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Calibration of spatially distributed hydrologic models is frequently limited by the availability of ground
observations. Remotely sensed (RS) hydrologic information provides an alternative source of
observations to informmodels and extend modelling capability beyond the limits of ground observations.
This study examines the capability of RS evapotranspiration (ET) and soil moisture (SM) in calibrating a
hydrologic model and its efficacy to improve streamflow predictions. SM retrievals from the Advanced
Microwave Scanning Radiometer-EOS (AMSR-E) and daily ET estimates from the CSIRO MODIS
ReScaled potential ET (CMRSET) are used to calibrate a simplified Australian Water Resource
Assessment – Landscape model (AWRA-L) for a selection of parameters. The Shuffled Complex
Evolution Uncertainty Algorithm (SCE-UA) is employed for parameter estimation at eleven catchments
in eastern Australia. A subset of parameters for calibration is selected based on the variance-based
Sobol’ sensitivity analysis. The efficacy of 15 objective functions for calibration is assessed based on
streamflow predictions relative to control cases, and relative merits of each are discussed. Synthetic
experiments were conducted to examine the effect of bias in RS ET observations on calibration. The
objective function containing the root mean square deviation (RMSD) of ET result in best streamflow pre-
dictions and the efficacy is superior for catchments with medium to high average runoff. Synthetic exper-
iments revealed that accurate ET product can improve the streamflow predictions in catchments with
low average runoff.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Significant research has been done in the past to develop
efficient calibration algorithms to attain reliable streamflow
predictions at gauged catchments. Calibration of hydrologic/land
surface models is carried out usually using streamflow since it
gives time-integrated information about water output from the
catchment. However, lack of streamflow observations and other
ground data in the vast majority of areas makes hydrological
model calibration a difficult task. Particularly, accurate estimation
of runoff at ungauged catchments is a growing concern
for the hydrologic community (Sivapalan, 2003; Wagener and
Montanari, 2011).

Alternative approaches to the conventional streamflow-based
calibration for ungauged locations include estimation of parame-
ters from prior information on catchment physical characteristics
(e.g., soil hydraulic properties and vegetation properties)
(Atkinson et al., 2003; Koren et al., 2003) and regionalization. For
example, in parameter regionalization, a model is calibrated for a
number of gauged watersheds and the model parameters are
derived from a regression relationship between the watershed
characteristics and parameters (Abdulla and Lettenmaier, 1997;
Jakeman et al., 1992; Parajka et al., 2007; Post et al., 1998; Sefton
and Howarth, 1998; Viney et al., 2009; Wagener and Wheater,
2006; Wagener et al., 2004; Zhang et al., 2011). Yadav et al.
(2007) modified the approach by regionalizing flow characteristics
and by incorporating uncertainty in the regressed estimates. How-
ever, the drawbacks of these approaches have been reviewed pre-
viously (Beven, 2000; Wagener and Montanari, 2011; Wagener and
Wheater, 2006): uniqueness in topography, geology, vegetation
features and anthropogenic modification for the watersheds within
similar climatic region can make individual watersheds respond to
input in widely different manners (Beven, 2000). Wagener and
Wheater (2006) stated that through regionalization, model struc-
tural uncertainty is transferred to the optimized parameters, which
can result in biased calibration. To explore methods that can
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overcome these issues associated with the regionalization, we
investigate the efficacy of RS data in calibration and its utility as
an alternative source of observational data to constrain our model
parameter estimates for ungauged locations.

Typically, RS data provides spatially distributed land surface
parameters with a regular temporal repeat across much of the
globe, and the volume and quality of data have greatly increased
over the past decades providing extensive datasets for hydrologic
modelling. The RS data has been widely used in land use and land
cover classification (e.g., soil and land use pattern) and the estima-
tion of vegetation indices, surface SM and evapotranspiration (ET)
(Asner et al., 2003; Chen and Cihlar, 1996; Congalton, 1991; Gupta
et al., 2008; Kustas et al., 1994; Ottlé et al., 1989; Owe et al., 2008;
Sucksdorff and Ottle, 1990). Resulting land surface products have
enhanced overall capability of hydrologic modelling from local to
global scales. For example, several studies demonstrated that
annexation of RS land surface temperature, SM, leaf area index
(LAI) and fraction vegetation cover data improves hydrologic mod-
elling (Andersen et al., 2002; Corbari and Mancini, 2013; Crow and
Ryu, 2009; Garcia-Quijano and Barros, 2005; Parajka et al., 2006;
Renzullo et al., 2008; Silvestro et al., 2015; Sutanudjaja et al.,
2014; Zhang and Wegehenkel, 2006). LAI estimated by the MODer-
ate resolution Imaging Spectrometer (MODIS) onboard Terra and
Aqua satellites can be used with the Penman–Monteith equation
to produce 8-day composite ET (Cleugh et al., 2007; Leuning
et al., 2008; Zhang et al., 2008). Satellite-derived products, such
as ET, SM and vegetation biomass, have become important parts
of hydrological modelling.

ET retrieved from AVHRR (Advanced Very High Resolution
Radiometers) (Nemani and Running, 1989; Taconet et al., 1986)
and MODIS (Cleugh et al., 2007; Guerschman et al., 2009;
Leuning et al., 2008; Zhang et al., 2008) satellites and microwave
SM retrievals from the Advanced Microwave Scanning Radiometer
for the Earth Observing System (AMSR-E) (Njoku et al., 2003; Owe
et al., 2008), Soil Moisture and Ocean Salinity (SMOS) (Kerr et al.,
2001) of European Space Agency (ESA), and Advanced Scatterome-
ter (ASCAT) (Bartalis et al., 2007) have widely been used in hydrol-
ogy. Immerzeel and Droogers (2008) calibrated the Soil Water
Assessment Tool (SWAT) model with MODIS ET using Gauss–Mar
quardt–Levenberg (GML) algorithm which increased correlation
between simulated and observed ET resulting in improved stream-
flow predictions. Using a two-parameter surface conductance (Gs)
model, optimized by catchment water balance estimates of ET
(precipitation minus runoff), Zhang et al. (2008) generated 8-day
composite ET (ERS) from MODIS LAI. The ERS was useful in estimat-
ing long-term runoff using the concept of water balance. But the
study did not address the capability of ERS in calibrating rainfall–
runoff models. Zhang et al. (2009) concluded that multi-objective
calibration of SimHyd model with streamflow and ERS produced
better daily and monthly runoff compared to calibration with
streamflow alone. Droogers et al. (2010) showed that optimization
of the Soil-Water-Atmosphere-Plant (SWAP) model using satellite-
derived actual ET can predict irrigation demand with acceptable
accuracy.

Hydrological application of RS SM has been primarily on its
assimilation into land surface models to improve profile SM and
other outputs linked to the soil (Crow and Van den Berg, 2010;
Han et al., 2012; Pauwels et al., 2001; Reichle and Koster, 2005;
Renzullo et al., 2014). Recent studies have shown that assimilation
of satellite SM can improve streamflow predictions of rainfall–run-
off models (Alvarez-Garreton et al., 2014, 2015; Crow and Ryu,
2009; Parajka et al., 2006; Pauwels et al., 2001). Similarly, the
assimilation of a Soil Wetness Index (SWI) derived from ASCAT into
a continuous distributed hydrologic model resulted in improved
discharge predictions (Brocca et al., 2010, 2012).
Very few studies have incorporated satellite SM in model cali-
bration. Campo et al. (2006) used SM retrievals from European
Remote Sensing (ERS) scatterometer signals to optimize the
parameters of soil dynamics in distributed hydrologic model.
Parajka et al. (2009) used ERS scatterometer signals to calibrate
semi-distributed hydrologic model along with runoff. Although
both studies demonstrated improved streamflow predictions,
Campo et al. (2006) study was limited to the areas with no or
sparse vegetation while the study by Parajka et al. (2009) showed
deterioration in SM predictions. Zhang et al. (2011) calibrated the
Australian Water Resource Assessment landscape model (AWRA-
L) with streamflow, NOAA-AVHRR LAI and TRMM-MI (Tropical
Rainfall Measuring Mission – Microwave Imager) SM using
multi-objective criteria. Even though the study resulted in marked
improvement of LAI and SM, the improvement of streamflow was
marginal. Sutanudjaja et al. (2014) calibrated a physically based
large-scale coupled groundwater-land surface model, called PCR-
GLOBWB-MOD, using SWI derived from ERS scatterometer and dis-
charge data. The resulting optimum parameter set predicted dis-
charge, SM and groundwater dynamics with acceptable accuracy.

Challenges in using remote sensing data for model calibration
and data assimilation are discussed comprehensively in Van Dijk
and Renzullo (2011). One of the major challenges is that the infor-
mation content of RS observations varies based on transient vege-
tation (Barrett and Renzullo, 2009; Campo et al., 2006) and
topography (Parajka et al., 2009). Appropriate specification of
errors, as part of the retrieval process, is critical for effective cali-
bration and data assimilation (Alvarez-Garreton et al., 2014).
Suitability of coarse-resolution remote sensing data for small-
scale studies is also a concern.

Previous studies show that RS data can be used to optimize the
model parameters under certain conditions (Kunnath Poovakka
et al., 2013; Mohanty, 2013; Zhou et al., 2013). Zhang et al.
(2008) suggest that RS ET and SM can be used in the calibration
of rainfall–runoff models to improve runoff estimations in
ungauged catchments. A calibration scheme which relies soley on
remote sensing data will be greatly beneficial in modelling at
ungauged catchments, especially if it can be demonstrated to
result in improved estimation compared with uncalibrated model.
In this study, Microwave SM retrievals from the AMSR-E and daily
estimates of ET from CSIRO MODIS ReScaled potential ET (CMRSET)
model are used to calibrate a hydrologic model using 15 different
objective functions considering various combinations of RMSD
and correlation of ET and SM. The Shuffled Complex Evolution
(SCE) calibration algorithm is used to calibrate a grid-based hydro-
logic model modified from the Australian Water Resource Assess-
ment – Landscape (AWRA-L) model. Main research objectives of
this study are to investigate (1) how effective RS ET and SM are
in calibrating the model and (2) how biases in RS ET affects predic-
tion of calibrated models.

2. Materials and methods

2.1. Study catchments

The efficacy of calibrating AWRA-L with RS ET and SM is
assessed for 11 catchments in eastern Australia. First, the calibra-
tion method is developed and tested in the Loddon River catch-
ment at Newstead, Victoria, Australia and then the method is
evaluated in 10 catchments along eastern Australia (Fig. 1). The
Loddon River catchment contains the Wombat flux tower station
upstream and is one of the hydrologic reference stations main-
tained by the Australian Bureau of Meteorology (BoM). The
observed ET and SM data from the Wombat station are used to
evaluate the satellite data.



Fig. 1. (a) Climatic zones of eastern Australia identifying the study catchments (by catchment ID) used in this study; (b) the Loddon River catchment at Newstead with
overlaid AWRA grids cells and digital elevation model.
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The Loddon River catchment at Newstead (1028 km2) is located
in temperate wet summer climatic region with an average annual
rainfall of 700 mm. Loddon River at Newstead is a big catchment
compared to other ten. Therefore, the calibration is performed at
a grid resolution of 0.25� � 0.25�. Most of the catchment is occu-
pied in two grid cells of 0.25� � 0.25� resolution mesh grid of Aus-
tralia (Fig. 1b). The lower grid cell is mostly covered by the
Wombat State Forest with dominant tree species Eucalyptus obli-
qua, Eucalyptus radiata and Eucalyptus rubida, whereas the upper
grid cell is mainly grasslands.

Ten evaluation catchments chosen are shown in Fig. 1a and
their details are summarized in Table 1. As they are small catch-
ments in comparison with the Loddon River catchment, calibration
is performed at a finer grid resolution of 0.05� � 0.05�.

2.2. Simplified AWRA-L model

The AWRA-L is a grid-based hydrologic model developed by the
Commonwealth Scientific and Industrial Research Organization
Table 1
Summary of 11 study catchments.

Station ID Gauging station River/creek Basin

407215 Newstead Loddon Rv Loddon Rv
112102 Upper Japoonvale Liverpool Ck Johnstone
116008 Abergowrie Gowrie Ck Herbert
141008 Kiels Mountain Eudlo Ck Maroochy
145107 Main Rd Br Canungra Ck Logan-Albert
211008 Avondale Jigadee Ck Macquarie Tuggerah Lak
212040 Pomeroy Kialla Ck Hawkesbury River Basin
219016 Cobargo Narira Rv Bega River Basin
226415 Traralgon South Traralgon Ck Latrobe
405251 Ancona Brankeet Ck Goulburn
410156 Book Book Kyeamba Murrumbidgee River
(CSIRO) and BoM, Australia (Renzullo et al., 2014; Van Dijk,
2010; Vaze et al., 2013). It is a one-dimensional model calculating
the flows and stores of water at the land surface on a daily time
step. Ground-based (e.g., from stream gauges and flux towers)
and remote sensing observations have been used in the model
development and for defining parameters to ensure consistency
in model estimates with the observable components of water
states and fluxes (Van Dijk, 2010).

Compared with other hydrologic/land surface models, AWRA-L
requires relatively small number of forcing variables for predicting
major water balance components such as streamflow, ET and SM.
The input forcing variables of the model are daily precipitation,
daily minimum and maximum temperature and solar radiation.
The model consists of three unsaturated soil layers, a groundwater
store and a separate routing water store where surface and subsur-
face flows join. In the AWRA-L version 0.5 lateral redistribution of
water between grid cells is not considered.

The original version of AWRA-L has two Hydrologic Response
Units (HRU) per each grid cell: deep-rooted and shallow-rooted
Area (km2) Climatic region Avg runoff (mm/day)

1028 Temperate wet summer 0.04
78 Tropical 5.10

124 Tropical 2.64
62 Temperate wet summer 0.96

101 Temperate wet summer 0.52
es 55 Temperate wet summer 0.38

96 Temperate wet summer 0.04
92 Temperate wet summer 0.21

128 Temperate wet summer 0.30
121 Temperate wet summer 0.16
145 Temperate wet summer 0.05
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vegetation. The fraction of each HRU and its land-cover-specific
parameters are determined based on the fraction of tree coverage
estimated from the historical AVHRR vegetation dynamics in
1981–2006 (Donohue et al., 2009). Parameters such as groundwa-
ter drainage coefficient and drainage fraction at field capacity are
calculated using the Budyko’s dryness index, which is the ratio of
mean annual precipitation to mean annual potential evapotranspi-
ration. Numerical solutions to Richard’s equation and Brooks–
Corey soil water relationships are used to describe soil–water drai-
nage in AWRA-L (Van Dijk and Marvanek, 2010). A Penman–Mon-
teith formulation of potential ET is used, and augmented by a
Priestly–Taylor formulation when wind, air pressure and vapour
pressure observations are not available (Van Dijk, 2010). The total
ET from the model is the sum of transpiration and evaporation
from rainfall interception, soil and groundwater (evaporation from
ground-water saturated areas). AWRA-L simulates the vegetation
cover changes in response to the soil water availability, and equi-
librium leaf biomass is calculated by considering the hypothetical
leaf biomass obtained when maximum transpiration rate is equal
to the maximum root water uptake.

To simplify the parameterisation of AWRA-L for the investiga-
tion, the model is modified in the current application to have only
one HRU per grid cell. That is, each grid cell is classified as either
shallow or deep-rooted vegetation depending on the tree fraction
and parameters are selected accordingly. If the tree fraction is
greater than 50% of a grid cell, its vegetation cover is considered
as deep-rooted else as shallow-rooted. A simplified conceptual dia-
gram of simplified AWRA-L model is shown in Fig. 2. Unlike many
other models, thickness of soil layers is not fixed in the original
AWRA-L; indicative soil layer thickness varies with respect to
water content at field capacity of that layer (SzFC). A topsoil layer
thickness of 50 mm is defined to approximate the sensing depth
of AMSR-E. For this study, the depth of top, shallow and deep soil
layers are fixed at 50 mm, 250 mm and 1200 mm by specifying the
parameter for available water content at field capacity, SzFC, as:
Fig. 2. Schematic diagram of AWRA-L single HR
SzFC ¼ FC
100

� Depth ð1Þ

where FC is the field capacity of soil in percentage and Depth is the
soil layer depth.
2.3. Data

Daily time series of precipitation, minimum and maximum
temperature and solar radiation from January 2003 to December
2010 derived from the Australian Water Availability Project
(AWAP) are used as input forcing (http://www.csiro.au/awap/).
AWAP data are available at a grid resolution of 0.05� � 0.05� for
across Australia.

RS ET and surface SM are used for model calibration. Daily esti-
mates of ET from CMRSET based on MODIS surface reflectance
(Terra satellite) in visible, near-infrared and shortwave infrared
range (Guerschman et al., 2009), and microwave SM retrievals
from the C- and X-band brightness temperatures of AMSR-E ver-
sion 5.0 (Owe et al., 2008; Su et al., 2013) are employed. Actual
ET derived from MOD43B4 MODIS product is available from Jan-
uary 2001 to December 2013.

The original AWAP and CMRSET data with 0.05� � 0.05�
(approximately 5 km � 5 km) resolution over Australia is aggre-
gated to the model grid scale 0.25� � 0.25� for calibration in the
Loddon River catchment at Newstead. For ten small catchments,
AMSR-E SM, which represents the volumetric water content of
top 1–2 cm of soil at a resolution of 0.25� � 0.25�, is downscaled
to 0.05� � 0.05�.

Daily streamflow records from the BoM website (http://www.
bom.gov.au/water/hrs/index.shtml) at the Loddon River at
Newstead (gauge identifier: 407215) is used for evaluating the
efficacy of the calibration scheme in predicting streamflow.
Daily ET and SM measures from the Wombat flux tower station
for the period 2010–2013 are used to assess the accuracy of
U model (modified from Van Dijk (2010)).

http://www.csiro.au/awap/
http://www.bom.gov.au/water/hrs/index.shtml
http://www.bom.gov.au/water/hrs/index.shtml


A. Kunnath-Poovakka et al. / Journal of Hydrology 535 (2016) 509–524 513
satellite data (http://ozflux.org.au/monitoringsites/wombat/index.
html). Streamflow records for other catchments were downloaded
from respective state water monitoring portal (https://www.dnrm.
qld.gov.au/water/water-monitoring-and-data/portal, http://real-
timedata.water.nsw.gov.au/water.stm, http://data.water.vic.gov.
au/monitoring.htm).

2.4. Sensitivity analysis

Our simplified AWRA-L model has 34 parameters, of which, 26
are land-cover-specific parameters. In order to reduce the number
of calibration parameters, a subset of parameters most sensitive to
ET, SM and streamflow is chosen using the variance-based Sobol’
sensitivity. In this algorithm total variance of model response is
disaggregated to the contributions from individual parameters
and parameter interactions (Sobol’, 1990). Parameter sensitivity
and the interaction sensitivity are normalized by the total output
variance to calculate a sensitivity coefficient between 0 and 1.

In this study, sensitivity analysis for ET, SM and streamflow are
performed separately for all the parameters. RMSD and the linear
correlation coefficient (R) are used as the evaluation criteria for
checking the contribution of each parameter variance on main out-
put, as they constitute the objective functions tested in this study.
The parameters to be calibrated are chosen based on the overall
parameter sensitivities to ET, SM and streamflow. Upper and lower
bounds of the parameters are adopted from Van Dijk (2010) and
continuous uniform distributions of parameters within the bounds
are sampled to test the sensitivity. Sensitivity tests are conducted
for the period 2003–2007.

2.5. Model calibration

The present study investigates the utility of RS ET and SM to cal-
ibrate model in the absence of streamflow measurement. Calibra-
tion is conducted on daily model run of AWRA-L for the period
2003–2007. Multiple objective functions are defined by combining
RMSD and R in ET and SM denoted by a, b, c and d as:

a ¼ NRMSDET ; b ¼ 1� RET ; c ¼ 1� RSM; d ¼ NRMSDSM ð2Þ
where NRMSDET and NRMSDSM represent the normalized root mean
square deviation between observed and simulated ET and SM. RMSD
is normalized by dividing it by the range of observed values as:

NRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðVobs � VsimÞ2

q
ðmaxðVobsÞ �minðVobsÞÞ ð3Þ

where Vobs and Vsim are the observed and simulated variables for the
time period n. Due to the different vertical support and inherent
systematic bias existing between the model (AWRA-L) and satellite
(AMSR-E) SM (Reichle and Koster, 2004), AWRA-L SM is rescaled
using a variance matching method (Brocca et al., 2010) to the
observed space before calculating RMSD. RET and RSM are the linear
correlation coefficients for ET and SM, respectively. We have set up
15 objective functions using the individual error metrics a–d and all
the possible combinations of them. The individual metrics, a–d, vary
between 0 and 1.

The SCE-UA global optimization method is adopted to derive
the optimal set of parameters for AWRA-L. In SCE-UA, calibration
starts with a population of points sampled randomly from a feasi-
ble parameter space. The points are divided into different com-
plexes and each complex is updated to evolve through a
statistical process called simplex. Shuffling of the population and
reassigning of the points are carried out periodically. As the analy-
sis progresses, the entire population try to converge towards the
global optimum (Duan et al., 1992). A total of 15 different calibra-
tions are repeated with 21 different initial parameter sets. Mean
and standard deviation of the calibrated parameters are used to
summarize the final parameters. Monthly surface and subsurface
runoffs generated using calibrated parameters are compared with
the monthly observed streamflow for evaluation. Calibrated model
predictions are also compared with predictions of the original ver-
sion of AWRA-L and our simplified version calibrated with stream-
flow which serve as benchmarks.

3. Results

3.1. Sensitivity analysis

The Sobol’ parameter sensitivity to streamflow, ET and SMwith-
out any objective function and in terms of RMSD and the linear cor-
relation is shown in Fig. 3 for two grid cells in Loddon Catchment. A
subset of nine parameters showed higher sensitivity to at least one
of those three outputs. The nine parameters (see Table 2) include
four land cover specific parameters (Tgrow, Tsenc, hveg and Ud0),
two parameters defining soil water drainage (beta and FdrainFC),
one parameter representing soil evaporation (FsoilEmax), intercep-
tion (S_sls) and transpiration (Vc). Land cover specific parameters
such as Tgrow, Tsenc and hveg showed large influence on ET and
SM predictions whereas they showed negligible influence to
streamflow. Streamflow was sensitive to Ud0 mainly in grid cells
with deep-rooted vegetation. In order to reduce the complexity
of calibration, we fixed four vegetation parameters based on the
information available from vegetation maps and some SCE-UA cal-
ibrations done with all nine parameters. After the nine-parameter
calibration, it was found that the optimized values of the four veg-
etation parameters can be logically in disagreement with each
other, due to reciprocity between vegetation parameters. Thus,
the parameter hveg is fixed using the global height of vegetation
map of Simard et al. (2011). Tgrow, Tsenc and Ud0 are also fixed
referring to the optimized values of the original model (Van Dijk,
2010).

The five parameters selected for calibration control main com-
ponents of model water balance such as soil water drainage, soil
evaporation, interception loss and root water uptake. Parameters
beta and FdrainFC effectively play the opposite roles in the soil
water process: low value of beta increases the groundwater drai-
nage whereas low value of FdrainFC decreases it. Soil evaporation
is constrained by FsoilEmax. Large interception loss is associated
with high S_sls while the transpiration loss is parameterised by
Vc. Both ET and SM were sensitive to most parameters; however
streamflow exhibited noticeable sensitivity to only beta and S_sls.
Since SM and ET are sensitive to similar set of parameters, calibra-
tion using only SM or ET can impart positive or negative effect on
the other variable.

3.2. Model calibration

The calibrated model predictions at the Loddon River catchment
were compared with the predictions given by the original AWRA-L
version 0.5 (‘control case 1’ marked by the dotted lines) (Van Dijk,
2010) and with predictions of the simplified model calibrated with
streamflow for the calibration period 2003–2007. In order to
understand calibration results better, we evaluated the relative
performance of the calibrated model using the 15 objective func-
tions against the control case. A calibration yielding predictions
with low RMSD and high correlation is considered ideal. The equa-
tion for relative performance (�� ) of RMSD and R was generated in
such way that positive deviation from control case represents per-
fect model, which helps visualize the results.

�� RMSD ð%Þ ¼ ðRMSDControl Case � RMSDSimplified AWRA-LÞ
RMSDControl Case

� 100 ð4Þ

http://ozflux.org.au/monitoringsites/wombat/index.html
http://ozflux.org.au/monitoringsites/wombat/index.html
https://www.dnrm.qld.gov.au/water/water-monitoring-and-data/portal
https://www.dnrm.qld.gov.au/water/water-monitoring-and-data/portal
http://realtimedata.water.nsw.gov.au/water.stm
http://realtimedata.water.nsw.gov.au/water.stm
http://data.water.vic.gov.au/monitoring.htm
http://data.water.vic.gov.au/monitoring.htm


Fig. 3. Sensitivity test results from Sobol’s algorithm without any objective function and with objective functions such as RMSD and linear correlation for ET, SM and
streamflow. The red arrow in figure represents the parameters selected for calibration. The green arrow represents the parameters fixed with available information. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
List of sensitive parameters. First five parameters are selected for calibration.

Parameters Description Range

beta Coefficient describing rate of hydraulic conductivity increase with water content 1–14
FsoilEmax Soil evaporation scaling factor when soil water supply is not limiting evaporation 0.2–1
FdrainFC_scale Drainage fraction at field capacity scaling factor 0.2–5
S_sls Specific canopy rainfall storage capacity per unit leaf area 0.03–0.8
Vc Vegetation photosynthetic capacity index per unit canopy cover 0.05–1
Ud0 Maximum root water uptake rates from deep soil 0.1–7
Tgrow Characteristic time scale for vegetation growth towards equilibrium 20–1000
Tsenc Characteristic time scale for vegetation senescence towards equilibrium 10–200
hveg Height of the vegetation canopy 0.1–50
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�� R ð%Þ ¼ RSimplified AWRA-L � RControl Case

RControl Case
� 100 ð5Þ
Results of RS based calibration are compared with AWRA-L version
0.5 and predictions of simplified model calibrated with streamflow
in Sections 3.2.1 and 3.2.2.
3.2.1. Control Case 1 – AWRA-L model version 0.5
Fig. 4 presents the scatter plot between RMSD and correlation of

streamflow, ET and SM. Each plus sign in the figure corresponds to
the mean RMSD and R for the parameters calibrated with an
arbitrary choice of 21 different initial search positions. For most
objective functions tested, improvement (or deterioration) in
RMSD in streamflow (RMSDQ) was paired with deterioration



Fig. 4. Scatter plot of RMSD and R between observed and calibrated model predictions of (a) streamflow, (b) ET and (c) SM. The black dotted line in the graph represents the
RMSD and R of respective variables given by optimized parameters of original AWRA-L model version 0.5.

Fig. 5. Relative performance of RMSD and R between observed and calibrated model
predictions of streamflow (top panel), ET (middle panel) and SM (bottom panel)
with respect to those of original AWRA-L model version 0.5. Positive values for both
RMSD and R represent improvement.
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(or improvement) in correlation (RQ). Nevertheless, 7 out of 15
objective functions performed better than the original model
(Fig. 4). Ideally, the best objective function is the one producing
small RMSD and high correlation against observed streamflow
compared with the control case (‘control case’ marked by the dot-
ted lines), falling in the upper left quadrants of Fig. 4. The objective
function NRMSDET (a) or NRMSDET + NRMSDSM (a + d) yielded high
correlation but large RMSD values for streamflow. Considering
the direct contribution of ET to the catchment water balance, this
may indicate biases (mean annual or seasonal) in the RS ET. Objec-
tive functions examining correlation and RMSD of SM give good
results in terms of RMSD but exhibited the lowest correlation. Rel-
ative performance of calibrated models for prediction of stream-
flow, ET and SM from the control case is shown in Fig. 5.

With regard to ET predictions (Fig. 5), no objective function gen-
erated improved ET in terms of both RMSD and correlation com-
pared to the ET predictions of original model. Even though the
original AWRA-L model was designed to provide a good estimate
of streamflow, the parameterisation of the model resulted in good
ET predictions as well. This gives an insight to the limitation of the
simplified single-HRU model. In the original model, each grid cell
can have two HRUs defined by their tree cover fraction (i.e.,
deep-rooted or shallow-rooted vegetation). The simplified model,
however, has one HRU per grid cell, determined by tree cover frac-
tion (>50% tree cover is defined as deep-rooted vegetation). During
testing we observed that, unlike SM and streamflow, ET was
mainly sensitive to vegetation parameters such as Tgrow, Tsenc
and hveg (Fig. 3). It is therefore likely that the poor prediction of
ET is due to the single-HRU model’s limited representation of spa-
tial heterogeneity over the larger grid cells (0.25� � 0.25�). SM pre-
dictions of the simplified model were similar to those of the control
case. All objective functions, other than the exclusive ET-based
objective functions, showed some improvement from the control
case, while ET-based calibrations showed minor deterioration.
Solely SM-based calibration improved RMSDSM by 22% and RSM by
10%.

Objective function composed of NRMSDET or 1 � RET (or both)
resulted in the best RMSD and correlations for ET predictions while
the results for SM predictions remained relatively unchanged for
all the objective functions. Objective function NRMSDET overesti-
mated the streamflow mainly during high-flow periods (Fig. 6a).
Calibration reduced the RMSD between modelled and observed
ET by increasing the soil water drainage to groundwater with a
high value of FdrainFC, the drainage fraction. Low value of FsoilE-
max reduced the soil evaporation to minimum (Table 3). Finally



Fig. 6. Streamflow predictions for different objective functions. (a) NRMSDET, (b) 1 � RET, (c) 1 � RSM, (d) NRMSDSM, (e) NRMSDET + (1 � RET) + (1 � RSM) + NRMSDSM and (f)
(1 � RET) + (1 � RSM).

Table 3
Median of optimized parameter values for different objective functions.

Objective functions Grid cells/HRU Beta FsoilEmax FdrainFC_scale S_sls Vc

Streamflow Calibration – 13.90 0.2 4.29 0.78 0.05

AWRA-L Version 0.5 HRU 1 4.5 0.2 0.0685 0.1 0.35
HRU 2 4.5 0.5 0.0685 0.1 0.65

NRMSDET Grid 1 6.75 0.22 3.81 0.04 0.05
Grid 2 7.52 0.20 2.87 0.03 0.28

1 � RET Grid 1 6.69 0.20 4.19 0.03 0.13
Grid 2 13.95 0.20 2.72 0.03 0.56

1 � RSM Grid 1 13.80 0.96 0.20 0.37 0.99
Grid 2 13.36 0.83 0.23 0.61 0.97

NRMSDSM Grid 1 13.55 0.96 0.20 0.37 0.98
Grid 2 13.05 0.87 0.23 0.62 0.97

NRMSDET + (1 � RET) + (1 � RSM) + NRMSDSM Grid 1 1.10 0.25 0.30 0.03 0.10
Grid 2 11.60 0.35 0.35 0.03 0.33

(1 � RET) + (1 � RSM) Grid 1 1.09 0.25 0.23 0.03 0.11
Grid 2 13.30 0.38 0.33 0.03 0.41
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high groundwater discharge and surface runoff ended in a highly
overestimated streamflow. However, this calibration resulted in
highest correlation to streamflow. In comparison to this, calibra-
tion with only RET (Fig. 6b) improved the RMSDQ by increasing
the transpiration loss (high value of Vc). Calibrations that combine
correlation and NRMSDET (a + b) enhanced RQ and provided RMSD of
almost equal value to the original AWRA-L model.
Three of 15 objective functions (c, d and c + d) are exclusively
based on SM and they resulted in similar performance in ET and
streamflow predictions: namely, large underperformance of ET
prediction, degraded RQ, and improved RMSDQ. Calibration with
SM enhanced the RMSD and R of top-layer SM by increasing the
interception loss with a high value of s_sls (canopy storage capacity
for unit leaf area), which reduced surface runoff. Most water



Fig. 7. Relative performance of RMSD and R between observed and calibrated model
predictions of streamflow (top panel), ET (middle panel) and SM (bottom panel)
with respect to predictions of the simplified AWRA-L model calibrated with
streamflow. Positive values for both RMSD and R represent improvement.
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reaching the surface and soil was lost as ET to atmosphere due to
high FsoilEmax (maximum soil evaporation fraction) and Vc (photo-
synthetic capacity index). High beta and small FdrainFC decreased
groundwater drainage and thereby reduced the groundwater dis-
charge. The low surface runoff and groundwater discharge resulted
in streamflow predictions with very low RMSD (2.95 mm). Unlike
other calibrations, objective functions including either RMSDSM or
RSM ended in poor RQ (e.g., RQ = 0.18 for c). High amount of trans-
mission losses reduced or abandoned the groundwater contribu-
tion to stream and quick surface runoff becomes the sole
conferrer for streamflow giving an impression of lag in streamflow
predictions (Fig. 6c and d). This also indicates that slow groundwa-
ter flows play a major role in matching peak runoff.

Calibration results clearly demonstrate how each parameter
adapts to redistribute total water among different components of
model water balance based on the objective function (Table 3).
Vegetation plays an important role in governing interception,
evaporation and soil water drainage (Andersen et al., 2002). The
high value of s_sls and Vc in grid 2 comparing to grid 1 for most
of the optimization experiments contributed to high interception
and transpiration loss in grid with deep-rooted vegetation.
Reciprocity between the parameters was also noted during calibra-
tion. Beta and FdrainFC can adjust themselves to control the
groundwater flow, and both FsoilEmax and Vc control the total ET
output.

The overestimated runoff in calibration using objective
functions a and a + d was due to increased baseflow as a result of
high groundwater drainage (high value of FdrainFC). When RMSD
decreased, the baseflow component also decreased due to
enhanced transmission losses. Some cases, (e.g., c, d, c + d, and b
+ c + d) exhibited shifted runoff peaks through high transmission
loss and zero baseflow, resulting in decreased correlation. The cal-
ibration parameters behaved in the opposite ways in exclusive ET
and SM based calibrations. None of the calibration experiments
resulted in improvements in both RMSD and R for all the three vari-
ables in comparison with control case. Therefore, the choice of
objective function is subjective depending on the final goal of cal-
ibration. If time of peak flow/correlation in runoff is important, a or
a + d will be preferred. Calibration with b + c + d or b + c or purely
SM-based calibrations will be the best option when quantity of
water is important over peaks.

Nevertheless, some objective functions were providing
improved SM and streamflow predictions and ET close to the con-
trol case. The objective function b + c considering correlation of ET
and SM, gave about 36% improvement in RMSDQ and 30% improve-
ment in RQ with slight improvement (3–7%) in both RMSDSM and
RSM (Fig. 5). Similarly the objective function a + b + c + d provided
good prediction of streamflow in terms both RMSD (13% improve-
ment) and correlation (52% improvement) with about 5% increase
in RMSDSM and RSM. For both calibrations correlation of evapotran-
spiration remained almost unchanged with 25–30% deterioration
in RMSD (Fig. 5). This can be considered as one of the best objective
function as it provides good improvement in streamflow without
major diminution in ET.

3.2.2. Control Case 2 – simplified AWRA-L model calibrated with
streamflow

The objective function ‘1-NSE’ (Nash–Sutcliffe Efficiency) was
used to calibrate simplified AWRA-L against streamflow.
Relative performance of the AWRA-L model calibrated with RS ET
and SM in comparison with prediction of the model calibrated
with streamflow is shown in Fig. 7. Almost all the objective func-
tions provided very high correlation with streamflow in compar-
ison with the control case, however no objective function
resulted in a reduced RMSD. Since the objective function in control
case use NSE, it is obvious that it will improve mainly RMSD
(2.47 mm/month) than correlation (0.14) of streamflow. Thus, the
streamflow prediction of the control case looked similar to predic-
tion of streamflow from SM based calibrations (Fig. 6c and d).

Overall, improved correlation in ET coincides with increase in
correlation of streamflow. NRMSDET-based objective function can
be useful when the timing of peak flows is an important criterion
for calibration. ET is more relevant for monthly estimates of
streamflow as it has direct impact on baseflow. Accurate specifica-
tion of the evaporative loss term is essential to get accurate
discharge prediction. Studies have already suggested that proper
pre-processing of derived satellite products is critical for the
efficacy of calibration (Van Dijk and Renzullo, 2011). Although
the calibration with NRMSDET produced best prediction of evapo-
transpiration, comparison of ground observation of ET with
CMRSET in Fig. 11 reveals that CMRSET underestimated ET in the
study area over more than 50% of the period of 2010–2012.
Guerschman et al. (2009) suggest an error in CMRSET of 10–20%.
It appears that the overestimated streamflow by calibrated model
is due to the underestimated ET used for calibration. In Sec-
tion 3.3.1, we perform a synthetic experiment to investigate the
impact of biases (either positive or negative) in RS ET on calibrated
streamflow predictions.

Results have shown that the calibration experiments do not
result in improved ET prediction compared with the control case
1. This may be the result of modification of the AWRA-L model
from two to one HRU. Uncertainties associated with the input
and calibration data can also result in erroneous prediction. To bet-
ter understand the effect of uncertainty associated with model
structure and input forcing, a set of synthetic experiments was
conducted, discussed in detailed in Section 3.3.2.

3.2.3. Application in other catchments
To assess how the AWRA-L model calibrated by RS data per-

forms elsewhere, we applied the same calibration scheme to ten
small catchments (Fig. 1) in eastern Australia. RMSD and R of
resulted streamflow predictions are compared with control case
1 (AWRA-L model version 0.5) and control case 2 (simplified
AWRA-L model calibrated with streamflow). The catchments
112102, 116008, 141008 have relatively high average runoff as
they have a daily average streamflow equal to or greater than
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1 mm/day during the calibration period. Catchments 145107,
211008 and 219016 are treated as catchments with medium aver-
age runoff (daily average flow 0.3–1 mm/day), and the remaining
catchments (212040, 226415, 405251 and 410156) as low average
runoff catchments (daily average flow lower than 0.3 mm/day)
(Table 1).

Fig. 8 presents the relative performance of correlation and
RMSD of streamflow with respect to the control case 1 for different
catchments. For catchments with high average runoff, calibration
with NRMSDET resulted in the best streamflow predictions. With
the exception of catchment 145107, ET-based calibration provided
improved or equally good predictions of streamflow for medium
flow catchments, and there are other multi-objective calibrations
that give better streamflow predictions as well (e.g., b + c, a + c
+ d). Low flow catchments behaved in similar manner to the Lod-
don River catchment, i.e., improvement in correlation of stream-
flow with decrement in RMSD for objective function NRMSDET.
Some other objective functions (e.g., a + c + d, b + c, b + c + d) per-
formed better than NRMSDET calibration in low flow catchments.

Relative change in performance of RMSD and R between the
observed and calibrated model predictions of streamflow with
respect to RMSD and R of simplified AWRA-L model calibrated with
streamflow is shown in Fig. 9. Streamflow predictions for the
objective function NRMSD-ET provided similar prediction as the
control case 2 in the high flow catchments (0–5% decrement). As
seen in the control case 1 except for catchment 145107, NRMSDET

was the best for streamflow predictions in medium flow catch-
ments as well. In case of low flow catchments, multi-objective
calibration performs better than NRMSDET calibration.
Fig. 8. Relative performance of RMSD and R between observed and calibrated model pred
0.5 for ten catchments. Positive values for both RMSD and R represent improvement.
Streamflow predictions for the objective function NRMSDET for
all ten catchments are shown in Fig. 10. Calibrated model predic-
tions and the control case 2 were very similar for high flow catch-
ments and medium flow catchments. Control case 1 was slightly
underestimated in catchments 116008 and 141008. In the catch-
ment 145107, calibrated model slightly overestimated streamflow.
Streamflow was always overestimated in the low flow catchments,
but showed good correlation with the observed streamflow and
this result is similar to the result obtained in the Loddon River
catchment (average daily runoff of 0.04 mm/day). As seen in the
Loddon River catchment, underestimated RS ET can be a possible
reason for overestimation of streamflow in low average flow
catchments.

3.3. Synthetic experiments

3.3.1. Synthetic ET data
A synthetic experiment was set up to understand the influence

of bias in observed ET on streamflow estimation. For the experi-
ment, synthetic truth optimum parameter set (htruth) was gener-
ated and run the AWRA-L model. The predicted streamflow and
evapotranspiration are considered ‘truth’ (Eq. (6)). Synthetic obser-
vations of ET (ETobs) to calibrate the model have been generated by
perturbing truth predictions of ET (ETtruth) considering error model
for ET. From Fig. 11, presenting the error between Wombat flux
tower ET with CMRSET for the period from 2010 to 2012, it is evi-
dent that error model is not following any particular pattern. A
synthetic set of ET observations was generated by adding bias
(bt) and white noise (xt) to the ‘truth’ ET. A maximum bias of
ictions of streamflow with respect to RMSD and R of original AWRA-L model version



Fig. 9. Relative performance of RMSD and R between observed and calibrated model predictions of streamflow with respect to RMSD and R of simplified AWRA-L model
calibrated with streamflow for ten catchments. Positive values for both RMSD and R represent improvement.
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10% of average synthetic truth ET and error term follows a normal
distribution with zero mean and standard deviation of ground
observed ET was added.

cET truth
t ¼ hðXt ; h

truthÞ ð6Þ
ETobs

t ¼ cET truth
t þ bt þxt ð7Þ

Model was calibrated by each realization of synthetically gener-
ated ET observations using NRMSDET as objective function. Monthly
streamflow prediction for each calibration was plotted and ana-
lyzed against the synthetic truth predictions (Fig. 12). As expected,
a negative bias in ET results in overestimated streamflow whereas
positive ET bias in underestimated streamflow and was more visi-
ble during the peak-flow periods. It was noted that small changes
in daily ET has notable effect on streamflow predictions. Bias in
streamflow was high when a negative bias is added to ET than pos-
itive bias, which illustrates that calibration with an underesti-
mated ET can yield greater bias in streamflow (Fig. 13).

The results of synthetic experiments are consistent with the
real calibration experiment with NRMSDET (Fig. 6a). Underesti-
mated satellite ET is the key reason for overestimation of stream-
flow. The predicted streamflow is higher than the observation
only during heavy flow periods in real experiments as well. Thus,
from this experiment we can conclude that a high quality ET
product can improve the predictions of streamflow. This strong
dependence between ET and streamflow give insight to new
research area, in which observed streamflow can be used for
correcting RS ET.
3.3.2. Forcing and model structural error parameterization
Another set of synthetic experiments were performed to under-

stand the effect of forcing error and model structural error on
calibrated AWRA-L results. The errors in model predictions mainly
arise from input forcing, model parameters, initial state variables
and model structure. These errors are usually quantified by incor-
porating unbiased synthetic noise to forcing variables, models
states or parameters. Lognormal multiplicative error model for
rainfall is widely used to model forcing uncertainty (Alvarez-
Garreton et al., 2015; Crow et al., 2011; DeChant and
Moradkhani, 2012; Li et al., 2014). In this study we perturbed rain-
fall data to quantify input uncertainty and assumed that error due
to model structure and model parameters are accumulated in SM
state as in most of the data assimilation studies (Alvarez-
Garreton et al., 2015; Li et al., 2014; Ryu et al., 2009).

We adopted multiplicative error model for rainfall (P) data.

P0 ¼ epP ð8Þ
ep � lnNð1;r2

pÞ ð9Þ

where ep follows a lognormal distribution with mean l and stan-
dard deviation rp. l was set be 1 to create an unbiased rainfall
and rp was empirically defined as 0.25 (25% error) as in study by
DeChant and Moradkhani (2012). For each day top soil moisture
state was updated by adding zero mean gaussian distribution with
standard deviation (rs) 3 mm/day

es � Nð0;r2
s Þ ð10Þ

The model was calibrated against synthetic truth ET (ETtruth) and
SM (SMtruth) generated using synthetic truth parameter set
employed in Section 3.3.1. The model has tested for all the 15
objective functions set up for this study. Fig. 14 depicts the RMSD
and R between calibrated model predictions and synthetic truths.
RMSD for streamflow varies around 2.5 (mm/month) with high cor-
relation (close to 0.8) for all the objective functions except for a + d.



Fig. 10. Streamflow predictions for the objective function NRMSDET, in ten small catchments.
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As seen in real calibration experiments, ET predictions improved
for objective functions formed on RMSDET and RET. All the experi-
ments resulted in increased RSM, however, lowest RMSDSM was
attained only for objective functions using SM. These results
revealed that addition of forcing error and model structural error
to calibration affects streamflow in similar manner for most of
the experiments whereas, quality of ET and SM predictions varies
based on the objective function used.

Comparing the fifteen different objective functions, the objec-
tive functions using RMSD and correlation in ET (e.g., a, b, a + b, a
+ b + d) performs better than the other objective functions after
inclusion of input and model errors to calibration. Besides the
improvement in streamflow, those calibrations resulted in
improved ET predictions. This indicates that calibration based on
ET is less vulnerable to the errors in calibration. Study also affirms
that ET is more pertinent in providing accurate monthly or long
term streamflow predictions.

4. Discussion

Calibrating hydrologic models with ET and SM has important
implications for streamflow prediction in ungauged catchments.



Fig. 11. Difference between flux tower ET and the CMRSET.

Fig. 12. Streamflow (SF) predictions for synthetic ET observations.

Fig. 13. RMSD between synthetic truth streamflow and streamflow predictions of
the model after calibration to synthetic ET observations.
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A widely used method to predict streamflow at ungauged or
sparsely gauged catchments is the regionalization of parameters
or flow indices (Abdulla and Lettenmaier, 1997; Jakeman et al.,
1992; Parajka et al., 2007; Post et al., 1998; Sefton and Howarth,
1998; Viney et al., 2009; Wagener and Wheater, 2006; Wagener
et al., 2004; Zhang et al., 2011; Yadav et al., 2007). Many studies
described the limitations of parameter regionalization approaches.
Limitations include the inappropriateness of transferring some
watershed physical characteristics between potentially unique
watersheds (Wagener and Montanari, 2011) and the influence of
model structural uncertainty on the optimality of parameters
spreading to other watersheds (Wagener and Wheater, 2006). As
an alternative to the regionalization, model calibration proposed
in this study can provide the optimized parameters for ungauged
catchment using RS observation from the same catchment. In con-
trol case 1 above, regionalized parameters for the original AWRA-L
version 0.5 over Australia are used. Our results demonstrate, for
most of the catchments tested, improved streamflow predictions
for more than one objective functions based on RS ET and SM in
comparison with control case 1.

It is also shown that quality ET for calibration is critical to pro-
duce reliable streamflow predictions. ET and streamflow comprise
the major output fluxes in the steady-state rainfall–runoff pro-
cesses. For a given rainfall, increase or decrease in either flux will
be reflected on other one. Therefore quality of ET products plays
a major role in obtaining accurate streamflow predictions. The
accuracy of the satellite products can vary greatly across large
regions due to climatic variability and heterogeneity in land sur-
face conditions, such as topography and vegetation cover (Barrett
and Renzullo, 2009; Campo et al., 2006; Parajka et al., 2009). For
example, previous studies have reported ET is mainly overesti-
mated in wet catchments or wet periods and underestimated in
dry catchments or dry periods (Mu et al., 2011). Furthermore,
MODIS actual ET product may fail to capture spatial heterogeneity
when meteorological input features coarse spatial resolution (Long
et al., 2014; Yang et al., 2015). Synthetic experiments conducted in
Section 3.2.1 show that underestimated ET used for calibration has
more impact on streamflow predictions than overestimated ET.
The result implies that the decrement in streamflow due to overes-
timated ET in wet catchments may not be as high as increment in
streamflow in dry catchment due to the underestimated ET. This is
consistent with the real calibration based on NRMSDET, high flow/
wet catchments yields more accurate streamflow predictions
whereas in low flow/dry catchments such as the Loddon River
catchment calibration by underestimated ET results in significantly
overestimated streamflow. Incorporation of spatially and tempo-
rally varying meteorological variables, particularly wind speed,
would greatly improve ET estimation, leading to more accurate
hydrological modelling (McVicar et al., 2012a, 2012b). In our inves-
tigation we adopted the AWRA-L model version 0.5 default day-
time average wind speed value of 3.5 m/s across the Australian
continent and for all time. This value is higher than that reported
by McVicar et al. (2008), however we note that their value repre-
sents the average of day and night time wind observations.

Calibration by RS SM appears to work better in low flow catch-
ments. Improvement in SM predictions is not significant as the
simulated SM for control cases and AMSR-E SM are in good agree-
ment. Due to the difference between the top surface soil layer of
simplified AWRA-L model (5 cm) and the sensing depth of AMSR-
E (1–2 cm), rescaling was applied to make them comparable. How-
ever, SM rescaling can potentially impart additional uncertainty to
SM calibrations by amplifying SM retrieval errors (Draper et al.,
2009). Ideally, calibration based on good estimates of ET in low
flow catchments would result in more accurate prediction due to
the direct reciprocality between ET and streamflow.

For multi-objective calibration it is possible that the optimal set
of parameters lies on the Pareto front over varying climate condi-
tions (Gupta et al., 1998). This possibility needs to be further inves-
tigated in the future. Lastly, since AWRA-L is a physically based
landscape model, the proposed calibration scheme can be trans-
ferred to the other compatible hydrologic models. More studies
should follow to examine the transferability of this scheme and
to explore the use of different RS products for hydrological model
calibration.



Fig. 14. RMSD and R of streamflow, ET and SM between synthetic truths and predictions of synthetically calibrated AWRA-L model.
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5. Conclusion

The current study analyzed the ability of RS ET (CMRSET) and SM
(AMSR-E) in calibrating a grid based hydrologic model, AWRA-L.
Efficacy of the calibration was evaluated on the accuracy of stream-
flow predictions. A total of 15 objective functions considering RMSD
and correlation of ET and SM were used to calibrate the model.

Most objective functions performed well in the catchments
with medium to high average runoff. In particular, calibration
based on NRMSDET provided the best streamflow predictions at
high flow catchments, which is as good as prediction from model
calibrated with streamflow (control case 2) and better than predic-
tions of the original AWRA-L model version 0.5 model (control case
1). In catchments with low average runoff, NRMSDET based calibra-
tion exhibited best correlation to streamflow however RMSD was
high. This is attributed to the underestimated RS ET in dry catch-
ments. Other multi-objective calibrations that performed better
in low flow catchments. The objective function NRMSD of ET would
be a better choice when timing of peak flow is important. Further
comparison of CMRSET with flux tower ET in the dry Loddon River
catchment showed that CMSRET was underestimated on most of
the days in minimal amount. Synthetic experiments showed that,
negatively biased (underestimated) ET has more detrimental effect
on the model calibration and subsequent streamflow prediction.
Synthetic calibration experiment showed that the ET-based cali-
bration was more resistant to errors in calibration. Based on the
synthetic and the real calibration experiments, we conclude that
calibration with accurate ET measurements is a robust way to pro-
duce accurate streamflow predictions.

This study on the use of RS data for hydrologic model calibra-
tion has important implications to the catchments with sparse or
no gauging. The calibration performed gives an insight to the scope
of RS data in hydrological model calibration. Referring to the strong
dependence between the streamflow and evapotranspiration
streamflow can be utilized for satellite ET bias correction.
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