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Executive summary 

This report answers the following key research question: Does adoption of improved cassava 

varieties have any significant causal effects on productivity and poverty? The results of this 

project showed that about 60% of the farmers growing cassava have adopted improved 

varieties. However, when adoption was measured using DNA-fingerprinting approach, it was 

found that about 66% of the farmers have adopted improved cassava varieties. Despite higher 

adoption rates, the intensification rate of improved cassava varieties was found to be about 

38%, which is quite modest. The productivity effect of adoption of improved cassava varieties 

was estimated using alternative measures of adoption (using self-reported adoption data from 

household surveys and DNA-fingerprinted adoption data) as well as specifications (OLS and 

IV estimation strategies). Using OLS estimation strategy, we found that the effect of adoption 

of improved cassava varieties on cassava yield is about 55%. Further, IV estimation results 

suggest a 64% productivity gain as a result of adoption of improved cassava varieties. Using a 

poverty line of $1.25 per person per day, adoption has led to a 4.7% and 4.02% poverty 

reduction in the closed economy and small open economy case, respectively. This poverty 

reduction role of adoption at $1.25 per person per day poverty line implies that 6.2%-7.15% of 

the rural poor cassava producers have escaped poverty in the current year due to adoption of 

improved cassava varieties. Similarly, at the poverty line of $1.9 per person per day poverty 

line, adoption has led to a 2.06% to 2.92% poverty reduction in a small open economy and 

closed economy, respectively. These changes correspond to a 2.9%-4% poverty reduction 

among rural poor cassava producers.   
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1. General Introduction 

It is widely recognized that improved agricultural technologies play a critical role in 

agricultural transformation and economic growth in developing countries. Applied correctly, 

adoption of improved agricultural technologies should, ceteris paribus, increase overall 

productivity and provide additional income for farmers. In doing so, technology adoption can 

accelerate economic growth, create marketing opportunities and help millions of farmers to 

move out of poverty traps (Wossen et al., 2017). In this regard, the dissemination and diffusion 

of improved crop varieties has been cited as the primary pathway through which technological 

change in the agricultural sector can bring about productivity gains (Gollin et al., 2002). 

Understanding how and why households adopt improved varieties and their subsequent effects 

on poverty reduction and productivity gains is, therefore, important to disseminate technologies 

that are appropriate to the conditions of smallholder farmers.  

The poverty impact of adoption of improved varieties can be direct or indirect. While the 

former impact operates at the household level, the latter impact works through regional, 

national or economy wide growth effects. In other words, the direct (micro-level) effects are 

realized via rising yields per cultivated area, lowering the risk of crop failure and generating 

year-round employment while the indirect (market-level) effects are materialize through 

ameliorating economic growth (Zeng et al., 2015). This report focuses on the adoption of 

improved cassava varieties in Nigeria—the largest cassava producer in the world. Cassava is 

the most widely cultivated root crop in terms of area allocation and the number of growers in 

Nigeria (Abdoulaye et al., 2013). The importance of cassava is increasing in recent years and 

is fast replacing yam and other traditional staple foods as a famine reserve and insurance crop 

against hunger (Wossen et al., 2017). The crop is important not only as a food but also as a 

major source of income for rural households. As a cash crop, cassava generates income for the 

largest number of households compared to other staples (Wossen et al., 2017), which justifies 



7 
 

our focus on the crop. Improving agricultural productivity—in particular, cassava productivity-

through efficient dissemination of improved varieties is therefore central for poverty reduction 

efforts in Nigeria. Cognizant of this fact, the International Institute of Tropical Agriculture 

(IITA) initiated cassava research in the early 1970s with a focus on developing varieties with 

resistance to major diseases such as cassava mosaic virus disease (CMD) and cassava bacterial 

blight (CBB). Consequently, IITA has developed and released more than 46 cassava varieties 

with multiple disease resistance and high yield potentials. In addition, IITA has developed good 

agronomic practices and biological control and integrated pest management options to reduce 

losses due to insect pests. Despite these major efforts made by IITA and partners to develop 

and disseminate a growing number of improved cassava varieties, there is still a lack of 

comprehensive and rigorous evidence of adoption and impacts of these varieties on poverty 

reduction. Without documenting adoption rates, it will therefore be very difficult to justify any 

investment for further development and dissemination efforts of improved cassava varieties. 

Against this backdrop, this report entitled “impact of improved cassava varieties in Nigeria” 

answers the following policy relevant research questions in Nigeria.  

i) What is the extent of adoption of individual improved varieties as well as improved 

varieties of cassava as a whole? 

ii) What are the determinants of uptake and spread of improved varieties of cassava? 

iii) Does adoption of improved cassava varieties have any significant causal effects on 

crop yields and poverty? If so, what are the aggregate impacts of adoption of improved 

cassava varieties on poverty reduction in Nigeria?        

The rest of the report is organized as follows: The second section provides an overview the 

data collection process, the sampling strategy and some descriptive results from the household 

survey. The third section elaborates the process of DNA-based varietal identification. The 

fourth section presents the empirical econometric strategy employed for estimating the 



8 
 

productivity and poverty reduction effects of adoption of improved cassava varieties. Section 

five then presents the main results of our analysis, focusing on the effect of adoption on 

productivity and poverty.  The last section concludes with implications for policy and provides 

a list of open questions for further research. 

1.1 Overview of the project and Household level results 

1.1.1 Developing the sampling frame 

The list of enumeration areas (EAs) for conducting the national census in Nigeria was obtained 

from the National Population Commission of Nigeria (NPCN). The EA list was obtained for 

the 16 states that contribute at least 80% of the total production of cassava in Nigeria. The 

states cut across four geopolitical regions (Table 1).  

Table 1. Study regions and states in Nigeria. 

s/n Region States 

1 Southwest Ogun 

2 Southwest Ondo 

3 Southwest Oyo 

4 Southwest Ekiti 

5 Southwest Osun 

6 North Kaduna 

7 North Nasarawa 

8 North Taraba 

9 North Benue 

10 North Kogi 

11 Southeast Enugu 

12 Southeast Imo 

13 Southeast Anambra 

14 South-South Cross River 

15 South-South Akwa Ibom 

16 South-South Delta 

Relying on agricultural development programs (ADPs) in the targeted states, a prior visit was 

made to each of the selected EAs to develop the lists of all cassava growing households. This 

list provided a sampling frame for the selection of at least 50 cassava growing households in 

each EA, of which five household heads and two spouses were interviewed. This exercise 

facilitated the unbiased selection of samples for the final interviews. 
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1.1.2 Sample selection 

In this project, a multistage stratified sampling design was employed to select the sample 

households. First, the list of Enumeration Areas (EAs) for conducting national census in 

Nigeria was obtained from the National Population Commission (NPC). The list of EAs by 

Local Government Areas (LGA) was obtained for the 17 states that together account for 80% 

of the total cassava production in Nigeria. These states were grouped into four geopolitical 

zones in a stratified sampling design (Table 1). From each region 100 EAs were selected using 

probability proportional to size (PPS) sampling approach. Finally, from each EA, random 

samples of 5 cassava growing households were selected for interview.  

 

Figure 1: Study areas of CMS. The points on the map represent the distribution of the HHs 

This gave a total of 625 households per region and a total of 2,500 farming households. For 

each surveyed household, information on self-reported treatment status (adoption of improved 

cassava varieties) was collected. This was done at the variety and plot level as many of the 

households own more than one plot of cassava and grow many different varieties within the 

same plot.  In addition, from each identified variety in the farm plot, samples of cassava leaves 

were collected for DNA-fingerprinting analysis. In addition to treatment status, data on socio-

economic/demographic characteristics of the households as well as other outcomes of interest 
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such as production, expenditure on food and non-food items were collected. The DNA-

fingerprinting process is one of the most novel aspects of this project. To date, several varietal 

identification methods for tracking adoption of improved varieties have been conducted. 

However, most of these methods have inherent uncertainty levels. Compared to other 

conventional varietal identification methods, the DNA-fingerprinting technique offers a 

reliable method to accurately identify varieties grown by farmers, thereby allowing credible 

measurement of adoption of improved varieties by farmers. Unlike phenotype-based methods, 

DNA-based varietal identification is independent of environmental conditions or plant growth 

stage. However, undertaking a credible DNA-based varietal identification is not trivial. It 

requires establishing a reference library and collecting samples from farm plots for DNA 

extraction and genotyping-by-sequencing (Rabbi et al., 2015). The detail procedure used for 

DNA-fingerprinting for this study is explained in section 3.  

1.2 Household survey results 

1.2.1 Adoption of improved cassava varieties 

Fig. 2 presents adoption rates of improved cassava varieties at country and regional levels based 

on farmers self-reported adoption status. On average, about 60% of farmers have adopted 

improved cassava varieties. Adoption rates also show a large spatial heterogeneity. In 

particular, adoption rates reach as high as 79% in the Southwest region of the country while it 

is only about 31% in the Southeast region of the country. 
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Figure 2: Adoption level based on farmers-self reported adoption status 

In what follows, we also report the adoption rate based on intensity of adoption at the plot level 

(Fig. 3). Intensity of adoption is calculated by considering the area under improved cassava 

varieties out of the total cassava area. The result shows that despite high rates of adoption the 

intensity of adoption is very low. The current adoption rate, based on intensity of adoption, 

stands at 38% while using farmers’ self-reported data. Regional distribution of adoption rates 

further reveals that the intensity of adoption rate is the highest in the South-West region. The 

lowest intensity rate is reported in the South-East. These results are not surprising as IITA is 

located and has been operating in the south-western part of the country for the last 50 years. 

The South-South region of the country has the second highest adoption rate. This might be due 

to the presence of national research centers in the region. 
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Figure 3: Adoption level based on farmers-self reported adoption status 

1.2.2 Access to improved planting materials 

Access to planting materials is an important issue for policy makers as it is the most important 

entry point for promoting improved cassava varieties. In this regard, this project collected data 

on access to planting materials from both formal and informal sources. What is really striking 

is that more than 70% of the farmers reported that their primary source of improved planting 

material is social networks (friends, relatives and neighbours). This shows that social norms, 

like the norm of reciprocity, play a prominent role in the distribution of planting material. This 

highlights the importance of social networks in contexts where farmers face limited access to 

credit and formal seed markets. Other important sources included extension and government 

sources (13%). Few farmers reported that they obtained planting material through 

nongovernmental organizations, processors, research institutes, the cassava market, and 

farmers’ associations. Each of these sources accounted for less than 6% as a source of improved 

planting material. Disaggregated results over the different regions of the country further 

suggest the same trend where planting materials are being distributed by informal social 

networks. The contribution of local markets is rather insignificant. In addition, the role of 
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private processor networks seems as insignificant as that of local markets in terms of the 

distribution of planting material.  

Table 2. Source of planting material for improved cassava varieties. 

 

In addition, the replenishment rate of planting material seems to be very low. Our survey results 

reveal that only 6% of adopters managed to replenish their planting material and about 94.1% 

have never done so (Table 3). This result is directly linked to our previous finding about the 

lack of access to planting material from formal sources. Developing a formal seed system is 

therefore crucial since access to planting material is a requisite for the adoption of productive 

and yield-enhancing varieties. 

Table 3. Planting material replenishment rate 

 Full sample  North  Southwest Southeast  South-South  

Never renewed 

(%) 94.08 94.81 94.54 88.4 95.3 

 

1.2.3 Distribution of yield based on self-reported adoption status 

Using GPS-based area measurement and self-reported adoption status as a bench mark, we 

calculated yield (output per unit of area). According to our data, average cassava yield stands 

at 14.7 t/ha. However, average cassava yield among adopters (16.1 t/ha) is significantly higher 

than for non-adopters (11.3 t/ha) and this difference is statistically significant at 1% 

significance level. However, this difference in cassava yield cannot simply be attributed to 

  

Full 

sample 

North 

 

Southwest 

 

Southeast 

 

South-

South 

 

Family/Friends/Relatives/Farmers/N

eighbors 70.4 67.8 79.8 63.1 66 

Extension/Government 12.6 13.2 8.1 14.8 16.0 

Cassava market 5.7 6.3 2.5 12.8 5.2 

Research institutes 4.6 5.1 4.8 3.0 4.7 

NGO 3.7 3.5 2.5 4.4 4.7 

Processors 2.4 3.3 2.1 1.5 2.3 

Farmer associations 0.3 0.3 0.2 0.5 0.5 

Others 0.3 0.5 0.0 0.0 0.7 



14 
 

adoption by looking at mean differences between adopters and non-adopters. In particular, this 

observed yield difference between adopters and non-adopters is only an indicative of 

correlations and cannot be used to make causal inferences regarding the impacts of adoption 

on cassava yields without controlling for confounding factors. Further Figure 4 below shows 

the distribution of cassava yield for adopters and non-adopters. The left tail of the distribution 

suggests that a significant number of non-adopters have lower yield compared to adopters. 

Further the Kolmogorov–Smirnov equality-of-distributions test suggests that the two 

distributions are different (Equity of the two distributions is rejected at 1% as the p-value on 

Combined K-S is less than 0.01).  

 

Figure 4: Distribution of cassava yield  
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2 The process of DNA-fingerprinting 

For this project, DNA was extracted following the DNA extraction protocol (Dellaporta et al., 

1983) from a total of 7376 genotypes collected from 2500 household’s including 89 samples 

for quality control (clones genotyped in duplicate). In house modified protocol (Rabbi et al., 

2014) that enables to extract up to 10 plates of 96 samples each per day was implemented. All 

the extracted DNA samples were quantified using spectrophotometer and agarose gel 

electrophoresis for quality and quantity assessments. Furthermore, test digestion with 

restriction enzyme was performed for 10% of the samples extracted as suggested by Genomic 

Diversity Facility (GDF) at Cornell University for standard Genotyping by Sequencing (GBS) 

library preparation.  DNA samples with high concentration were diluted to 1000ng/l. All 

extracted samples that pass the minimum quantity requirement (300ng/l) were shipped to 

GDF for genotyping by sequencing (GBS). The ApeKI restriction enzyme (recognition site: 

G|CWCG) that produces less variable distributions of read depth was used for the GBS library 

preparation and therefore a larger number of scorable SNPs in cassava were used. Eighty 96-

plex GBS libraries were constructed following the standard procedure (Elshire et al. 2011) and 

sequenced at the GDF using the Illumina HiSeq2500.  

The raw read sequences obtained in the current study including accessions in the reference 

library (Rabbi et al 2015) and duplicate of 89 samples for quality control were processed 

through a TASSEL-GBS discovery pipeline developed using TASSEL 5.0 (Glaubitz et al. 

2014).  SNP calling was performed based on TASSEL-GBS production pipeline by aligning 

the tags to the most recent cassava reference genome version 6.0. The 89 randomly selected 

and genotyped in duplicates were used to determine a distance threshold between genotypes 

that can help to declare a distance at which two or a set of genotypes are similar or distinct. A 

frequency distribution of distance (IBS) was plotted and resulted in bimodal distribution of 

pairwise genetic distance. The bimodal distribution shows the frequency distribution of the 
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data where one of the curves shows artefact that could occur due to genotyping error. The point 

between the bimodal distributions was therefore declared as a distance threshold where any 

pair of genotypes or set of genotypes below the point are identical.  

Once the distance threshold is determined, the distance-based hierarchical clustering, a 

pairwise genetic distance (identity-by-state, IBS) matrix were computed for all the genotypes 

including the intentional duplicates and accessions from the reference library (Rabbi et al, 

2005). A Ward’s minimum variance hierarchical cluster dendrogram were built from the IBS 

matrix. The critical distance threshold determined was applied for the whole data and 

individuals belonging to the same cluster group below the threshold were considered as the 

same genotypes, i.e. if any of the genotypes from the reference library fall in the cluster of 

different individuals representing the same variety then it will be identified based on the variety 

from the reference (Details about the whole DNA-finger printing process is documented in 

Wossen et al., 2017) 

2.1 Key results of the DNA-finger printing analysis 

Of the total 7376 farmers’ genotypes collected in the current study only 4822 matched 

genotypes in the reference library, whereas 2554 did not match any of the genotypes there. On 

the other hand, 1663 of the 3891 genotypes in the reference library did not match any of the 

varieties collected from the farmer’s field. Altogether a total of 114 different varieties were 

identified. Among these, 46 varieties matched the genetic gain cluster group (improved variety 

group) whereas 68 matched landrace groups. In our analysis only 18 matched officially 

released varieties, and 15 matched varieties that are improved and released. Among the 

officially released varieties only 14 were from the genetic gain group whereas the remaining 4 

cultivars represented landrace collections evaluated on experimental plots and officially 

released.  
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In addition to the level of genetic matching of the farmers’ varieties to the genotypes in the 

reference library it is also important to have variety release information. This will help to have 

clear figures on further analysis on the adoption of improved varieties based on DNA 

fingerprinting. In the current study, more than 35% of the total number of samples collected on 

the farmers’ fields represented “improved varieties” which are categorized in three different 

groups: improved and officially released, improved but not officially released, and released but 

matching those accessions from the landrace. In addition, about 33% of the varieties matched 

the genetic gain (GG) cluster group. However, only 12.50% matched improved and officially 

released varieties. In addition, 12.56% of the cultivars from farmers’ fields matched those 

landrace collections that went through field evaluation and official released. A significant 

percentage (10.28%) of the farmers’ varieties also represent improved varieties in the GG 

group that were not officially released but made their way to farmers’ fields (Table 4).  

Table 4. Percentage of improved and/or released varieties on the farmer’s field based on DNA 

fingerprinting. 

Varieties GG  LR  Total % Cumulative % 

Improved AND released 919 3 922 12.50 12.50 

Improved NOT released 267 491 758 10.28 22.78 

Single accessions in GG 

cluster 

110   110 1.49 24.27 

Not in Library, in GG cluster 598   598 8.11 32.38 

Matching LR, in GG cluster 55   55 0.75 33.12 

Released but TMEB1, 

TMEB2. 

  926 926 12.55 45.68 

Local varieties   4007 4007 54.32 54.32 

Total 1949 5427 7376 100.00   

GG =genetic gain; LR = landrace; 

Singular varieties not matching any of the genotypes but found in the GG group represent 

1.49% of the collection. Similarly, about 8.11% represent varieties matching the GG cluster 

group but none were in the reference library. The larger proportion (54.32%) represents local 

varieties.   
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2.2 Farmers’ variety matching released varieties  

IITA, in collaboration with national agricultural research systems (NARS), has officially 

released 46 cultivars. However, in the current study conducted in the main cassava growing 

regions of Nigeria a large number (28) of the 46 cultivars were not observed on farmers’ fields, 

suggesting that these were either dis-adopted or no initial dissemination effort had been made. 

Among the 28 varieties not found on farmers’ fields, 11 were not in the reference library, 

whereas none of the varieties matched the remaining 17 which are in the library. Of the 

officially released varieties only 18 were encountered on farmers’ fields and five were the 

dominant varieties growing in the study regions with a frequency greater than 100. These are 

TMS30572, MS-3 (Odongbo), MS-6 (Antiota), TMS 50395, and TME 419 in descending order 

of their frequencies on farmers’ fields.  

2.3 Combining self-reported and DNA-finger printed adoption data 

After identifying varieties using DNA-finger printing, we then matched farmers own self-

reported and DNA-based varietal identification to identify the extent of adoption of improved 

cassava varieties. As mentioned before, adoption rate stands at 60% while using self-reported 

adoption status from the household survey. Herein, we calculated adoption rate of improved 

cassava varieties using our DNA-finger printed adoption data. However, classifying varieties 

into improved and landraces is not straightforward even after DNA fingerprinting due to issues 

of measurement and library matching. We therefore develop two scenarios based on commonly 

used criteria for the identification of varieties into improved and non-improved.  Table 5 reports 

the varietal groups as well as definitions for each group as obtained from DNA fingerprinted 

results.  
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Table 5. categories used for defining improved varieties based on DNA fingerprinting results. 

Serial 

no. 

Variety groups Definition 

1 Improved and Released This category includes varieties that match improved and 

released varieties in the reference library. 

2 Improved not Released This group of varieties matches improved varieties but are not 

in the officially released list. 

3 Single accessions in GG 

cluster 

These are accessions that genetically do not match any specific 

clone in the collection but cluster with improved varieties in 

the reference library. This can happen when cross-pollinated 

(or even self-pollinated) seeds germinate in farmers’ fields and 

the farmers eventually propagate these as a variety. 

4 Not in Library, in GG 

cluster 

No library can completely encompass every possible genotype 

found in household farms. As this is a clonal crop, the breeding 

program cannot maintain every genotype that it produced or 

even disseminated because of natural attrition over time. So 

where we found clones that did not match any specific 

genotype in the library, the next best thing was to use the 

cluster analysis method and find where they belong. In this 

case, these accessions clustered with the improved variety 

collection we have in the library. 

5 Matching LR, in GG 

cluster 

The “landraces” (LR) are accessions whose name start with 

prefix "TMEB" and were gathered during germplasm 

collection expeditions in Nigeria and other African countries 

over the years. Many of these are obviously landraces but 

some, in reality, are improved varieties which had lost their 

original names, were collected again, and brought back to 

IITA. Because of their unknown identities, these accessions are 

usually placed in the landrace collection, even though some are 

improved. 

6 Released but TMEB1, 

TMEB2 

Among the officially released varieties are some genotypes that 

were not developed through formal breeding processes (i.e., 

not from breeder crosses). After several years of purification 

and testing, these landraces were found to have superior 

characteristics and were recommended for release. In some 

instances these genotypes were transferred from one 

country/region to another which would not have occurred 

without the intervention of formal breeding programs like 

IITA. A good case is TMEB419 which was brought to IITA 

cassava breeder brought from Togo and is now grown in 

Nigeria and other countries. It is an officially released variety. 

7 Local varieties  These are landrace varieties 

 

When DNA-based varietal identification is used, the adoption rate is 66.  
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3 Methodology 

Impact evaluation is crucial for attributing observed impacts (changes in poverty, income, 

productivity, etc) to an intervention, in our case to adoption of improved cassava varieties. 

However, attributing observed impacts to an intervention is not trial in the absence of random 

assignment of adoption status. In the context of randomized control trial (RCT) impacts can 

easily be attributed to an intervention (adoption) as households are assigned to control and 

treatment groups randomly. As such, adopters and non-adopters will be similar in both 

observed and unobserved characteristics except that adopters have received the intervention (in 

this case improved cassava varieties) and non-adopters did not. Therefore, we can be certain 

that the observed impacts are indeed the result of adopting improved cassava varieties, and not 

some other mediating factors. However, identification of the causal effect of adoption in 

observational (non-experimental) cases is not trivial due to self-selection/endogeneity bias. As 

such, accurate measurement of impacts requires controlling for both observable and 

unobservable characteristics between adopters and non-adopters. In other words, identifying 

the counterfactual (what would have happened to adopters had they not adopted improved 

cassava varieties) would be crucial. However, constructing a reliable counter factual is 

challenging since one cannot observe the outcome of adopters had they not been an adopter. 

As such, the issue of counterfactual becomes effectively a missing data. The best way of 

tackling this missing data problem is to identify a group of non-adopters (controls) who mimics 

the behaviour of adopters with one key difference: the control households differ from adopters 

only in adoption status. Controlling for all observed and unobserved differences between 

adopters and non-adopters is important as such factors may affect observed impacts of 

adoption. In the context of non-experimental data, a wide variety approaches  have been 

utilized for constructing  counterfactual groups, the most common  approaches being matching 

techniques, difference in difference (especially with fixed effects in panel data) and 
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instrumental variable (IV) regression approaches. In this section, we present the main 

methodological approaches employed in this report for establishing the causal impact of 

adoption of improved cassava varieties on productivity, poverty and food security. The first 

sub-section- where we addressed household level treatment effects- focuses on matching and 

instrumental variable regression approaches. The implication of misclassifying adoption status 

is also discussed in this section. In the second sub-section, we then present the methodological 

approach used for estimating the aggregate (market-level) effects of adoption on poverty. 

3.1 Approaches for estimating household level treatment effects 

3.1.1 Matching approaches 

The most common matching techniques in the impact evaluation literature are the propensity 

score matching (PSM) and inverse probability weighted adjusted regression (IPWRA) 

approaches. The basic idea behind PSM is to match each adopter with a similar non-adopter 

and then measure the average difference in the outcome variable between adopters and non-

adopters. In other words, we are interested in the question, “How would the outcome of 

adopters (in terms of productivity, income, poverty etc) have changed had adopters chosen not 

to adopt improved cassava varieties?” In this case, the average treatment effect on the treated 

(ATT) is defined as: 

 𝐴𝑇𝑇 = 𝐸[𝑌(1) − 𝑌(0)|𝑇 = 1] 1.  

Where 𝑌(1) and 𝑌(0) are outcome indicators (in our case, productivity and welfare level of 

households with and without adoption respectively). 𝑇  is a treatment indicator that takes a 

value of 1 if a household is an adopter and 0 otherwise. However, we can only observe 

𝐸[𝑌(1)|𝑇 = 1] in our data set and 𝐸[𝑌(0)|𝑇 = 1] is missing. In essence, we cannot observe 

the productivity and welfare level of adopters had they been non-adopters, after they become 

adopters. Simple comparison of productivity and welfare level of adopters and non-adopters 
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introduces bias in estimated impacts due to self-selection. The magnitude of self-selection bias 

is formally presented as: 

 𝐸[𝑌(1) − 𝑌(0)|𝑇 = 1]= ATT+ 𝐸[𝑌(0)|𝑇 = 1 − 𝑌(0)|𝑇 = 0] 2.  

 

The right hand side term after ATT represents the magnitude of the selection bias. By creating 

comparable counterfactual households for adopters, PSM reduces the part of the bias due to 

observables. Once households are matched with observables, PSM assumes that there are no 

systematic differences in unobservable characteristics between adopters and non-adopters. 

Given this conditional independence assumption and the overlap conditions, ATT is then 

computed as follows: 

 
𝐴𝑇𝑇 = 𝐸[𝑌(1)|𝑇 = 1, 𝑝(𝑥)] − 𝐸[𝑌(0)|𝑇 = 0, 𝑝(𝑥)] 3.  

The above equation states that ATT is a propensity score weighted mean difference between 

adopters and non-adopters over the common support area. However, ATT from PSM can still 

produce biased results in the presence of misspecification in the propensity score model 

(Robins et al., 2007; Wooldridge, 2007; Wooldridge, 2010). A potential remedy for such 

misspecification bias is to use IPWRA. According to Wooldridge (2010), ATT will be 

consistent despite misspecification of either the treatment or the outcome model, but not both. 

As a result, the IPWRA estimator has the double-robust property that ensures consistent results 

as it allows the outcome and the treatment model to account for misspecification. Following 

Imbens et al., (2009), ATT in the IPWRA model is estimated in two steps.  Suppose that the 

outcome model is represented by a linear regression function of the form 𝑌𝑖 = 𝛼𝑖 + 𝜑𝑖𝑥𝑖 + 𝜀𝑖 

for  𝑖 = [0 1] and the propensity scores are given by 𝑝(𝑥; 𝛾). In the first step, we estimate 

the propensity scores as  𝑝(𝑥; 𝛾̂).  In the second step, we then employ linear regression to 

estimate (𝛼0, 𝜑0) and (𝛼1, 𝜑1)   using inverse probability weighted least squares as 

Self-selection bias 
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 𝑚𝑖𝑛
𝛼0,𝜑0

∑(𝑌𝑖 − 𝛼0 − 𝜑0

𝑁

𝑖

𝑥𝑖)/𝑝(𝑥, 𝛾̂)  𝑖𝑓 𝑇𝑖 = 0 4.  

 𝑚𝑖𝑛
𝛼1,𝜑1

∑(𝑌𝑖 − 𝛼1 − 𝜑1

𝑁

𝑖

𝑥𝑖)/𝑝(𝑥, 𝛾̂)  𝑖𝑓  𝑇𝑖 = 1 5.  

The ATT is then computed as the difference between Eq. (4) and Eq. (5).  

 𝐴𝑇𝑇 =
1

Nw
∑[(𝛼̂1 − 𝛼̂0) − (𝜑̂1 − 𝜑̂0)

𝑁𝑤

𝑖

𝑥𝑖  ]  6.  

where, (𝛼̂1, 𝜑̂1) are estimated inverse probability weighted parameters for adopters while (𝛼̂0, 

𝜑̂0) are estimated inverse probability weighted parameters for non-adopters. Finally, Nw stands 

for the total number of adopters. 

Yet, matching techniques—regardless of adjustments for misspecification bias— can only 

overcome the selection bias that arises from observable characteristics. When the cause of 

selection bias is unobservable heterogeneity, such as farmer's inherent skill, results based on 

matching techniques will be biased. As such, proper causal identification requires controlling 

for both observable and unobservable factors that influence adoption decision. Hence, 

estimates of both PSM and IPWRA can yield biased estimates due to biases stemming from 

unobservable factors that affect adoption decision and the outcome indicators simultaneously. 

A method that takes into account both observed and unobserved sources of heterogeneity 

between adopters and non-adopters is an IV regression approach. However, finding an 

instrument that satisfies the orthogonality condition, a variable that is strongly correlated with 

adoption decision but that does not directly affect outcome indicators (productivity and welfare 

etc), is a challenge.   

3.1.2 Instrumental variable regression approach 

Instrumental variable (IV) methods are widely used to identify causal effects in the presence 

of endogeneity problems in key variables of interest. Herein, we presented the IV regression 
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approach employed in this report for estimating the causal effect of adoption (the endogenous 

treatment variable) on productivity, poverty and food security. Following Zeng et al., (2015) 

and Suri (2011), we assume that a particular farm household adopts improved cassava varieties 

based on expected benefits. Assume that the net befit a given farmer derives from adoption and 

non-adoption of improved cassava varieties is given by 𝜋𝑎  and 𝜋𝑛 respectively. Adoption 

implies that the utility of expected net-return from adoption is higher than from non-adoption: 

 {𝑬[𝒖(𝝅𝒂)] >  𝐸[𝒖(𝝅𝒏)]} 7.  

The net return from adoption depends on the structure of the return and the cost. On the revenue 

side we assume that the final output price of improved and traditional cassava varieties will be 

the same. However, productivity is expected to be higher with adoption. Therefore, on the 

revenue side, adoption decision depends on expected yield. On the cost side, adoption and non-

adoption entail different cost structures in terms of labor, cash and information. For example, 

adoption may require more labor, cash, information and knowledge and some fixed costs of 

acquiring seeds and planting material. Hence, we assume that adoption of improved cassava 

varieties is costly. The return from adoption is then specified as follows: 

 𝑬[(𝝅𝒂)] = 𝑬[(𝑷𝒀𝒂)] − [𝑪𝒂] 8.  

Where, 𝑃 is price of cassava, 𝑌𝑎, yield with adoption, 𝐶𝑎  includes all production costs incurred 

with adoption (this includes for example, transport cost,  acquiring knowledge and information 

about new cassava varieties, costs of fertilizer and pesticides etc). The above equation shows 

that costs are incurred ex-ante based on expected revenue. Therefore, the ex-ante variable and 

fixed costs play a significance role in the decision to adopt improved cassava varieties.  

Similarly return without adoption is given as  

 𝑬[(𝝅𝒏)] = 𝑬[(𝑷𝒀𝒏)] − 𝑪𝒏 9.  
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Where  𝑌𝑛 & 𝐶𝑛 are the expected yield and costs without adoption. Given that the farmer 

adopts improved cassava varieties when the utility of expected benefit from adoption is higher 

than the utility of expected returns without adoption, adoption decision implies,  

 𝑬[𝒖(𝝅𝒂)] −  𝑬[𝒖(𝝅𝒏)]>0 10.  

With some algebraic manipulation and taking price as a numeraire, it can be shown that 

adoption decision depends on yield and cost differences between improved and traditional 

cassava varieties. 

 𝑬[(𝒀𝒂 − 𝒀𝒏)] > (𝑪𝒂 − 𝑪𝒏) 11.  

Equation 11 above implies that improved cassava varieties will be adopted if the yield gain 

from adoption is higher than the cost of adoption. As such by capturing yield differences 

between adopters and non-adopters through a production function and cost differences through 

a cost function, one can then capture the benefits from adoption. Following Zeng et al., (2015) 

and Suri (2011), the production function for cassava production can be specified in the 

following way: 

 𝐘𝐚 = (𝛂𝐚 + 𝛝 + 𝛃𝐚𝐗 + 𝛍𝐚𝐲) 

𝐘𝐧 = (𝛂𝐧 + 𝛃𝐧𝐗 + 𝛍𝐧𝐲) 

12.  

where ϑ is the plot-specific percentage yield gain with adoption; X is the input vector with 

coefficients β and μy is the idiosyncratic error term. In the potential outcome framework 

proposed by Rubin (1974), the above production function can further be expressed as: 

 
𝐘 = 𝐓𝐘𝐚 +(𝟏 − 𝐓)𝐘𝐧 

 
13.  

Where T is a treatment status which takes a value of one if a given farmer is an adopter of 

improved cassava varieties and zero otherwise. Given Eq. (12 &13) above, the production 

function can then be expressed as follows:  

  𝒀 = 𝜶𝐚 + 𝐓(𝜶𝐚 − 𝜶𝐧) + 𝐓𝝑 + 𝜷𝐧𝑿 + 𝐓𝐗(𝜷𝐚 − 𝜷𝐧) + 𝝁  14.  
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Parameter estimates of the above production function (𝜗) measures the yield advantage of 

improved cassava varieties over traditional cassava varieties. Similarly, change in the 

distribution of costs as a result of adoption can also be estimated using a cost function in the 

following manner: 

 𝐂𝐚 = (𝛅𝐚 + 𝛔 + 𝐏𝛄𝐚 + 𝛍𝐚𝐜) 

𝐂𝐧 = (𝛅𝐧 + 𝐏𝛄𝐧 + 𝝁𝐧𝐜) 

15.  

Where P is a vector that includes input prices and other key socio-economic indicators. 𝜇c 

denotes the idiosyncratic error term. Following the same potential framework approach, the 

treatment effect (effect of adoption on cost changes) can then presented as follows: 

  𝑪 = 𝜹𝐚 + 𝐓(𝜹𝐚 − 𝜹𝐧) + 𝐓𝝈 + 𝜸𝐧𝑷 + 𝐓𝐏(𝜸𝐚 − 𝜸𝐧) + 𝝁  16.  

The parameter 𝜎 is interpreted as the plot-specific treatment effect in terms of percentage cost 

increase due to adoption. In both the yield and cost treatment effect models, the treatment (the 

decision to adopt improved cassava varieties) is endogenous (as farmers self-select into 

adoption). In fact, there are several reasons for the adoption decision to be endogenous. First, 

governments may target households that are more/less productive. Hence, it is likely that 

adoption decision is correlated with initial productivity levels, poverty status, household 

income, or underlying features that influence these outcome variables. Second, there is a 

possibility that adopters share common intrinsic characteristics, such as poor/better farming 

skills and management abilities, which are likely to be related to poverty status and productivity 

levels. As such, causal identification of adoption impacts requires an instrument that satisfies 

the orthogonality condition (a variable that is strongly correlated with adoption decision but 

that does not directly affect productivity and welfare outcome indicators). In our case, the IV 

approach relies on a two-stage estimation strategy. In the first stage, a probit/logit model is 

used to predict the probability of adoption. In the second stage, predicted probabilities from the 

first stage are used as instruments in the outcome equation. This procedure is very efficient and 
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it is preferred to other IV methods when the endogenous variable is binary as it explicitly 

considers the binary nature of the endogenous variable (Wooldridge, 2007). 

3.2 Capturing market level effects of adoption 

To measure overall welfare effects of technology adoption, indirect effects of adoption need to 

be accounted for. To capture indirect effects, we first need to look into the different pathways 

through which adoption may affect welfare of adopters and non-adopters. Generally, there are 

three pathways through which an exogenous change in agricultural productivity (such as 

adoption) may affect the distribution of outcomes such as productivity, income and poverty. 

These include:  

i. Effects through output price changes:  If adoption increases productivity, it affects local 

supply and hence reduces local prices. However, such changes in food price benefits 

only net-food buyers 

ii. Effects through farm profits: If outputs expand faster than price fall, then adoption 

increases the income level of net-food sellers 

iii. Effects through rural wage—general equilibrium effect 

For now, we focus on the first two cases, ignoring the effect of wage adjustments. Estimating 

the aggregate effect of adoption in the above two cases requires the following steps: 

i. Estimating treatment effects in terms of yield and cost changes due to adoption 

ii. Estimating income effects (producer and consumer surplus changes) based on yield and 

cost treatment effects and allocate the resulting income changes (producer and 

consumer surplus) to households 

iii. Estimating the counterfactual distribution based on changes in producer and consumer 

surplus 

From the above discussion two points are apparently crucial: Accurate estimation of the 

treatment effects and allocation of effects (producer and consumer surplus) to appropriate farm 
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households. Estimation of treatment effects was discussed in the previous section. In this 

section, we focus on how the allocation of changes into appropriate households is done. 

Allocation of adoption induced income changes to farm households largely depends on the 

nature of market the farm-households face (open/closed economy) and the market position of 

a given farmer (net buyer/seller) of the product under consideration. Following Zeng et al., 

(2015), we considered two scenarios for allocating adoption induced income changes to 

appropriate households: The small open economy and closed economy case. In the small open 

economy case, the price that prevails at the local market would be the same as the prevailing 

world market price for cassava. Therefore, any productivity shock (increased in production of 

cassava due to adoption) would not affect the price that the consumers and producers face in 

the local market. In this case, welfare effects will only be accrued to producers (simply due to 

productivity gains). In the closed economy case, local supply shocks will necessarily affect the 

local market price. As such, the price of cassava would undoubtedly decline as a result of 

adoption due to supply shifts; leading to potential benefits (loses to both producers and 

consumers (Zeng et al., 2015). These benefits from adoption can however be different for 

consumers and producers (adopters). For producers (net-sellers), the effects can only be 

positive if the per-unit production cost reduction is larger than the price fall. However, 

consumers (net-buyers) will always benefit due to lower prices (higher purchasing power). 

3.2.1 Estimation of aggregate effects in a closed-economy 

Estimating the poverty impacts of adoption in a closed-economy requires understanding:  

i. Treatment effects (effects on productivity and costs) to determine the per-unit cost 

reduction as a result of adoption 

ii. Demand and supply elasticities  

In the case of closed economy, estimating a composite demand function which takes into 

account demand structures facing cassava produces is crucial to determine the aggregate 
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economic benefits. One approach that captures aggregate benefits of adoption through 

aggregation of farm-level effects is the economic surplus model (ESM, hereafter). The ESM 

captures adoption induced supply responses (yield gain, per unit cost reductions etc) through a 

simple shift in the supply function that faces producers (Alston et al., 1995). Assuming a 

downward-sloping demand curve, such a shift reduces the price received by cassava 

producers/price paid by consumers. Fig. 5 below shows the ESM in a closed economy. Point b 

shows observed cassava production at price level of (Pobs). Point b reflects observed output 

level after adoption of improved cassava varieties (i.e, the supply curve shifts from S* to Sobs 

as a results of adoption). Assuming a downward-sloping demand curve (D), a supply shift from 

S* to Sobs leads to a decline in price from Pct to Pobs and the corresponding price changes from 

Qct to Qobs. However, counterfactual price and quantity (Pct and Qct) cannot be observed and 

can be calculated algebraically based on Pobs,  Qobs, magnitude of the supply shift and the size 

of supply (ε) and demand elasticity (η) estimates. 

 

          Figure 5:  Ex-post economic surplus changes in a closed economy. 
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In the above figure, yield and cost treatment effects are used to derive the cost reduction per 

unit of output due to adoption (the k-shift). In particular, following Alston et al. (1995) the k-

shift parameter can be calculated as follows:  

  𝐤 = (
𝝑

𝜺
−

𝝈

𝟏 + 𝝑
) × adoption rate 17.  

Where 𝝑 is the effect of adoption on cassava yield (Average treatment effect of adoption on 

yield, Eq. 14) and  𝝈 is the cost increase due to adoption (Average treatment effect of adoption 

on cost of production for cassava, Eq. 16). Using the estimated k-shift parameter, observed 

prices (𝑷𝒐𝒃𝒔), supply elasticity (ε) and demand elasticity (η), the counterfactual price level (𝑷𝒄𝒕) 

that would have existed without adoption of improved cassava varieties is calculated as follows 

(c.f. Zeng et al., 2015) 

 𝑷𝒄𝒕 = 𝑷𝒐𝒃𝒔 (
𝜺 + 𝛈

𝜺 + 𝛈 − 𝐤𝛆
) 18.  

Output level of cassava in the absence of adoption (counterfactual production, Qct) is calculated 

by subtracting aggregate production gains from adoption (i.e. treatment effects on yield 

aggregated over the adopted area) from observed cassava production (Qobs).  Following Alston 

et al. (1995), the changes in producer and consumer surplus as a result of adoption of improved 

cassava varieties are calculated as follows: 

 ∆𝐏𝐒 = 𝑷𝒄𝒕𝑸𝒄𝒕(𝒌 − 𝒁)(𝟏 + 𝟎. 𝟓𝐙𝛈) 19.  

          ∆𝐂𝐒 = 𝑷𝒄𝒕𝑸𝒄𝒕𝒁(𝟏 + 𝟎. 𝟓𝐙𝛈) 20.  

Where  𝒁 equals the proportional reduction of market price, (Pct – Pobs)/ Pct. After calculating 

producer and consumer surplus changes, the next step involves allocating these surplus changes 

to appropriate farm household to establish household level effects of adoption. The allocation 

of surplus changes depends on the market position of farmers: net-seller/net buyers of cassava 

products. For net-buyers (consumers), consumer surplus gains due to a lower out price will be 

allocated using their cassava purchased quantities from total purchase as a weight. Similarly, 
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for net-sellers (producers), producer surplus is allocated to households based on their adoption 

status using their sales quantities from total production as a weight. Following the approach of 

Zeng et al. (2015), we decompose the aggregate producer surplus gains into adoption and price 

effects (∆𝐏𝐒 = ∆𝐏𝐒𝒂𝒅𝒐𝒑𝒕𝒊𝒐𝒏 + ∆𝐏𝐒𝒑𝒓𝒊𝒄𝒆). Producer surplus changes as a result of price effect can 

be calculated as follows: 

 ∆𝐏𝐒𝒑𝒓𝒊𝒄𝒆 =
𝒌𝜺𝑷𝒐𝒃𝒔𝑸𝒄𝒕

𝜺 + 𝛈 − 𝐤𝛆
(

𝒌𝜺𝑷𝒐𝒃𝒔

𝟐𝑷𝒄𝒕(𝜺 + 𝛈 − 𝐤𝛆)
− 𝟏) 21.  

Then it follows that: 

 ∆𝐏𝐒𝒂𝒅𝒐𝒑𝒕𝒊𝒐𝒏 = ∆𝐏𝐒 − ∆𝐏𝐒𝒑𝒓𝒊𝒄𝒆 22.  

3.2.2 Estimation of aggregate effects in a small open-economy 

In the case of a small open economy, market prices don’t change as a result of domestic supply 

shocks (changes in cassava productivity as a result of adoption of improved cassava varieties) 

as producers and consumers face the world market price for cassava. The idea is that, in the 

presence of trade, any domestic shock (as far as the country is small, in terms of trade volume), 

don’t affect market supply and hence price. In this context, the impact of adoption on poverty 

can easily be computed using yield and cost treatment effect estimates (by calculating the 

distribution of observed and counterfactual income).  

 ∆𝑰𝒊𝒋 = 𝐏(𝒀𝒊𝒋
𝒐𝒃𝒔 − 𝒀𝒊𝒋

𝒄𝒕) − (𝑪𝒊𝒋
𝒐𝒃𝒔 − 𝑪𝒊𝒋

𝒄𝒕) 23.  

Where 𝐏 is the unchanging cassava of price; (𝑌𝑖𝑗
𝑜𝑏𝑠, 𝑌𝑖𝑗

𝑐𝑡) as well as (𝐶𝑖𝑗
𝑜𝑏𝑠 − 𝐶𝑖𝑗

𝑐𝑡) are observed 

and counterfactual yield and cost pairs of plot j for household i. In both small open and closed 

economy case, poverty is calculated using the Foster, Greer, Thorbecke (1984), poverty 

indices. The poverty effect of adoption of improved cassava varieties is calculated by 

comparing counterfactual and observed poverty rates (based on counterfactual and observed 

income levels).   
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4 Results  

4.1 Key descriptive statistics 

Table 6 presents key socio-economic and plot- level variables. Household characteristics such 

as age, household size and education, membership in different social groups as well as wealth 

indicators such as livestock ownership measured in terms of total livestock units (TLU) are 

included to control for possible heterogeneities between adopters and non-adopters. We 

hypothesize that these household characteristics affect farmers' adoption decisions as well as 

their productivity levels 

Table 6: Descriptive statistics of socio-economic characteristics 

 
Full 

sample 

(N=5123) 

Adopters 

(N=2836) 

Non-

adopters  

(N=2287) 

Mean diff 

Household Size 4.58 4.77 4.35 0.42*** 

Education (years of schooling) 8.8 9.1 8.4 0.71*** 

Marital status (1=married, 0=otherwise) 0.88 0.90 0.85 0.05*** 

Age (measured in years) 51.7 51.1 52.6 -1.5*** 

Sex (1= female, 0= otherwise) 0.88 0.91 0.85 0.06*** 

Livestock ownership (TLU) 0.75 0.89 0.56 0.33*** 

Access to extension (1= village has access, 0= otherwise) 0.49 0.61 0.35 0.26*** 

Access to credit (1=village has access, 0= otherwise) 0.66 0.72 0.58 0.14*** 

Mobile phone ownership (1=owns, 0 otherwise) 0.97 0.98 0.96 0.02*** 

Television ownership (1=owns, 0 otherwise) 0.75 0.74 0.75 -0.006 

Membership in credit and saving groups (1=yes, 0=no) 0.34 0.37 0.30 0.07*** 

Membership in cooperatives (1=yes, 0=otherwise) 0.25 0.29 0.19 0.1*** 

Membership in cassava growers association (1=yes, 0=no) 0.20 0.26 0.14 0.12*** 

Good soil (1=good, 0 otherwise) 0.74 0.77 0.69 0.08*** 

Medium soil (1=medium, 0 otherwise) 0.24 0.21 0.28 0.07*** 

Poor soil (1=poor, 0 otherwise) 0.02 0.02 0.03 -0.01 

Labour use (MD/ha) 103.0 82.6 119.6 37 

Fertilizer use (1=use, 0=no) 0.33 0.31 0.35 0.004*** 

Friend/neighbor is adopter (1=yes, 0=no) 0.55 0.58 0.53 0.05*** 

Advice on cassava production (1= yes, 0=no) 0.41 0.50 0.33 0.17*** 

 

Note that, in the data the rate of extension and credit access at the household level is quite low. 

However, both extension and credit access can easily be endogenous in the adoption decision 

model as household level access to extension and credit and adoption decision of households 

are simultaneously determined based on specific farm characteristics. This could lead to a 

reverse causation between the access variables (extension, credit) and the individual’s decision 
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to adopt improved cassava varieties. We deal with such possible endogeneity of extension 

access by aggregating it at village level, with the presumption that village level extension and 

credit access would be exogenous to individual household characteristics. We constructed an 

indicator to distinguish villages with relatively easy access to extension and credit services to 

those without access. We set a threshold of 25% to distinguish "extension and credit villages" 

from "non-extension and non-credit villages". For instance, at a threshold of 25%, a village is 

considered to be an "extension villages" if more than 25% of the households in a given village 

respond to have access to extension. In this case, all households in that village will be 

considered as having access to extension. A similar approach was also used by Di Falco & 

Bulte (2013). We also included plot-level variables to control for plot level heterogeneity. Our 

plot level controls are mainly for soil fertility. We found statistically significant differences 

between adopters and non-adopters for most of the socio-economic and plot level variables. In 

general, adopters tend to be more educated, wealthier (have more livestock), and younger. 

Moreover, adopters have better extension and credit access. Adopters are also significantly 

different from non-adopters in terms of membership in social networks. However, there is no 

statistical difference between adopters and non-adopters in terms of labor application.  

4.2 Effect of adoption on cassava yield: OLS Estimation Results 

In this section, we present OLS results using both household survey and DNA-fingerprinted 

adoption data. The first column presents results based on farmers-self reported adoption status 

from the household survey. The second column then presents the benchmark parameter 

estimates based on DNA-fingerprinted data. Both models are estimated at the plot level to 

account for plot level heterogeneities between adopters and non-adopters. The results in Table 

7 suggest a yield advantage of 39%–54% for improved cassava varieties over traditional 

varieties.  
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Table 7: Ordinary Least Squares estimates (dependent variable: ln (yields) 

 
Self-reported 

adoption data 

DNA finger-printed 

adoption data 

Improved cassava variety 0.391*** 0.539*** 

 (0.034) (0.031) 

Fertilizer use 0.008 0.018 

 (0.037) (0.034) 

Labour use 0.116*** 0.130*** 

 (0.014) (0.013) 

Intercropping 0.098** 0.112*** 

 (0.039) (0.039) 

Good soil 0.074 0.105 

 (0.112) (0.106) 

Medium soil 0.041 0.045 

 (0.114) (0.111) 

Household size 0.015* 0.012* 

 (0.008) (0.007) 

Education  0.004 -0.001 

 (0.004) (0.004) 

Married -0.018 -0.032 

 (0.065) (0.058) 

Age 0.001 0.006 

 (0.009) (0.009) 

Age2 -0.000 -0.000 

 (0.000) (0.000) 

Sex -0.009 0.087 

 (0.070) (0.069) 

Livestock ownership (TLU) 0.002*** 0.002*** 

 (0.000) (0.000) 

Extension access 0.009 -0.011 

 (0.042) (0.038) 

Access to credit 0.035 0.041 

 (0.038) (0.036) 

Mobile phone ownership -0.120 -0.135 

 (0.103) (0.101) 

Television ownership 0.036 0.033 

 (0.042) (0.040) 

Membership in credit and saving association -0.054 -0.027 

 (0.039) (0.037) 

Membership in cooperatives 0.049 0.040 

 (0.046) (0.046) 

Membership in cassava association -0.079* -0.062 

 (0.045) (0.045) 

Distance from output market -0.004 -0.003 

 (0.003) (0.004) 

Distance from input market -0.000 0.000 

 (0.000) 0.539*** 

Regional fixed effects Yes Yes 

Joint F-statistic 17.23*** 38.45*** 

R2 0.076 0.115 

 N 5694 5694 

Standard errors clustered at the local government level are reported in parenthesis. ***, ** and * refers to 

significant at 1%, 5% and 10% respectively 
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As expected, misclassification results in attenuation bias as parameter estimates from the DNA-

based adoption data are 15 percentage points higher than estimated from the self-reported 

adoption data. The results are consistent with the findings of past studies showing that 

attenuation bias in the presence of misreporting (Nguimkeu et al., 2016; Aigner, 1973; Black 

et al., 2000; Frazis and Loewenstein, 2003; Hausman et al. 1998; Kane et al. 1999; Lewbel, 

2007; Mahajan, 2006; Hu and Schennach, 2008). Note that, in the absence of misclassification, 

parameter estimates of the two models should be exactly the same. Therefore, the large 

discrepancy between the two results suggests that measurement error is consequential. Note 

that OLS estimates could still be biased due to the endogeneity of adoption decision. The next 

section presents IV estimation results. 

4.3 Effect of adoption on cassava yield: IV Estimation Results 

In this section, we present IV regression results where we control for the endogeneity of the 

adoption decision. The first two columns present parameter estimates based on self-reported 

and DNA-fingerprinted adoption status, respectively. The last column presents results using a 

consistent sub-sample. We refer to the last column as a “matched sub-sample” as it involves 

households whose self-reported adoption status matches their DNA-based adoption status. In 

the matched sub-sample, adoption status is measured by a dummy variable which takes on a 

value of one if the matched self-reported and DNA-fingerprinted adoption data confirm 

adoption of improved varieties and zero if the matched household survey and DNA-finger 

printed adoption data confirm non-adoption of improved varieties. If adoption status from self-

reported and DNA-fingerprinted adoption data do not match, the dependent variable is recorded 

as missing (this explains the difference in the sample size in the first two and the last column). 

In doing so, we exclude both “false negatives” and “false positives” in the last column. As 

such, parameter estimates will capture both technological and behavioural dimensions of 

farmers consistently. 
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Table 8: Instrumental variable regression estimates (dependent variable: ln (yields)) 

Variable 
Based on self-reported 

adoption data 

Based on DNA-

finger printed data 

Matched sample  

Improved cassava variety 0.461** 0.578** 0.645*** 

 (0.196) (0.227) (0.179) 

Fertilizer use 0.006 0.018 -0.046 

 (0.026) (0.025) (0.030) 

Labour use 0.116*** 0.131*** 0.121*** 

 (0.010) (0.011) (0.011) 

Intercropping 0.098*** 0.113*** 0.075** 

 (0.028) (0.028) (0.034) 

Good soil 0.074 0.107 0.103 

 (0.088) (0.086) (0.107) 

Medium soil 0.042 0.045 0.104 

 (0.089) (0.086) (0.109) 

Household size 0.015*** 0.012** 0.022*** 

 (0.005) (0.006) (0.007) 

Education  0.004 -0.001 0.003 

 (0.003) (0.003) (0.003) 

Married -0.014 -0.032 -0.021 

 (0.050) (0.049) (0.052) 

Age 0.001 0.006 -0.005 

 (0.006) (0.006) (0.006) 

Age2 -0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) 

Sex -0.017 0.090 0.084 

 (0.058) (0.057) (0.059) 

Livestock ownership (TLU) 0.002*** 0.002*** 0.001*** 

 (0.001) (0.000) (0.000) 

Extension access 0.007 -0.013 -0.043 

 (0.029) (0.031) (0.034) 

Access to credit 0.034 0.041 0.014 

 (0.027) (0.026) (0.030) 

Mobile phone ownership -0.133* -0.141* -0.063 

 (0.079) (0.082) (0.104) 

Television ownership 0.037 0.033 0.055 

 (0.030) (0.029) (0.036) 

Credit and saving -0.058** -0.026 -0.027 

 (0.029) (0.027) (0.031) 

Cooperatives 0.049* 0.039 0.035 

 (0.028) (0.028) (0.031) 

Membership in cassava ass -0.083*** -0.062** -0.039 

 (0.032) (0.030) (0.036) 

Distance from output market -0.004* -0.003 0.005 

 (0.002) (0.002) (0.003) 

Distance from input market 0.000 0.000 0.001** 

 (0.000) (0.000) (0.000) 

Regional fixed effects Yes Yes Yes 

Prob > F 0.0000 0.0000 0.0000 

R2              0.078 0.116 0.197 

 N 5964 5964 2816 

Standard errors clustered at the local government level are reported in parenthesis. ***, ** and * refers to 

significant at 1%, 5% and 10% respectively 
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IV estimation results suggest that the effect of adoption on productivity ranges from 46%-64%, 

which are higher than OLS estimates. The results indicate that failure to account for 

endogeneity of treatment status causes attenuation bias. For example, when controlling for the 

endogeneity of the true treatment status in the absence of misclassification in the second 

column, parameter estimates of the treatment variable increased from 53.9% (Table 7) to 

57.8%. Hence failure to control for the endogeneity of treatment status in the absence of 

misclassification reduces the anticipated impact on productivity by about 3.9 percentage points. 

When controlling for the endogeneity of the true treatment status in the presence of 

misclassification in the first column, parameter estimates of the treatment variable increased 

from 39.1% (Table 7) to 46.1% (Table 8).  Further, results from the second and third columns 

suggest that considering behavioural adjustments is important. Note that while using DNA-

fingerprinted adoption data, the pure technological effects are consistently estimated. However, 

the effects of the inherent behavioural adjustment of farmers based of their own subjective self-

assessment of treatment status are mixed-up with technological effects, leading to parameter 

estimates that are biased towards zero. Since the third column (the consistent sub-sample) 

captures both technological and behavioural adjustments consistently, parameter estimates will 

be consistent in the presence of unobserved dimensions of behavioural adjustment. Our results 

suggest that when both technological effects and unobserved behavioural adjustments of 

farmers are considered, adoption increase productivity by 64.5% (column 3).  

4.4 Effect of adoption on cassava yield using matching techniques 

Table 9 presents robustness cheeks using PSM and IPWRA approaches for cassava yield. As 

mentioned before, our treatment variable (adoption status) which takes a value of one if a 

farmer adopts improved cassava varieties and zero otherwise is measured using farmers self-

reported adoption data and DNA-finger printed adoption data. We find a positive and 

statistically significant effect of adoption on yield in both PSM and IPWRA specifications, 
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suggesting the robustness of our reported results. The results show that adoption (based on 

farmers self-reported adoption status) increased cassava yield by 36.7% and 25.8% in PSM and 

IPWRA, respectively. While measuring adoption status using DNA-finger printed adoption 

status, we found the effects on cassava yield are 53.7% and 53.8% in PSM and IPWRA, 

respectively. 

Table 9: PSM and IPWRA estimation results 
 

PSM IPWRA 

Cassava yield with self-reported adoption data  0.367*** 0.258*** 

 (0.039) (0.028) 

Cassava yield with DNA-finger printed adoption data 0.537*** 0.538*** 

 (0.035) (0.027) 

Robust standard errors in bracket, *** p<0.01, ** p<0.05, * p<0.1 

4.5 Adoption effects on cost of production 

Table 10 presents the plot-specific treatment effect in terms of percentage cost increase due to 

adoption. In estimating the treatment effects in the cost function, the treatment (the decision to 

adopt improved cassava varieties) is endogenous (as farmers self-select into adoption). We 

therefore use instrumental variable regression (probit-2SLS) to control for the endogeneity of 

adoption status. Like before, the first two columns present parameter estimates based on self-

reported and DNA-fingerprinted adoption status, respectively. The last column presents results 

based on a “matched sub-sample” as it involves households whose self-reported adoption status 

matches their DNA-based adoption status. The results presented in Table 10 suggest that, 

adoption has a positive and statistically significant effect on the cost of production. Using self-

reported adoption data, our estimates in Table 10 suggests that the cost of producing cassava 

has increased by 33.7% as a result of adoption of improved cassava varieties. The effects on 

costs of production are a bit higher when using DNA-finger printed adoption data.  
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Table 10: Effect of adoption on cost of production (Dep. variable, log of cost per ha) 

Variable 

Based on self-

reported 

adoption data 

Based on 

DNA-finger 

printed data 

Matched 

sample  

Improved cassava variety 0.337* 0.381* 0.415* 

 (0.204) (0.226) (0.252) 

Fertilizer use 0.130*** 0.126*** 0.141*** 

 (0.028) (0.026) (0.030) 

Labour use 0.234*** 0.243*** 0.240*** 

 (0.015) (0.015) (0.015) 

Intercropping 0.003** 0.004** 0.004** 

 (0.001) (0.001) (0.001) 

Good soil -0.001 -0.001 -0.001 

 (0.002) (0.002) (0.002) 

Medium soil 0.048 0.082 0.080 

 (0.075) (0.073) (0.073) 

Household size 0.064 0.062 0.073 

 (0.079) (0.073) (0.075) 

Education  -0.003 -0.002 -0.003 

 (0.006) (0.005) (0.006) 

Married 0.004 0.001 0.003 

 (0.003) (0.004) (0.003) 

Age 0.010 0.010* 0.008 

 (0.006) (0.006) (0.006) 

Age2 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) 

Sex -0.085** -0.013 -0.041 

 (0.043) (0.047) (0.040) 

Livestock ownership (TLU) -0.061* -0.058* -0.054 

 (0.037) (0.034) (0.033) 

Extension access -0.116*** -0.103*** -0.105*** 

 (0.030) (0.027) (0.028) 

Access to credit -0.199** -0.180** -0.198** 

 (0.083) (0.076) (0.084) 

Mobile phone ownership 0.117*** 0.094*** 0.099*** 

 (0.032) (0.030) (0.031) 

Television ownership 0.026 0.034 0.034 

 (0.030) (0.028) (0.029) 

Credit and saving -0.035 -0.043 -0.049 

 (0.032) (0.032) (0.034) 

Cooperatives -0.046 -0.025 -0.039 

 (0.038) (0.032) (0.035) 

Membership in cassava associations -0.003 -0.002 -0.002 

 (0.003) (0.003) (0.003) 

Distance from output market -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) 

Distance from input market 0.337* 0.381* 0.415 

 (0.204) (0.226) (0.253) 

Prob > F 0.0000 0.0000 0.0000 

 N 4191 4191 4191 
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4.6 Effects on poverty reduction 

As discussed in section 3.2, estimating the aggregate poverty reduction effects of adoption of 

improved cassava requires estimating the counterfactual distribution –the income level of 

adopters had they not adopted improved cassava varieties. We followed the approach of Zeng 

et al (2015) and used our yield and cost treatment effects from Table 8 &10 to estimate the 

distribution of counterfactual income for estimating the poverty reduction effects of adoption 

of improved cassava varieties. One of the most innovative aspects of this project was the use 

of DNA finger printing to credibly identify adoption status. As such we estimated the poverty 

reduction effects for alternative measures of treatment (adoption status). These include: 

i. Adoption status based on DNA-finger printing and assuming a small open economy 

&closed economy 

ii. Adoption status based on self-reported adoption status and assuming a small open 

economy &closed economy 

4.6.1 Poverty reduction effects of adoption using DNA-fingerprinted adoption data 

We used treatment effects on yield (a 57.8% increase in cassava yield) and treatment effect on 

cost of production (a 38% increase in cost of production as a result of adoption) along with 

supply and demand elasticities to estimate the poverty reduction effects of adoption. However, 

estimating supply and demand elasticities is not feasible given the data available to us. In the 

absence of any empirical evidence from the literature, we therefore assumed a supply elasticity 

of 0.5 and a demand elasticity of -1 for cassava. According to FAOSTAT (2014), the average 

observed price (𝑷𝒐𝒃𝒔) per kilogram of cassava is $0.16. The corresponding year production of 

cassava at the national level is about 54.83 million metric tons. With an observed price of 

$0.16/kg, adoption rate of 66% and the above-mentioned treatment effects on yield and cost of 

production, the k-shift is computed as a 39.6% cost reduction per kilogram of maize. Given, 

the above k-shift parameter and observed price of $0.16, the counterfactual price (𝑷𝒄𝒕) becomes 
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$0.185/kg. Given the above information, we then estimated the total changes in producer and 

consumer surplus that could be allocated for surveyed households. For allocating producer 

surplus changes to appropriate households, we used their sales quantities from total production 

as a weight. We then used observed per-capita expenditure to calculate observed poverty rates. 

For calculating counterfactual per-capita expenditure, we subtracted observed income gains 

from adoption (through producer surplus) from observed per-capita expenditure. We then used 

four alternative poverty lines ($1.25, $1.45 and $1.90 per person per day) to estimate the 

poverty reduction effects of adoption. Table 11 below presents the results. For all alternative 

poverty lines, poverty has reduced as a result of adoption.  

Table 11: Poverty impacts of adoption of improved cassava varieties 

Poverty 

line($per 

person per 

day) 

FGT-poverty 

index 

Observed Closed 

economy 

Poverty 

impact 

Small open 

economy  

Poverty 

impact 

1.25 Headcount 0.60861 0.6555 -0.04689 0.6488 -0.04019 

Depth 0.39312 0.48679 -0.09367 0.47021 -0.07709 

Severity 0.29420 0.41522 -0.12102 0.39076 -0.09656 

1.45 Headcount 0.65072 0.68708 -0.03636 0.67943 -0.02871 

Depth 0.42568 0.51248 -0.0868 0.49714 -0.07146 

Severity 0.32396 0.43703 -0.11307 0.41478 -0.09082 

1.90 Headcount 0.69665 0.72584 -0.02919 0.71722 -0.02057 

Depth 0.48544 0.55884 -0.0734 0.54496 -0.05952 

Severity 0.38018 0.47914 -0.09896 0.46015 -0.07997 

 

The two most utilized poverty lines in the literature are $1.25 and $1.90 per person per day. At 

the poverty line of $1.25 per person per day, adoption has led to a 4.7% and 4.02% poverty 

reduction in the closed economy and small open economy case, respectively. This poverty 

reduction role of adoption at $1.25 per person per day poverty line implies that 6.2%-7.15% of 

the rural poor cassava producers have escaped poverty in the current year due to adoption of 

improved cassava varieties. Similarly, at the poverty line of $1.9 per person per day poverty 

line, adoption has led to a 2.06% to 2.92% poverty reduction in a small open economy and 

closed economy, respectively. These changes correspond to a 2.9%-4% poverty reduction 
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among rural poor cassava producers1. With regard to the depth and severity of poverty, we 

again found significant reductions at all poverty lines considered in our analysis. 

Next, we estimated the poverty reduction effects of adoption using self-reported adoption rates. 

As mentioned in the introduction, one of the main objectives of this report was to improve the 

measurement of adoption status using DNA-finger printing approaches thereby improving the 

measurement of adoption status and subsequent impacts of adoption on poverty reduction and 

productivity. Herein, we used self-reported adoption status to show how misclassification of 

adoption status from self-reported adoption status my bias estimated impacts of adoption. Our 

theoretical model in section 3.1.3 suggests that misclassifying adoption status may attenuate 

impact estimates depending on the pervasiveness of false positives and false negatives (false 

negatives leading to downward bias and false positives leading to upward bias). Our results are 

reported in Table 12 using the case of closed economy-the more likely scenario in the current 

condition of Nigeria. 

Table 12: Poverty reduction effects using self-reported adoption status 

Poverty 

line($per 

person per 

day) 

FGT-poverty 

index 

Observed Closed 

economy 

Poverty 

impact 

Small open 

economy  

Poverty 

impact 

1.25 Headcount 0.60861 0.63876 -0.03015 0.66411 -0.0555 

Depth 0.39312 0.45821 -0.06509 0.50106 -0.10794 

Severity 0.29420 0.37925 -0.08505 0.41674 -0.12254 

1.45 Headcount 0.65072 0.6756 -0.02488 0.68804 -0.03732 

Depth 0.42568 0.48578 -0.0601 0.52501 -0.09933 

Severity 0.32396 0.40321 -0.07925 0.44163 -0.11767 

1.90 Headcount 0.69665 0.71866 -0.02201 0.7244 -0.02775 

Depth 0.48544 0.53602 -0.05058 0.56826 -0.08282 

Severity 0.38018 0.44919 -0.06901 0.48634 -0.10616 

 

                                                            
1 Note that, for calculating these values we followed the approach of Zeng et al., 2015. For example, in the small 

open economy, the counterfactual poverty headcount ratio and poverty impact under the $1.25 poverty line are 

0.6555 and 0.04689, respectively. Thus, the percentage of the originally poor who have escaped poverty is 

0.04689/0.6555 = 7.15% 
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Table 12 clearly suggests that while using self-reported adoption status, the poverty reduction 

effects of adoption are smaller. Using a poverty line of $1.25 and $1.90 per person per day, we 

found a 3% to 5.5% reduction in headcount poverty ratio in a closed and small open economy, 

respectively.   
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