

Introduction to Life Cycle Assessment, LCA

Carl Vadenbo IRCADA – USYS TdLab – IfU-ESD workshop 2016-02-29 Amman, Jordan

Carl Vadenbo | 29.02.2016 | 1 IRCADA – USYS TdLab – IfU-ESD workshop

Outline

Introduction

- Environmental assessment
- Overview Life Cycle Assessment (LCA)
- LCA
 - Goal and scope deifnition
 - Functional unit
 - System boundaries
 - Inventory (LCI)
 - Accounting principles
 - Inventory analysis
 - Impact assessment (LCIA)
 - Interpretation of results

Learning goals

To get a first overview of...

- What (the purpose of) LCA is
- How a LCA is performed
- How to identify critical aspects in the supply chain
- How to interpret and critically assess a LCA study

Environmental assessment tools / approaches

www.esd.ifu.ethz.ch/

LCA is a systematic method for analyzing environmental impacts of products, processes, and services over their entire life cycles

Picture source: Science 344, p. 1109-1112

Example LCA of detergent (for washing machine)

1

Results – detergent example

Typical question in LCA study:

- Which alternative has the lowest overall envrionmental impacts?

Which product is the better choice?

www.esd.ifu.ethz.ch/

ecological systems design

Global value chains

- International value chains increase in complexity and have global environmental impacts
- LCA aims to track these impacts and assess them from a systems perspective
- The goal is to identify decisions or strategies for improvement without burden shifting

ww.esd.ifu.ethz.ch/

Purposes for LCA

- a) To find improvement potential within life cycle of a product (not just production)
 → Product design / process analysis
- b) Comparison of different options with the same functionality (same service)
 A Support decisions (ecolopels, 'green marketing)
 - → Support decisions (ecolabels, 'green marketing')
- c) Comparison of scenarios (in combination with Input output-analysis)
 - \rightarrow Political policies and decisions

Applications of LCA (Hellweg & Milà i Canals 2014)

A. Product level LCA

B. Organizational LCA

C. Consumer/lifestyle LCA

ww.esd.ifu.ethz.ch/

D. Country LCA

Picture source: Science 344, p. 1109-1112

Carl Vadenbo IRCADA – USYS TdLab – IfU-ESD workshop

No or limited use of LCA for...

- a) Assessment of disasters / accidents
- b) Evaluation of best location for facilities
 -> environmental impact assessment (in German: UVP)
- c) Environmental management practices of companies
 -> ISO 14001 norms

International standard on LCA – ISO 14044:2006

Guidance on procedure:

- Goal and scope definition
- Inventory analysis
- Impact assessment
- Interpretation
- No specific method, tool or data basis prescribed

1. Definition of goal and scope

- What is the purpose of the LCA?
- Who is the intended audience?
- What are the systems under study and what are their functions?
- What are the underlying assumptions / limitations?

2. Inventory analysis

- What are the relevant emissions and resources the system(s) produce or consume?
- How are these inputs and outputs allocated to the functions of the systems?

4. Interpretation

- What are the conclusions?
- How reliable and sensitive are the results?
- What are the recommendations?

3. Impact assessment

- Which impact categories are considered and which models are used?
- What environmental impacts are caused by the emissions and the use of resources from the system(s)?
- How is aggregation performed?

ISO 14044:2006

Goal & scope: main points (I)

- Purpose of study
 - For comparison, ecodesign, internal or external communication, marketing claims, ecolabelling, *etc.*
- Define «functional unit» of study:
 - What is the function of the system / service to the consumer?
 - Example: packing 1 liter of milk

Example: Functional unit of air transport, e.g. 1'000 person-km transport

Source: Frischknecht, Handouts in Umweltverträgliche Technologien

Goal & scope: main points (II)

- Draw system boundaries
 - What environmental aspects are included
 - Which processes are excluded -> why?
- Define time, geographical and technological coverage
 - For what situation is the study valid?
- Critical review and other procedural aspects
 - Critical review by independent expert or panel of interested parties required for LCA studies *«where the results are intended to be used to support a comparative assertion intended to be disclosed to the public»* (ISO 14044:2006)

1. Definition of goal and scope

- What is the purpose of the LCA?
- Who is the intended audience?
- What are the systems under study and what are their functions?
- What are the underlying assumptions / limitations?

2. Inventory analysis

- What are the relevant emissions and resources the system(s) produce or consume?
- How are these inputs and outputs allocated to the functions of the systems?

4. Interpretation

- What are the conclusions?
- How reliable and sensitive are the results?
- What are the recommendations?

3. Impact assessment

- Which impact categories are considered and which models are used?
- What environmental impacts are caused by the emissions and the use of resources from the system(s)?
- How is aggregation performed?

Life cycle inventory (LCI) analyis

Data collection of environmentally-relevant flows for unit processes (parts of the life cycle);

 \rightarrow Unit processes within flowchart

Inventory analyis – required data

- Unit processes
- Materials
- Energy use
- Consumables
- Transports
- Information on product use
- Waste disposal
- Resource uses
- Emissions

Exchanges within technosphere (products / services of other processes) -> technosphere flows

Exchanges with the environment (environmental flows)

Handling data gaps

- Specific data should be collected for primary processes (foreground system) and high quality representative data for others (background system, e.g. electricity generation)
- If no data can be found, conservative estimates should be used!
 - If relevant in assessment: improve data (iterative process)

Inventory database developments

Inventory databases contain inventory data on a large number of basic processes, e.g. electricity generation or production of steel, cement, chemicals, etc. etc., thereby greatly facilitating LCA studies

1. Definition of goal and scope

- What is the purpose of the LCA?
- Who is the intended audience?
- What are the systems under study and what are their functions?
- What are the underlying assumptions / limitations?

2. Inventory analysis

- What are the relevant emissions and resources the system(s) produce or consume?
- How are these inputs and outputs allocated to the functions of the systems?

4. Interpretation

- What are the conclusions?
- How reliable and sensitive are the results?
- What are the recommendations?

3. Impact assessment

- Which impact categories are considered and which models are used?
- What environmental impacts are caused by the emissions and the use of resources from the system(s)?
- How is aggregation performed?

From LCI to LCIA

Inventory Analysis					
Emission/ Resource	Unit		Amount per funct. unit		
CO ₂	kg	Air	0.5		
CH ₄	kg	Air	1.5		
SO _x	kg	Air	1.0		
NO _x	kg	Air	0.5		
Cd ²⁺	kg	Water	0.0001		
Fe	kg	Soil	0.5		

Life Cycle Impact Assessment

	Global Warming						
	Emission	Characteri-	Ref.unit				
		zation <i>factor</i>	CO_2 -eq.				
	CO_2	1	0.5				
	CH ₄	28	42				
~	Sum		42.5				
			00				
	Acidification		SO _x -eq.				
	SOx	1	1				
	NO _x	0.7	0.35				
	Sum		<u>1.35</u>				
	Human toxicity		1,4-Dichlor-				
			benzol-eq.				
×	NO _x	1.4	0.7				
×	Cd ²⁺	23	0.0023				
	Sum		0.7023				

LCIA framework

ww.esd.ifu.ethz.ch/

Impact category 'climate change' = carbon footprint

Characterization factors (CF) based on IPCC 2013 factors; 3 time horizons

Greenhouse gas (GHG)	Global warming potential (GWP) 20 years [kg CO ₂ -eq]	Global warming potential (GWP) 100 years [kg CO ₂ -eq.]	Global warming potential (GWP) 500 years [kg CO ₂ -eq.]
Carbon dioxide (CO_2)	1	1	1
Methane (CH ₄)	62	28	8
Nitrious oxide (N ₂ O)	264	265	131
Sulfur hexafluoride (SF ₆)	17'500	23'507	31'510
HFC-134a	3'710	1'301	371

100 years is typically recommended

w.esd.ifu.ethz.ch/

Standard elements of impact assessment

Source: ISO 14044:2006

Regional aspects in LCA

- Regionalization relevant in, for example, land use/water consumption and biodiversity
- Not implemented in standard LCA softwares
 - Data in google earth available from <u>www.esdmaps.ethz.ch/</u>
- e.g. Midpoint indicator: Water Stress Index (WSI)

1. Definition of goal and scope

- What is the purpose of the LCA?
- Who is the intended audience?
- What are the systems under study and what are their functions?
- What are the underlying assumptions / limitations?

2. Inventory analysis

- What are the relevant emissions and resources the system(s) produce or consume?
- How are these inputs and outputs allocated to the functions of the systems?

4. Interpretation

- What are the conclusions?
- How reliable and sensitive are the results?
- What are the recommendations?

3. Impact assessment

- Which impact categories are considered and which models are used?
- What environmental impacts are caused by the emissions and the use of resources from the system(s)?
- How is aggregation performed?

The LCA methodology – an iterative process

- Results should be used to refine the model concerning relevant processes and emissions
- Analyze the contribution of processes and emissions
- Understand the underlying reasons for the results
 - Is it realistic or maybe an artefact?
 - Is it robust?

Uncertainties

- LCA results are highly uncertain
 - Assumptions
 - Uncertainty of inventory data
 - Uncertainty in characterization models
 - Uncertainty in weighting schemes
- Careful consideration is required for proper conlusions (typically a factor 2 is not highly significant)
- Results should be considered relative to other options

Example: assessing uncertainty in carbon footprints: natural gas *versus* biogas in car

Impacts natural gas car: Impacts methane (biogas) car 0.16 kg CO_2 -eq. / person-km 0.12 kg CO_2 -eq. / person-km

biogas impact < 75% of natural gas

A few illustrative examples...

- Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables (Stoessel et al. 2012)
- Carbon footprint per person and year in a Swiss municipality (PhD thesis of Dominik Saner)
- Spatially explicit impacts from phosphorus emissions in agriculture (Scherer & Pfister 2015)

Scope

- Study performed for major Swiss food retailer
- 28 vegetables and fruits
- 29 countries of origin

Image source: National Institutes of Health, United States Department of Health and Human Services

- Open-field and greenhouse production
- Background data for transport, energy, fertilizer, pesticide production etc. from ecoinvent v2.01 / SimaPro 7
- Functional unit: 1 kg of vegetable or fruit (as fresh matter) at the point of sale

Stössel F, Juraske R, Pfister S; Hellweg S, Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer, Environ. Sci. Technol., 3253-3262, 2012

System boundaries

Exchange with environment: emissions, extraction of resources: water, peat, land use

Carbon Footprint of vegetables/fruits (as total annual sales)

Stössel F, Juraske R, Pfister S; Hellweg S, Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer, Environ. Sci. Technol., 3253-3262, 2012

EHzürich

Carbon Footprint of vegetables/fruits (per kg)

Stössel F, Juraske R, Pfister S; Hellweg S, Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer, Environ. Sci. Technol. , 3253-3262, 2012

Carbon footprint of asparagus

www.esd.ifu.ethz.ch/

Carbon footprint of cucumbers

Stössel et al, submitted

Lowering the carbon footprint of vegetables

1. Avoid air transport

2. Prefer non-heated production over heated greenhouses

- But tradeoff with water impacts (typically water scarce areas)!
- 3.As little truck transport as necessary

Carbon footprint per person and year in a Swiss municipality

→ consumption of meat and dairy products decisive

Source Dominik Saner, ETH Zürich

Spatially explicit impacts from phosphorus emissions in agriculture

Motivation:

- Aquatic eutrophication threatens biodiversity
- Phosphorus emissions are the chief cause for freshwater eutrophication
- Agriculture is the major non-point source
- Emissions are likely to increase
- Previous assessments were limited to a few countries, a few crops and/or were too simplified

Coupling of models

www.esd.ifu.ethz.ch/

Carl Vadenbo | 29.02.2016 | 43 IRCADA – USYS TdLab – IfU-ESD workshop

Results: Global average phosphorus emissions (kg P / kg crop)

29.02.2016 | 44 IRCADA - USYS TdLab - IfU-ESD workshop

Dominant processes of phosphorus emissions

Erosion loss per cropland use

Phosphorus emissions (kg P / kg crop)

Scherer & Pfister (2015)

Carl Vadenbo | 29.02.2016 | 47 IRCADA – USYS TdLab – IfU-ESD workshop

Impacts on biodiversity (days m³ / kg crop)

Scherer & Pfister (2015)

Carl Vadenbo | 29.02.2016 | 48 IRCADA – USYS TdLab – IfU-ESD workshop

Conclusions

- Detailed erosion model for different crops with high spatial resolution
- Improvement of modelling scheme of phosphorus emissions
- Underestimation of phosphorus emissions in ecoinvent
- Importance of regionalising both inventory results and characterisation factors
- Major limitations
 - Management factors effect on erosion (factor 16)
 - Bioavailability of phosphorus
 - Soil erodibility
 - No crop specific fertilization
 - Interactions with nitrogen

Introduction to LCA – wrap-up

Carl Vadenbo | 29.02.2016 | 50 IRCADA – USYS TdLab – IfU-ESD workshop

Summary LCA

- LCA is a comprehensive assessment of very complex systems
- Tries to avoid burden shifting (e.g. from GHG emissions to radioactive waste)
- Features high uncertainties
- Is most valuable for understanding the system and not for reporting absolute numbers
- Is still a growing research field with many gaps

Thank you for your attention!

Carl Vadenbo vadenbo@ifu.baug.ethz.ch

Carl Vadenbo | 29.02.2016 | 52 IRCADA – USYS TdLab – IfU-ESD workshop

References

- Boesch, M. E., Vadenbo, C., Saner, D., Huter, C., & Hellweg, S. (2014). An LCA Model for Waste Incineration enhanced with New Technologies for Metal Recovery and Application to the Case of Switzerland. *Waste Management*, *34*(2), 378–389.
- Hellweg, S., & Mila i Canals, L. (2014). Emerging approaches, challenges and opportunities in life cycle assessment. *Science*, *344*(6188), 1109–1113.
- ISO (International Standardisation Organisation). (2006). 14044: Environmental management—Life cycle assessment—Requirements and guidelines. *International Organization for Standardization*. Geneva, Switzerland.
- Pfister S., Koehler A., Hellweg S. (2009): Assessing the environmental impacts of freshwater consumption in LCA. *Environ. Sci. Technol.*, 43 (11), pp. 4098–4104
- Scherer, L., & Pfister, S. (2015). Modelling spatially explicit impacts from phosphorus emissions in agriculture. *International Journal of Life Cycle Assessment*, 20(6), 785– 795.
- Stoessel, F., Juraske, R., Pfister, S., & Hellweg, S. (2012). Life Cycle Inventory and Carbon and Water FoodPrint of Fruits and Vegetables: Application to a Swiss Retailer. *Environmental Science & Technology*, *46*(6), 3253–3262.

Introduction to SimaPro LCA software

Carl Vadenbo | 29.02.2016 | 54 IRCADA – USYS TdLab – IfU-ESD workshop

A really small case... PET vs. Glass bottle

