

SLM options in Zaghouan: current patterns, issues on technological, economic and ecological efficiencies, adoptions and recommendations for effective out-scaling

Final Workshop "Sustainable Land Management to Achieve Land Degradation Neutrality: Options-by-Context Approach and Tools"

24 October 2017 2017

Tunis, Tunisia

<u>Taoufik Hermassi</u> (INRGREF) Khaoula Karaoud (ENIT-INRGREF-ICARDA)

- Resource person : Bachir Tarchi (CRDA Zaghouan)
- Other person : Monji ben Neji (CRDA Zaghouan)
 Abdallah Guediri(CRDA Zaghouan)

Technical Analyses

		Rang	Evaluation	Facteurs de succès /
		1/2/		Facteurs limitant
WSC technique	Land Use type	3		
TERRES EN PENTE				
Banquette	Céréales et olivier		Olivier : CS + rentabilité	Bonne exécution
mecanique	(à pente forte)	3	Céréales : CS + rentabilité	Entretien et Consolidation
Banquette	Olivier (moins fréquent			Bonne exécution
manuelle	pour céréales)	3	Idem	Entretien et Consolidation
Cordon pierre	parcours dégradés (sol			
seches	nu, pierreux, en pente)	3	CS, rétention de sédiment	Entretien
			Bonne adoption au niveau	
Technique douce			des terres domaniales	
(labour en courbes			(manque d'adoption chez	Manque de vulgarisation,
de niveau, en			les prives)(Taille des	Problèmes de morcellement
bandes alternees)	Céréales, à pente faible	1	parcelles)	foncier
Cuvette				
individuelle,				
bourrelet terre				
consolide par				
pierres	Olivier, amandier	3+	Adoption par les privés	Bonne exécution
Reboisement et			3 dans les terres	Gestion pâturage,
amelioration			domaniales	meilleures espèces
pastorale	Parcours, sol nu	3/1	1 chez les privés.	forestières

Technical Analyses

TECHNIQUE CES	Occupation des	Rang	Evaluation	Facteurs de succès /
(MOTS CLES)	sols	1/2/3		Facteurs limitant
AMENAGEMENT DES	VOIES D'EAUX			
Ouvrages de recharge			Recharge de la	Site bien choisi, bonne
en gabion	Lit oued principale	2/3	nappe	exécution
			Protection des	
protection de ravins	Lit oued, ravines	3	terres agricoles	Entretien, bonne exécution
			Control du	
Seuils en pierre seches	Ravines	3	ravinement	Entretien, bonne exécution
Lacs et barrages	Lit oued, périmètres			Site bien choisi, création d'un
collinaires	irrigues	3/2	Disponibilité eau	GDA
			Stabilisation de	
Fixation biologique des			berges, réserves	Mise en défens, choix des
berges	Lit oued, ravines	3	fourragères	espèces

WSC 2016

MECHANICAL BENCH TERRACES

The mechanical bench terraces are earth embarkments built along contour lines perpendicular to the slope, In order to intercept runoff water, promote infiltration and reduce erosion.

Strengths/advantages/opportunities of the SLM Technology	
Simple	Plowing according to contour lines
Better water infiltration	reduction of the slope length
Better soil retention	Protection of downstream infrastructure
Increase yields	reduction of soil erosion
simple establishment	improvement of land cover
Weaknesses/disadvantages/risks of the SLM Technology and	ways to overcome
Reduction of planting area/ Reduce the width of the terrace	Implementation and maintenance are expensive
	absence of maintenance

MANUAL BENCH TERRACES

Manual bench terraces are an earth embarkment done manual built on a slope land or approximately flat top to control soil erosion and preserve and enhance soil fertility.

Strengths/advantages/opportunities of the SLM Technology	ology
Can be constructed by land users	Simple construction
Can be maintained by land users	Simple maintenance
Better soil infiltration	Better soil infiltration
improve farm income	reduction of soil erosion
Increasing yield	increase in soil fertility and organic matter
Weaknesses/disadvantages/risks of the SLM Technolog	gy and ways to overcome
absence of maintenance	manualy work cost more much than mechanical work/need subsidy from government
	Implementation and maintenance are expensive

STONE BUND TERRACES

Stone bund terraces is an alignment of stones as physical barriers constructed accros the slope following the contour lines which slow down the velocity of runoff, promote its infiltration into the soil and the sedimentation of fine particles.

Strengths/advantages/opportunities of the SLM Technology

Resistant and need less maintenance	Bunds are built on sloping fields
need Simple maintenance	Design and construction are easy and can be done without much specialised labour
They allow the sites to get rid of the stones that hinder their valorization	Reduction of steep slope
reduce the rate of runoff allowing infiltration	Increased crop production and erosion control as a result of the harvesting and spreading of floodwater
generally resistant and need less maintenance	Enhanced groundwater recharge
	Reduced runoff velocities
	Reduced runoff velocities and erosive potentials
	Improved land management as a result of the silting up of gullies with fertile deposits

Weaknesses/disadvantages/risks of the SLM Technology and ways to overcome

building stone bunds can be expensive if stone resources	Failure to respect the contour lines in its construction
are limited	lead to loss of soil
Problem of the transport of stones	have a short lifetime
High transportation costs for farmers	
Need for large quantities of stone	

SEMI-CIRCULAR BUNDS

Semi-circular bunds consist of earth embankments built in the shape of a semi circle with the tips of the bund on the contour and are arranged in staggered orientation in rows so that overflow from one row will run into the next downslope. It can be consolidated by dry stones.

Strengths/advantages/opportunities of the SLM Technology

semi-circular bunds may be used for uneven fields	Decreased slope length
Can be constructed on any slope, from almost flat	reduced velocity of runoff
terrain up to steep slopes	
improves the yield	Design and construction are easy and can be done without much specialised knowledge
increased soil moisture	Increased vegetation coverage and production
Simple maintenance	Reduced soil erosion

Weaknesses/disadvantages/risks of the SLM Technology and ways to overcome

Reduced farm land/ Mass mobilization and improving the design.	Simple design approach (the same diameter and spacing for different slope ranges)/ Improve the design approach.
Increase labour requirement/ increased incentives to households, Reducing the size of the structure.	Semi-circular bunds cannot be made mechanically and are therefore time consuming in their construction
Labour-intensive work	short life-time of the structure
Need for large quantities of stone	Earthen bunds are not suitable in case of heavy rainfall

HILL RESERVOIRS

Hill reservoirs contain ten thousands to few millions of m³ of water collected on watersheds covering areas from few hectares to some km²

GABION THERSHOLD

It is a structure built of uncemented stones but well anchored on the banks in order to increase its cohesion and rigidity.

nce for Better Livelihoods in Dry Area

STONE THERSHOLD AND

BIOLOGICAL RESTORATION

REFFORESTATION

Refforestation is one of the key technologies to address the fragility of ecosystems: it provides better protection against erosion and makes better use of rainfall in order to maintain the sustainability of agricultural systems.

Eucalyptus plantation

ence for Better Livelihoods in Dry Are

Plantation wof Aleppo Pine

FORAGE SPECIES PLANTATION

Plantation of Sulla

Cactus

Cactus with native species

RANGELAND IMPROUVEMENT

The rangeland improvement is used to prevent and remediate degradation of soils and to meet the needs of livestock forage by planting of desirable species.

Accacia

Atriplex

RMEL DAM

Dam is as an obstruction constructed across a river. At the back of this barrier water is collected forming a reservoir. The side on which water is collected is called upstream side and the other side of the barrier is called downstream side. The pool of water which is formed upstream is called a Reservoir.

Global Geo-informatics Options by Contexts

A tool for better investment decisions in agriculture and rural development

RESEARCH PROGRAM ON Dryland Systems

RESEARCH PROGRAM ON Water, Land and Ecosystems

Federal Ministry for Economic Cooperation and Development

Thank You!