= 57

Group (l) No. of Units (Nl) σ̂2
l

1 90 0.501

Change in deviance = 39.66,DF = 2,P− value < 0.001

Note: DF = degrees of freedom associated with the deviance (residuals).
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Table 4: Position of experimental units grouped (1-3) according to
heterogeneous error variances on the rectangular layouts for
the three trials conducted at Breda, Syria

Trial 1: Seed yield (Preliminary yield trial, 2005)
Using three heterogeneous groups selected on AIC criterion.

Columns
Rows 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 3 1 1 1 3 3 1 1 1 1 1 1 2 1
2 1 1 3 1 3 1 1 2 1 1 3 2 1 1 1
3 1 3 1 3 2 1 3 1 1 3 3 2 3 1 1
4 1 1 1 1 3 3 1 1 1 1 2 2 3 3 1

Columns
Rows 16 17 18 19 20 21 22 23 24 25

1 3 1 1 3 2 1 3 1 3 3
2 1 1 1 2 1 1 2 1 1 1
3 1 3 3 1 3 1 1 1 3 1
4 3 1 2 3 2 1 1 1 1 2

Trial 2: Seed yield (Advanced yield trial, 2003)
(a) Using three heterogeneous groups selected on AIC criterion

Columns
Rows 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 1 2 3 3 3 2 3 3 2 2 2 1 3 3
2 3 3 3 3 3 2 1 1 3 3 2 3 3 2 3
3 3 3 3 1 3 3 3 2 3 3 3 3 3 3 2

Rows 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 2 3 3 3 3 1 1 2 1 1 2 3 3 3 3
2 2 3 3 3 3 2 3 3 3 3 3 2 3 2 3
3 3 3 3 3 3 3 3 3 3 3 1 2 3 3 3

(b) Merged to two heterogeneous groups

Columns
Rows 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 2 2 2 1 2 2 1 1 1 1 2 2
2 2 2 2 2 2 1 1 1 2 2 1 2 2 1 2
3 2 2 2 1 2 2 2 1 2 2 2 2 2 2 1

Columns

Rows 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2
2 1 2 2 2 2 1 2 2 2 2 2 1 2 1 2
3 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2

8



Table 5: Estimates of variance components, Wald test statistics value and significance level,
and average estimated variance error of pair-wise genotypes comparison and efficiency of
the design-analysis models for seed yield data from the two trials conducted at Breda, Syria

(a) Trial 1: Preliminary yield trial, 2005
Variance components Estimates WStat DF P -value Av. var. Eff(%)

RCB, homogeneous σ2
e = 0.630± 0.1036 36.07 24 0.094 0.3194 100

Homogeneous σ2
e = 0.64± 0.111 40.36 24 0.055 0.2953 108

φ = −0.27± 0.128
Heterogeneous σ2

e = 0.15± 0.035 74.88 24 0.001 0.1495 214
d1 = 0.00± 0.00
d2 = 12.93± 6.78
d3 = 4.62± 2.29
φ = −0.56± 0.246

(b) Trial 2: Advanced yield trial, 2003
Variance components Estimates WStat DF P -value Av. var. Eff(%)

RCB, homogeneous σ2
e = 0.470± 0.0871 43.41 29 0.096 0.3132 100

Homogeneous σ2
e = 0.501± 0.109 60.84 29 0.014 0.2346 134
φ = 0.46± 0.116

Heterogeneous σ2
e = 0.0822± 0.0304 194.32 29 < .001 0.0933 336
d1 = 12.27± 6.87

d2 = 0.198± 0.4151
φ = 0.80± 0.121

Note: WStat = Wald statistic for testing equality of genotype effects (assumed fixed).
DF =Degrees of freedom of the genotype. Av. var. = Average variance of difference
of estimated effects between a pair of genotypes. AIC= Akaike information criterion.
P - value= P - value based on the Wald test. Eff(%)= Percent efficiency over RCB
(randomized complete block design) model.

Further, the spatial distribution of the exper-
imental plots are exhibited on the layout schema
(Table 4) for the various heterogeneous groups re-
sulted at Step -1 and/or at the final stage of the
formation of heterogeneous clusters. In these two
trials, nearly 60% of the units have lowest level of
error variability. The positions of the units from
the other clusters are reasonably spread through-
out the field layout.

Using the chosen combination of autocorrela-
tion (spatial errors) and heterogeneous variances
for the errors in the model, the estimates of vari-

ous variances and autocorrelation parameters are
given in Table 5. Table 5 also exhibits the P -
value for equality of the genotypes effects based
on the Wald statistic and the average variance of
estimated difference of pair-wise genotypes effects.
The efficiency (%) values are given in comparison
with the standard randomized complete block de-
sign model. It may be noted that the best models,
without heterogeneity components in, fail to de-
tect significant statistical differences in genotypes
effects in Trials 1 (P -values 0.055) while the P -
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Figure 1: 3D plot of the residuals from RCB-AR model analysis of seed yields in the preliminary yield trials
(2005) in 25 genotypes (RCB-AR model: The model incorporates random replication effects and first-order
autoregressive plot-errors across columns)

value is 0.014 for Trial 2. An introduction of
the heterogeneous error variances clearly shows an
enhanced significance level (P -value ≤ 0.001) for
genotype main-effects in both the cases. For the
spatial models, reductions of 49% and 60% in the
average variance of the difference of the genotypes

effects for Trials 1 and 2 respectively can be con-
sidered substantial. While the spatial models for
Trials 1 and 2 are more efficient than RCB model
even without heterogeneity of error variances, in-
corporation of heterogeneity of error variances in
the model has drastically improved the efficiency
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of the pairwise comparisons of the genotypes. The
efficiencies were found as 214% and 336% for the
Trials 1 and 2, respectively.

The evaluation of these trials support the need
for examining the presence of heterogeneous er-
rors in the experimental units in field trials, and
shows clearly that considerable improvement can

be made by their identification and accounting at
the analysis stage. Such an approach actually can
easily be incorporated in most of the data analysis
situations involving spatial, time or even unstruc-
tured experimental units, and, therefore, would en-
hance the efficiency of the associated plant breed-
ing process.

Figure 2: 3D plot of the residuals from RCB-AR model analysis of seed yields in the advanced yield trials (2003)
in 30 genotypes (RCB-AR model: The model incorporates random replication effects and first-order autoregressive
plot-errors across columns)
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Figure 3: Variogram of the residuals from RCB-AR
model analysis of seed yields in the preliminary yield
trials (2005) in 25 genotypes (RCB-AR model: The
model incorporates random replication effects and first-
order autoregressive plot-errors across columns)

Figure 4: Variogram of the residuals from RCB-AR
model analysis of seed yields in the advanced yield tri-
als (2003) in 30 genotypes (RCB-AR model: The model
incorporates random replication effects and first-order
autoregressive plot-errors across columns)
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