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Summary
Whole genome re-sequencing (WGRS) was conducted on a panel of 20 Cajanus spp. accessions

(crossing parentals of recombinant inbred lines, introgression lines, multiparent advanced

generation intercross and nested association mapping population) comprising of two wild

species and 18 cultivated species accessions. A total of 791.77 million paired-end reads were

generated with an effective mapping depth of ~12X per accession. Analysis of WGRS data

provided 5 465 676 genome-wide variations including 4 686 422 SNPs and 779 254 InDels

across the accessions. Large structural variations in the form of copy number variations (2598)

and presence and absence variations (970) were also identified. Additionally, 2 630 904

accession-specific variations comprising of 2 278 571 SNPs (86.6%), 166 243 deletions (6.3%)

and 186 090 insertions (7.1%) were also reported. Identified polymorphic sites in this study

provide the first-generation HapMap in Cajanus spp. which will be useful in mapping the

genomic regions responsible for important traits.

Introduction

Pigeonpea (Cajanus cajan L.) belongs to the genus Cajanus under

Fabaceae family. The genus Cajanus is comprised of 32 species

including wild and cultivated species. Pigeonpea is one of the

most important food legume crops grown in marginal environ-

ments of the world. It has been considered a rich source of

protein to the vegetarian families. However, the crop productivity

has remained stagnant (~750 kg/ha) during last six decades

(http://faostat.fao.org/). The low level of yield is due to biotic

stresses [fusarium wilt (FW), sterility mosaic disease (SMD), etc.],

abiotic stresses (water logging, salinity, etc.) and narrow genetic

base in the cultivated gene pool (Saxena et al., 2010). Research

efforts have been undertaken to solve the above-mentioned

constraints and a number of disease-resistant and high-yielding

varieties were released for cultivation. However, the average yield

level remains <1 ton per hectare (http://www.iipr.res.in/

aicrp.html).

Genomics-assisted breeding (GAB) has been successfully

deployed in a number of crops species to tackle the long-

standing problems (Varshney et al., 2009). In the case of

pigeonpea, GAB could not be adequately deployed to tackle

the constraints responsible for low yield. In terms of genomics

resources, large number of molecular markers such as simple

sequence repeat (SSR), diversity array technology (DArT), single-

feature polymorphism (SFP), single-nucleotide polymorphisms

(SNPs), etc., and a number of segregating populations have been

developed (Bohra et al., 2014; Dutta et al., 2011; Pazhamala

et al., 2015). Mapping for economical important traits could not

be very successful with above-mentioned resources as only few

hundreds of markers were found polymorphic in parental

genotypes (Bohra et al., 2014).

Next-generation sequencing (NGS) technologies have provided

new avenues to detect genome-wide variations present in gene

pools of different species (Bevan and Uauy, 2013; Thudi et al.,

2012). After having a draft genome in a particular crop species,

deploying NGS becomes more cost effective in assessing the

genome-wide variations (Varshney et al., 2009). NGS enables

identification of SNPs and InDels in efficient and high-throughput

manner (Lam et al., 2010; Xu et al., 2012). At present, draft

genome sequences have become available in a number of crop

species (Michael and Jackson, 2013) including pigeonpea (Singh

et al., 2011; Varshney et al., 2012). Further, in the recent past,

NGS has been used in identifying genome-wide variations

through WGRS based approaches (Arai-Kichise et al., 2014;

Mace et al., 2013; Varshney et al., 2009; Zheng et al., 2011).

This will subsequently enable the discovery of SNPs and InDels at

the genome-wide scale within both germplasm collections and

breeding lines of pigeonpea. SNPs and InDels are of high

importance for crop improvement programs (Chen et al., 2014;

Tao et al., 2014). Both SNPs and InDels are being used in different

trait mapping approaches, haplotype analysis and GAB programs

such as marker-assisted selection, marker-assisted back-crossing,

genomic selection, varietal identification and hybridity testing. In

recent years, SNPs have been detected and analysed in many

cultivars and inbred lines of pigeonpea and used for linkage

mapping and diversity analysis (Saxena et al., 2012, 2014).

However, these SNPs were identified in limited number of

accessions and few SNPs were applicable to other accessions.

For implementing modern GAB methodologies, it is highly

imperative to detect genome-wide variations in a larger set of

accessions.

In view of above, we have re-sequenced 20 diverse Cajanus

spp. accessions representing two distinct gene pools (primary and

ª 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

1673

Plant Biotechnology Journal (2016) 14, pp. 1673–1681 doi: 10.1111/pbi.12528

http://faostat.fao.org/
http://www.iipr.res.in/aicrp.html
http://www.iipr.res.in/aicrp.html
http://creativecommons.org/licenses/by/4.0/


secondary): the pre-domesticated wild species accessions (C. acu-

tifolius and C. cajanifolius), local landraces (C. cajan) and modern

elite cultivars or breeding lines (C. cajan). C. cajanifolius has been

considered as the closest wild relative and the progenitor species

of cultivated pigeonpea (Kassa et al., 2012; Pazhamala et al.,

2015; Saxena et al., 2014). Selected accessions are crossing

parents of six mapping populations segregating for economically

important traits. This study not only presents the first generation

HapMap in Cajanus spp. but also reports unique molecular

signatures for each accession and large-scale variations between

crossing parents for high-resolution trait mapping.

Results

Selection and features of Cajanus spp. accessions

A total of 20 Cajanus spp. accessions were selected on the basis

of multi-year/locations trait phenotyping data for development of

recombinant inbred line (RIL), introgression line (IL), multiparent

advanced generation intercross (MAGIC) and nested association

mapping (NAM) populations (Saxena et al., 2010; Varshney

et al., 2010). For instance, ICP 8863 has been found to be

resistant to FW, whereas ICP 7035, HPL 24 and ICPB 2049 were

resistant to SMD. Two accessions namely, ICPL 99050 and ICPL

20097 were resistant to both FW and SMD. These Cajanus spp.

accessions differ for a number of agronomic traits (Table S1).

Interestingly, these accessions represent all maturity groups

starting from super-early maturity (flowering in <50 days; MN

1), extra-short maturity (flowering in <70 days; ICPL 85010 and

ICPL 88039), short maturity (flowering in <80 days; ICPL 87),

short medium (flowering in <110 days; ICP 8863) and medium

(flowering in <140 days, ICP 7035, ICP 5529) (Vales et al., 2012).

Two landraces ICP 7426 and ICP 14209 produce high number of

pods per plant whereas, HPL 24 is known as a high seed protein

containing line.

Large-scale data generation and alignment

Illumina paired-end sequencing technology was used to sequence

a panel of 20 Cajanus spp. accessions on the MiSeq platform. As a

result, a total of 157 Gb raw data have been generated with

791.77 million reads of read length from 150 to 250 bp (Table 1).

Paired-end reads were mapped onto the reference genome

(Varshney et al., 2012). Across all 20 accessions, 731.28 million

reads were mapped onto the reference genome. Around 93% of

total reads from 18 cultivated species accessions and 79% from

two wild species accessions were mapped onto the reference

genome. These variations in mapping may be due to divergence

between parental accessions and the incompleteness of the

reference genome assembly. Of these 731.28 million mapped

reads, 469.18 million reads were mapped uniquely onto the

reference genome, while rest of the reads were mapped to the

multiple locations in the genome. Remaining 60.49 million reads

(7.6% of total reads) could not be mapped onto the reference

genome (Table 1, Figure S1). The effective mapping depth ranged

from 8X (MN 1) to 16.5X (ICP 14486) with an average of 12X per

Cajanus spp. accession. The genome coverage for each Cajanus

spp. accession against the reference genome varied from 75% to

91%with an average of 89% in the cultivated spp. accessions and

82% in wild species accessions (Table 1).

Genome-wide variations across Cajanus spp. accessions

Genome-wide SNPs and InDels were identified across Cajanus

spp. accessions (Figure 1). Comprehensive data analysis identified

a total of 5 465 676 variations including 4 686 422 SNPs and

779 254 InDels (373 038 insertions and 406 216 deletions)

Genotype

Total reads

(million)

Mapped reads

Uniquely mapped

reads

Genome

coverage (%) Depth (X)

Total

(million) % Total (million) %

HPL 24 48.26 45.92 95.16 29.50 61.13 89.19 11.32

ICPB 2049 40.18 37.34 92.94 25.16 62.62 89.10 14.88

ICPL 20097 31.57 28.99 91.84 18.91 59.91 88.66 11.51

ICPL 85010 34.84 32.49 93.25 21.19 60.83 88.50 12.92

ICPL 85063 40.14 37.46 93.31 25.30 63.03 89.31 14.87

ICPL 87 39.36 37.38 94.96 24.50 62.25 88.55 9.20

ICPL 88039 25.91 24.17 93.29 16.29 62.88 86.77 9.59

ICPL 99050 41.41 37.95 91.64 23.73 57.31 89.48 15.12

MN 1 34.03 32.52 95.56 22.37 65.75 87.88 7.82

ICP 11605 38.86 35.78 92.06 22.74 58.51 88.72 14.03

ICP 14209 35.04 32.50 92.74 20.72 59.13 88.52 12.83

ICP 14486 72.22 68.63 95.03 41.74 57.79 90.69 16.46

ICP 28 32.11 29.94 93.24 20.31 63.24 88.26 11.92

ICP 5529 50.10 46.89 93.60 28.04 55.96 89.67 11.36

ICP 7035 36.42 34.52 94.78 23.34 64.10 88.19 8.50

ICP 7263 34.36 32.58 94.82 21.35 62.13 87.94 8.02

ICP 7426 36.31 33.68 92.75 20.53 56.54 88.39 13.38

ICP 8863 43.02 41.04 95.41 25.04 58.20 88.96 9.97

ICPW 12 37.29 24.00 64.37 14.65 39.28 74.63 9.68

ICPW 29 40.34 37.49 92.94 23.76 58.90 89.61 15.16

Total 791.77 731.28 469.18

Table 1 Summary of re-sequencing data

generated and genome coverage in 20

Cajanus spp. accessions
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ranged from 1 to 48 bp in length (Figures S2 and S3). In terms of

the assembled genome around 47.5% SNPs, 51.1% insertions

and 51.3% deletions were present in 11 pseudomolecules

(CcLG01 to CcLG11). Rest of the variations were present on

unanchored scaffolds (CcLG0) in draft genome (Table S2). The

variations across individual pseudomolecules in Cajanus spp.

accessions were ranged from 47 453 (CcLG05) to 509 422

(CcLG11). SNPs identified in Cajanus spp. accessions were

classified into two broad categories, homozygous and heterozy-

gous SNPs based on the presence of one or more than one allele

at the same position against the reference genome. The per cent

heterozygosity was ranged from 14% in ICPW 12 to 67% in

ICPW 29 (Figure S4, Table S3).

SNPs and InDels densities were calculated per 100 kb along

each pseudomolecule. The average density of variations across

the whole genome was 879.3 SNPs, 82.7 deletions and 75.8

insertions (Figure 1). Densities of SNPs/InDels varied across

pseudomolecules. Highest number of SNPs (976), deletions (97)

and insertions (91) per 100 kb were observed on CcLG04. The

lowest number of SNPs per 100 kb were found on CcLG05 (770),

whereas lowest number of deletions (75) and insertions (69) per

100 kb were present on CcLG10 (Table S2). In terms of individual

accessions, maximum variations (SNPs and InDels) were identified

in wild species accessions (ICPW 12: 3 868 179; ICPW 29:

1 101 494) in comparison with the reference genome. The

lowest numbers of variations were present in ICP 8863 (237 170)

(Tables 2, S4 and S5).

Additionally, large variations such as copy number variations

(CNVs) and presence and absence variations (PAVs) were also

identified across Cajanus spp. accessions (Figure 1). A total of

2598 CNVs were found in 2399 genes and 970 PAVs were

present in 469 genes across 20 Cajanus spp. accessions (Tables S6

and S7). The sizes of identified CNVs were ranged from 1 to

43 kb in Cajanus spp. accessions. CNVs and PAVs were nonuni-

formly distributed across pseudomolecules with maximum on

CcLG02 (382 CNVs, 161 PAVs) and minimum on CcLG05 (48

CNVs, 11 PAVs). The highest number of CNVs was found in ICPW

12 (1991) and lowest number of CNVs in ICPL 85063 (03). The

highest number of PAVs were found in ICP 14486 (100) and

lowest number of PAVs in ICP 7426 (20) (Tables S8 and S9).

Identified SNPs and InDels in Cajanus spp. accessions were

annotated onto the reference genome. Most of the SNPs were

located in intergenic regions (83%) followed by intronic regions

(10%), exonic regions (4.8%) and 2.2% could not be classified to

any category. Exonic SNPs were further classified into synony-

mous and nonsynonymous SNPs, and the resulting ratio of

nonsynonymous to synonymous substitutions was 1.46. Further-

more, the effect of each SNP was also categorized into four

classes, viz. modifier, low effect, moderate effect and high effect.

About 93% SNPs (presented in intergenic and intronic regions)

were classified as modifier. Remaining 4.8% exonic SNPs were

classified as low effect (silent-synonymous substitutions and

nonsynonymous start), moderate effect (nonsynonymous coding)

and high effect (start lost, stop lost and stop gain) (Tables 2 and

S10).

The effects of InDels were categorized separately as insertion

and deletion effects (Tables S4 and S5). However, majority of

InDels were located in intergenic (76%–86%) and intronic region

(11%–21%) according to the parental accessions and considered

as modifier. Across parental accessions, only 1%–1.5% InDels

were located in exonic regions. The moderate effect insertions

were classified as codon insertion and codon change plus codon

insertion while deletions were codon deletion and codon change

plus codon deletion. These moderate effect InDels were in-frame

Figure 1 Distribution of genome-wide variations

identified across Cajanus spp. accessions against

reference genome (the zoom portion of CcLG04

has shown the highest variation densities

identified). Different circles (“a” to “i”) represent

as following: a: outer most circle represent 11

pseudomolecules, b: SNP density, c: lnDel density,

d: presence and absence variations (PAVs), e: copy

number variations (CNVs), f: synonymous SNP

substitutions density, g: nonsynonymous SNP

substitutions density, h: intronic SNP density,

i: intergenic SNP density; in the 11 Cajanus

pseudomolecule.
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3 bp InDels (a multiple of three) and were found in the range of

131 (MN 1) to 2871 (ICPW 12). High-effect InDels were classified

as start lost, stop lost, stop gain and frame shift. Frame shift

mutations caused by out-of-frame InDels (not a multiple of three)

were found in the range of 269 (ICP 8263) to 2453 (ICPW 12).

Furthermore, repetitive sequences in the form of tandem

repeats and interspersed repeats were also identified in each

Cajanus spp. accession. The transposable elements or inter-

spersed repeats were classified into retrotransposons and DNA

transposons. In all the Cajanus spp. accessions, the majority of

transposable elements were long terminal repeats (LTRs). The

highest number of LTRs were found in ICPW 12 (639 419),

whereas the lowest number were found in ICP 7263 (57 489)

(Table S11).

Candidate variations for trait mapping

To detect parental polymorphism, pairwise SNPs and InDels were

identified between each crossing parental (Table S12). In the case

of bi-parental mapping populations, maximum SNPs were present

between crossing parentals of Introgression libraries-1 (IL-1)

(ICPW 12 vs ICPL 87119: 3 357 515) followed by Introgression

libraries-2 (IL-2) (ICPW 29 vs ICPL 87119: 917 145), PRIL_A (ICPB

2049 vs ICPL 99050: 307 593) and PRIL_C (ICPL 20097 vs ICPL

8863: 201 986) (Table S13). In the multiparent mapping popu-

lations, pairwise comparisons were made in all the possible

combinations. For instance, a set of 28 crossing combinations in

MAGIC and 10 crossing combinations in NAM were compared. In

MAGIC population, maximum number of SNPs and InDels were

found between HPL 24 9 ICP 14486 (436 293 and 97 757,

respectively) and minimum between ICP 5529 9 ICP 8863

(235 332 and 61 819, respectively) (Table S14). In the NAM

population, pairwise SNPs and InDels were maximum in ICPL

85010 9 ICPL 87119 (349 778 and 71 250, respectively) and

minimum in ICP 8863 9 ICPL 87119 (195 546 and 41 625,

respectively) (Table S12).

Genetic relationships among Cajanus spp. accessions

To explain the genetic divergence among the Cajanus spp.

accessions, a phylogenetic tree was constructed with the help of

SNPhylo program (Figure 2). Cajanus spp. accessions ICP 28 and

HPL 24 were out-grouped from rest of the accessions. Remaining

accessions were broadly categorized into two main clusters (Cl I

and Cl II). Cl I contained 11 accessions representing two wild

species accessions, five landraces and four breeding lines,

whereas Cl II contained seven accessions representing three

landraces and four breeding lines. Under these two main clusters,

accessions were grouped further into subclusters. For instance,

the cluster Cl I contained four subclusters (Ia, Ib, Ic and Id). Wild

species accessions were grouped into a small subclusters Cl Ia,

four breeding lines with two landraces were grouped in Cl Ib, and

ICP 7035 was placed in subcluster Cl Ic, while the landraces ICPL

14209 and ICPL 7426 were grouped together in a subcluster Cl

Id. Furthermore, the cluster Cl II contained two subclusters (IIa

and IIb). Landraces ICP 5529 and ICP 7263 were grouped in Cl IIa,

while the remaining 4 breeding lines and one landrace were

grouped in Cl IIb. To assess divergence among 8 parental

accessions of MAGIC population and 11 parental accessions of

NAM population, separate dendrograms were also constructed

(Figure S5). Pairwise genetic distances between wild species

accessions were greater than those between any pairs of the

Table 2 Distribution and classification of SNPs in each Cajanus spp. accession

Genotype Total SNPs Intergenic Intronic

Exonic

Unknown

Synonymous
Nonsynonymous

Silent

Missense
Nonsense

Start lost Stop lost

Nonsynonymous

start

Nonsynonymous

coding Stop gain

HPL 24 346 096 280 639 42 294 7131 16 64 1 9179 265 6507

ICPB 2049 344 666 289 482 30 652 6121 18 76 2 8862 274 9179

ICPL 20097 199 761 165 235 18 201 4409 14 65 2 6252 200 5383

ICPL 85010 349 778 291 512 32 827 6608 13 80 2 9747 276 8713

ICPL 85063 304 980 255 181 27 054 5867 16 69 3 8611 253 7926

ICPL 87 258 560 213 999 27 442 4932 8 54 2 6907 213 5003

ICPL 88039 287 399 238 046 27 456 5996 18 67 3 8502 239 7072

ICPL 99050 360 154 303 116 32 750 6247 18 81 3 8975 266 8698

MN 1 228 688 189 834 23 834 4065 6 44 2 5926 172 4805

ICP 11605 400 435 335 043 37 427 7393 16 88 2 10 638 295 9533

ICP 14209 338 975 283 217 31 414 6275 17 79 3 9066 284 8620

ICP 14486 404 003 336 672 40 461 7530 18 87 1 10 847 296 8091

ICP 28 335 735 282 033 29 900 6138 17 85 3 8915 253 8391

ICP 5529 258 008 212 661 27 312 5 183 10 58 1 7323 231 5229

ICP 7035 265 762 218 935 28 709 5118 11 50 1 7237 210 5491

ICP 7263 220 759 182 328 23 575 4239 6 34 1 6046 170 4360

ICP 7426 360 166 298 995 33 172 7535 21 99 3 11 070 287 8984

ICP 8863 195 546 161 342 19 415 4331 10 55 2 5946 195 4250

ICPW 12 3 357 515 2 559 376 558 482 92 976 196 386 29 99 797 1360 44 913

ICPW 29 917 145 776 862 85 479 14 449 54 167 4 20 006 486 19 638
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domestic accessions, that is breeding lines and landraces.

Diversity between any pair of the wild species accession with

domestic pigeonpea accession is greater than those among all

possible domestic pigeonpea accessions pairs (Table S15).

Accession-specific variations

A total of 2 630 904 accession-specific variations (SNPs and

InDels) were found in all Cajanus spp. accessions. These acces-

sion-specific variations include 2 278 571 (86.6%) SNPs,

166 243 (6.3%) deletions and 186 090 (7.1%) insertions

(Table 3). The proportion of accession-specific variants ranged

from 0.2% to 65.6% of the total variants. The accession ICPW 12

had the highest number of accession-specific variants 2 537 481

(65.6% of the total variants). However, on the other side, ICPL

85010 had the lowest number of accession-specific variants 791

(0.2% of the total variants). Among the accession-specific

variants, wild species accession-specific (97.7%) were more

abundant than landrace-specific (1.4%) and breeding line-

specific (0.9%) variants (Figure 3). The frequency of accession-

specific variants located in exonic regions were ranged from 2.9%

in ICPB 2049 to 5.6% in ICP 14486 (Table S16). However, the

total number of accession-specific variants (SNPs and InDels)

located in exonic region ranged from 24 (ICPB 2049) to 120 336

variants (ICPW 12). Gene ontology annotation was used to assess

possible gene functions targeted by accession-specific variants for

all 20 accessions, and details have been provided in Table S17. In

addition to these accession-specific small variations, some acces-

sion-specific large variations in the form CNVs (2258) and PAVs

(288) were also identified (Table 3).

Discussion

Pigeonpea productivity just has not suffered from biotic, abiotic

stresses, low polymorphism in cultivated gene pool, but also from

less genomics and genetic resources in the past (Pazhamala et al.,

2015; Varshney et al., 2010). However, in recent years, NGS

technologies were successfully deployed in pigeonpea, and ample

genomic resources have been developed such as draft genome

assembly (Varshney et al., 2012) and transcriptome assemblies

(Dubey et al., 2011; Kudapa et al., 2012). Above-mentioned

advances in pigeonpea genomics have provided opportunities to

assess genome-wide variations using WGRS approach. WGRS in

the present study identified more than 4.5 million SNPs, 779 254

InDels along with 2598 CNVs and 970 PAVs distributed

throughout the Cajanus genome. Prior to this study, only few

thousands of SNPs were reported by aligning transcriptome reads

from 12 pigeonpea genotypes onto the pigeonpea reference

genome (Dubey et al., 2011; Varshney et al., 2012). WGRS

efforts have been undertaken to extend the repertoire of

polymorphisms in a number of crop species such as rice (Huang

et al., 2012; Xu et al., 2012), maize (Hufford et al., 2012),

sorghum (Mace et al., 2013), chickpea (Varshney et al., 2013),

Medicago (Stanton-Geddes et al., 2013), soybean (Lam et al.,

2010; Zhou et al., 2015), tomato (Lin et al., 2014), etc. Notably

in Medicago, more than 6 million SNPs were identified through

re-sequencing of 236 diverse accessions at ~8X coverage

(Stanton-Geddes et al., 2013). In continuation of this work, 384

inbred lines are being re-sequenced under Medicago HapMap

Figure 2 Phylogenetic relationships in 20 Cajanus spp. accessions: wild

species accessions (square shape in red color), landraces (triangle shape in

blue color) and breeding lines (diamond shape in green color).

Table 3 Accession-specific small variations (SNPs, deletions and

insertions) and large variations (CNVs and PAVs with ≥1 kb) present in

Cajanus spp. accessions

Genotype SNPs Deletions Insertions CNVs PAVs

HPL 24 22 864 1685 2101 0 35

ICPB 2049 647 86 102 4 9

ICPL 20097 636 81 99 3 8

ICPL 85010 601 94 96 13 21

ICPL 85063 1672 233 261 0 3

ICPL 87 1312 174 209 5 18

ICPL 88039 1083 121 194 201 8

ICPL 99050 1074 128 170 7 11

MN 1 829 114 150 2 7

ICP 11605 1378 189 201 12 18

ICP 14209 3840 414 544 19 7

ICP 14486 912 138 138 1 26

ICP 28 2672 360 356 13 1

ICP 5529 1647 229 242 0 20

ICP 7035 3526 420 457 4 13

ICP 7263 3061 359 450 1 7

ICP 7426 1108 124 211 28 9

ICP 8863 1342 194 255 0 12

ICPW 12 2 202 592 158 075 176 814 1943 23

ICPW 29 25 775 3025 3040 2 32

Total 2 278 571 166 243 186 090 2258 288
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project using Illumina NGS technology to discover the SNPs,

InDels and CNVs at 5X to 20X coverage (http://www.medicago-

hapmap.org). In the case of chickpea, a total of 82 489 genome-

wide SNPs (including 38 511 and 43 978 from desi and kabuli

genomes, respectively) were identified from 93 Cicer accessions

through integrated reference genome- and de novo-based GBS

assays (Bajaj et al., 2015). To assess genome-wide variations and

their faster deployment in breeding programs, it is highly essential

to select high priority accessions. In this study, a set of 20 Cajanus

spp. accessions has been selected which are of high priority in

pigeonpea breeding program. Similarly, three male-sterile and

three restorer lines in rice (Subbaiyan et al., 2012), two parents of

a bi-parental population in soybean (Li et al., 2014) and eight

parents of MAGIC population in tomato (Causse et al., 2013)

were subjected to WGRS.

Sequencing data from 20 Cajanus spp. accessions were mapped

onto the reference genome. The average mapping rate in Cajanus

spp. accessions was 92.4%, which is comparable to other re-

sequencing efforts in different crop species (Causse et al., 2013;

Mace et al., 2013). Mapping % of the sequence reads in wild

species accessions (79%) was low as compared to cultivated

species accessions (93%). The mapping % of sequence reads

generated from wild species accessions onto the cultivated

reference genomes has also been found to be low in rice (81%;

Xu et al., 2012), sorghum (89%; Mace et al., 2013), etc. This

seems to be a factor of complex genome present in wild species as

compared to cultivated species accessions. However, total genome

coverage in wild Cajanus spp. accessions (82%)was comparable to

cultivated species accessions (89%). Around 7.6% of the total

reads generated in Cajanus spp. accessions could not be mapped

onto the reference genome. This rate is lower than unmapped

reads in rice (9.5%, Arai-Kichise et al., 2011; 10%, Xu et al.,

2012; 15%, Subbaiyan et al., 2012) and comparatively higher

than 5% of unmapped reads in tomato (Causse et al., 2013).

To assess genomic diversity in Cajanus spp., different marker

systems have been developed such as random amplified poly-

morphic DNA, amplified fragment length polymorphism, DArT,

SFP, SSRs, genic SSR and SNPs (Pazhamala et al., 2015). Above-

mentioned markers could not exceed more than few thousands in

numbers. Moreover, less genetic diversity present in cultivated

pool further hampered their use in assessing genome-wide

diversity, linkage mapping and trait association analysis at higher

confidence. However, a few thousand SNPs have been used for

the development of genetic map and quantitative trait locus

analysis (Kumawat et al., 2012; Saxena et al., 2012) as well as for

genetic diversity analysis (Kassa et al., 2012; Saxena et al., 2014)

in Cajanus species. The present study was sought to develop

millions of markers so that high-resolution trait mapping can be

undertaken. WGRS of Cajanus spp. accessions have provided

~4.6 million SNPs. However, the number of SNPs in landraces and

breeding lines were comparatively lesser than wild species

accessions. Previous marker-based genotyping on Cajanus spp.

accessions also suggested the lower diversity in cultivated pool as

compared to wild species (Kassa et al., 2012; Saxena et al.,

2014). As a next step to perform high-density genotyping of

mapping populations, one high-density SNP array has been

planned to develop with the most informative SNPs (high PIC

value and uniform distribution in genome) identified in this study.

High-density SNP arrays have been developed and found suitable

for genotyping in rice (McNally et al., 2009), maize (Ganal et al.,

2011), soybean (Song et al., 2013), etc.

Another class of small variations, that is InDels (0.7 million)

were detected in Cajanus spp. accessions. The number of InDels

was decreased as the length of InDel increased. InDels with 1 bp

length variation were found maximum (52%) followed by 2–4 bp

(33%), 5–9 bp (10%) and remaining 10–48 bp length (5%).

Similar frequency (>50%) of mononucleotide InDels have been

reported in rice (Arai-Kichise et al., 2011; Subbaiyan et al., 2012)

and sorghum (Mace et al., 2013). InDels with length ≥5 bp could

easily show length polymorphism similar to microsatellite markers

on agarose gel (Arai-Kichise et al., 2011) and can be converted as

breeder-friendly InDel markers (Tao et al., 2014). Informative

InDels of any length from 1 to 48 bp can be used for InDel array

development (Salathia et al., 2007) or can integrate them (InDels)

into SNP array to increase their power in genotyping of several

mapping populations (Unterseer et al., 2014).

(a) (b)

(c)

Figure 3 Distribution of accession-specific or unique variations (SNPs, insertions and deletions) across 20 Cajanus accessions: (a) percentage of accession-

specific SNPs, insertions and deletions identified in total unique variations represented as 86.6% accession-specific SNPs (green color), 6.3% accession-

specific deletions (red color), 7.1% accession-specific insertions (blue color), (b) percentage of accession-specific variations identified within three groups

represented as 97.7% in wild species accessions group (red color), 0.9% in landraces group (blue color) and 1.4% in breeding lines group (green color), (c)

percentage of accession-specific variations in each accession, individually within a group represented by a specific color (wild species accessions group

represented two accessions, landraces and breeding lines groups represented nine accessions in each).
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In the present study, we have identified 5.5 million genome-

wide variations across parental accessions representing elite

breeding lines, landraces and wild species accessions, which are

fractionally higher from 1.1, 4.3 and 5.1 million variations

identified in parental lines in soybean (Li et al., 2014), tomato

(Causse et al., 2013) and rice (Subbaiyan et al., 2012), respec-

tively. Annotation of identified variations in 20 accessions showed

<5% variations in coding regions. This proportion is similar to the

ratio of 4.5% of SNP and 1.5% of InDel identified in sorghum

(Mace et al., 2013). Among coding regions, the proportion of

nonsynonymous SNPs is higher than that of synonymous SNPs.

The ratio of nonsynonymous to synonymous substitutions in

Cajanus spp. accessions was found within the range of earlier

reports in other crop species viz. soybean: 1.37 (1.36 in wild and

1.38 in cultivated; Lam et al., 2010), tomato: 1.41 (1.34 and 1.48

in cherry tomato and cultivated tomato lines, Causse et al., 2013)

and rice: 1.29 (Xu et al., 2012). Additionally, CNVs and PAVs

have been identified in Cajanus spp. accessions. Interestingly,

results suggested that the frequency of gene lost events is higher

in accessions which are under cultivation (landraces and breeding

lines) as compared to the wild species accession.

Conclusion

Variants discovered from re-sequencing of 20 Cajanus spp.

accessions offer information on sampled loci across the pigeonpea

genome harboring high diversity and unique accession signatures.

These polymorphic sites will be useful for developing high-density

SNP arrays, genotyping of several mapping populations to

construct genetic maps and identify the genomic regions respon-

sible for agronomic important traits. Unique accession signatures

will be useful in varietal identification or assessment of adoption of

varieties in different geographies. This study also re-emphasized

that the cultivated pigeonpea genepool has a narrow genetic base

and new populations such as IL, MAGIC, NAM, etc. must be used

to re-introduce adaptive diversity lost through domestication and

human selection in breeding. To use new genetic combinations, it

is highly recommended to have high-density genotyping to track

the superior haplotypes and avoid linkage drag in breeding

programs aimed for pigeonpea improvement.

Experimental procedures

Plant materials

A set of 20 Cajanus spp. accessions including two wild species

accessions, nine breeding lines and nine landraces were used in

this study. These accessions are crossing parents of six mapping

populations, including four bi-parental and two multiparent

mapping populations. Among these, ICPW 12 (C. acutifolius)

and ICPW 29 (C. cajanifolius) are wild Cajanus spp. accessions

and used for the development of two AB populations, namely IL-1

and IL-2, respectively. Accession ICPL 87119 from C. cajan was

used as a common crossing parent in both the above-mentioned

ILs. ICPL 87119 is a leading variety which released as ‘Asha’ in

1992 in India; subsequently, it was used in developing pigeonpea

draft genome (Varshney et al., 2012). Four accessions (ICPB

2049, ICPL 99050, ICPL 20097 and ICP 8863) were parents of

two pigeonpea recombinant inbred lines: PRIL_A (ICPB

2049 9 ICPL 99050) and PRIL_C (ICPL 20097 9 ICP 8863). Eight

accessions (ICP 5529, HPL 24, ICP 7035, ICP 8863, ICP 14486, ICP

11605, ICP 7426 and ICP 14209) representing breeding lines and

landraces are being used in developing MAGIC population. 10

accessions (HPL 24, ICPL 85010, ICPL 85063, ICPL 87, ICPL

88039, MN 1, ICP 28, ICP 7035, ICP 7263 and ICP 8863) as

founder parents and ICPL 87119 as a nested parent are being

used in developing NAM population. Details on each accession

have been provided in Table S1.

Library preparation and sequencing

Genomic DNAwas extracted from young leaves of individual plants

of each accession, using a NucleoSpin Plant II kit (Macherey-Nagel,

D€uren, Germany). DNA quality was checked on 0.8% agarose gel

and DNA quantity assessed on Qubit� 2.0 Fluorometer using the

dsDNA BR Assay kit (Life Technologies, Thermo Fisher Scientific

Corporation, Waltham, MA). Indexed DNA libraries were prepared

following Illumina paired-end DNA sample prep protocol (Part #

15026486 Rev.C, July 2012) with minor modifications. Initially,

2 lg of genomic DNA from each sample was sonicated by

Bioruptor� NGS (Diogenode, Liege, Belgium) to get a target insert

size of 400–500 bp. After end-repairing and indexed adapter

ligation, size selection of 600 bp DNA fragments was performed

on E-Gel� SizeSelectTM 2% agarose precast gels (Invitrogen, Life

Technologies, Thermo Fisher Scientific Corporation, Waltham,

MA). To enrichDNA fragments having adapters on both ends, PCRs

were performed using Illumina adapter compatible PCR primers.

The size distribution of amplified DNA libraries was checked on

Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA).

DNA libraries were sequenced on theMiSeq platform (Illumina Inc.,

San Diego, CA) with MiSeq reagent kit v2 (300- or 500-cycles) to

generate 150 or 250 bp paired-end reads.

Sequence alignment and variant identification

To reduce sequencing errors, paired-end sequencing reads were

trimmed and filtered with sickle version 1.200 (https://github.

com/najoshi/sickle). Initially, duplicate reads were removed,

further low-quality reads (having phred score <30) and sequences

shorter than 100 nucleotides, or containing ‘N’, were removed

using in-house QC pipeline NGS-QCbox (Katta et al., 2015).

After cleaning steps, filtered reads were mapped onto the

reference genome with BOWTIE2 v2.2.4 (Langmead and Salzberg,

2012) using default options. Reads mapped on more than one

position or not mapped were filtered to define uniquely mapped

reads and unmapped reads. Reads having unique alignment onto

the reference genome were retained in the BAM files. BAM files

were further processed for variant (SNP and InDel) calling using

Genome Analysis Toolkit suite with a minimum depth coverage

of five reads per individual accession (McKenna et al., 2010).

Using an in-house perl script, the distribution of identified

variants was analysed along the entire genome using a contigu-

ous window of 100 kb. Additionally, identified SNPs were

classified into homozygous and heterozygous (reads aligned at

a position contained reference as well as alternate bases) SNPs,

on the basis of mismatch frequencies. InDels were identified

within the size range of 1–48 bp. Accession-specific variants

(SNPs and InDels) were reported only if the variant call was

present in a particular accession and reference allele was present

in remaining accessions. For identification of CNVs, CNVnator

tool was used with an e-value of 1e-05 (Abyzov et al., 2011).

Raw reads from Asha (ICPL 87119) genotype were aligned to

draft assembly (Asha) for detecting the false positives in CNVs.

Identified CNVs present in genes with length ≥1 kb were then

reported. The frequencies of variants (SNPs and InDels) and CNVs

were then projected using Circos (Krzywinski et al., 2009) across

the categorized genotypes.
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Variant annotation and diversity analysis

Identified SNPs and InDels based on their genomic locations were

annotated as intergenic, intronic and exonic using SnpEff

(Cingolani et al., 2012). The variants were further categorized

into synonymous, nonsynonymous, start codon loss, stop codon

gain, frame shifts, etc. The effects of variants were classified on

the basis of their impacts as high, moderate, low and modifier.

Generic feature format files having information on positions of

variants were constructed by aligning the sequences against the

reference genome. Accession-specific variants (SNPs and InDels)

present in exonic region for each accession were functionally

annotated using UniProtKB database, and GO terms were

assigned accordingly (Huntley et al., 2014). Further, the impacts

of accession-specific variants in various biological pathways were

examined using The Biological Networks Gene Ontology tool

(Maere et al., 2005).

The phylogenetic tree was constructed using DNAML programs

in the PHYLIP package and 1000 bootstraps with other default

parameters of SNPhylo program (Lee et al., 2014). The software

MEGA4 was used for visualizing the phylogenetic tree (Tamura

et al., 2007).
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20 Cajanus spp. accessions and reference genome.

Figure S5 Phylogenetic relationships among: (a) 8 MAGIC

parental lines as landraces (triangles shape in blue color) and

breeding lines (diamonds shape in green color) (b) 10 NAM

founder and 1 nested parental line represented by landraces

(triangles shape in blue color), breeding lines (diamonds shape in

green color) and nested parent (circle shape in chocolate color).
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Table S2 Distribution of genome-wide variations in different

pseudomolecules.

Table S3 Heterozygosity of SNPs in Cajanus genome.

Table S4 Distribution of insertions and their effects in Cajanus

spp. accessions.

Table S5 Distribution of deletions and their effects in Cajanus

spp. accessions.

Table S6 Location of genes deleted in Cajanus spp. accessions.

Table S7 Location of genes duplicated in Cajanus spp. accessions.

Table S8 Summary of large deletions (>1 kb) in Cajanus spp.

accessions.

Table S9 Summary of large duplications (>1 kb) in Cajanus spp.

accessions.

Table S10 Distribution of homozygous SNPs and their effects.

Table S11 Distribution of tandem and interspersed repeats in

Cajanus spp. accessions.

Table S12 Pairwise SNPs (below diagonal) and InDels (above

diagonal) among Cajanus spp. accessions.

Table S13 Pairwise SNPs and InDels between parental lines of

biparental populations.

Table S14 Pairwise SNPs (below diagonal) and InDels (above

diagonal) between MAGIC parental lines.

Table S15 Pairwise genetic distances among 20 selected Cajanus

spp. accessions.

Table S16 Distribution of accession-specific variants and their

effects.

Table S17 Accession-specific variants and their effects on coding

sequences and Gene Ontology (GO).
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