## Assessing the Impact of Salinity on Resource Use Efficiency in Wheat Production in Central Iraq

Mohammed Jabar ABDULRADH 29 Aug. 2017

ICAAA 2017 Conference Bangkok, Thailand, August 28-30, 2017 http://www.icaaa.org/

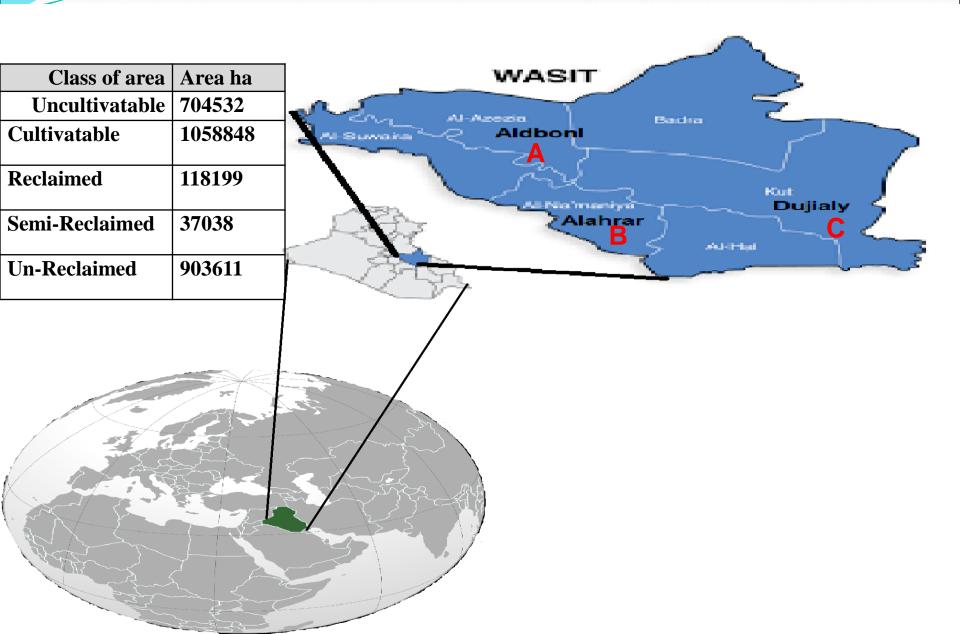
**Co-authors:** 

*Boubaker Dhehibi,*(International Center for Agricultural Research in the Dry Areas (ICARDA) *Osamah Kadhim Jbara,* (University of Baghdad, Baghdad, Iraq ) *Kamel Shideed*(International Center for Agricultural Research in the Dry Areas (ICARDA)

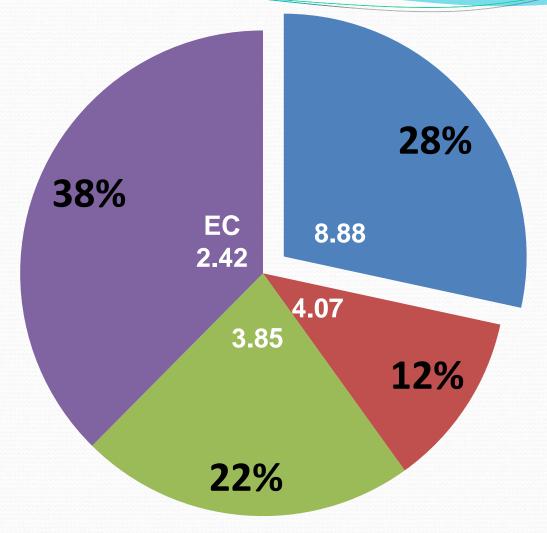







# Introduction

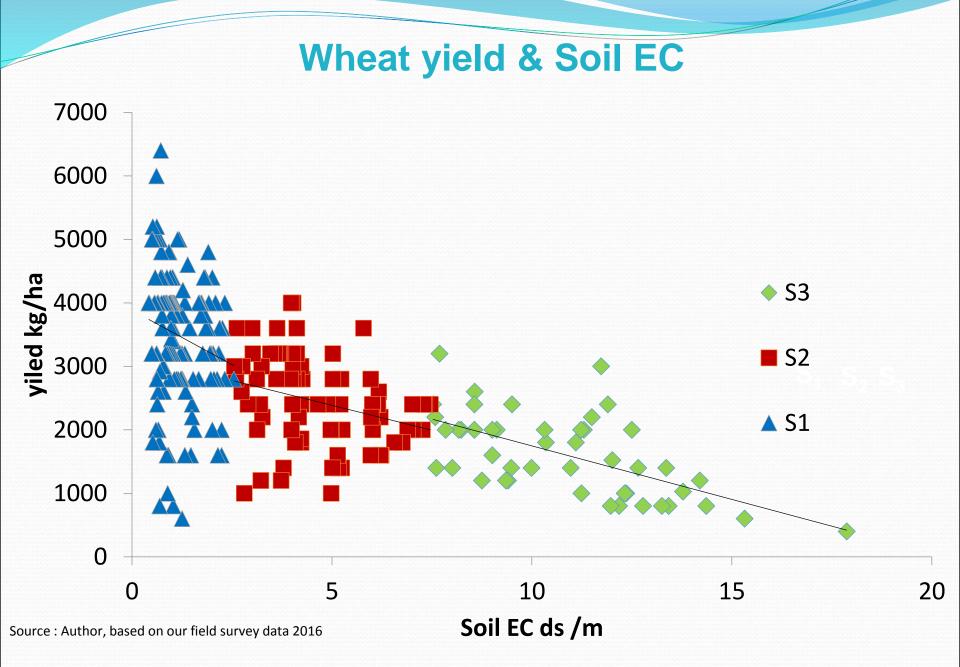
Iraqi agricultural sector -Food security 1950, 1960,1970, and 1980 % Work opportunities 23.7 GDP 4.8, 4.9, and 4.6


Land of Iraq -Million ha 43 Agricultural area 18.8% Arable area % 9.2 .Permanent meadows and pastures % 9.5 Forest % 2

Soil salinity in irrigated area -(Million ha (Irrigated area 2). Moderately saline % 75 Salt-affected land % 25

# Study area




#### Sample Distribution based on Farm location & EC



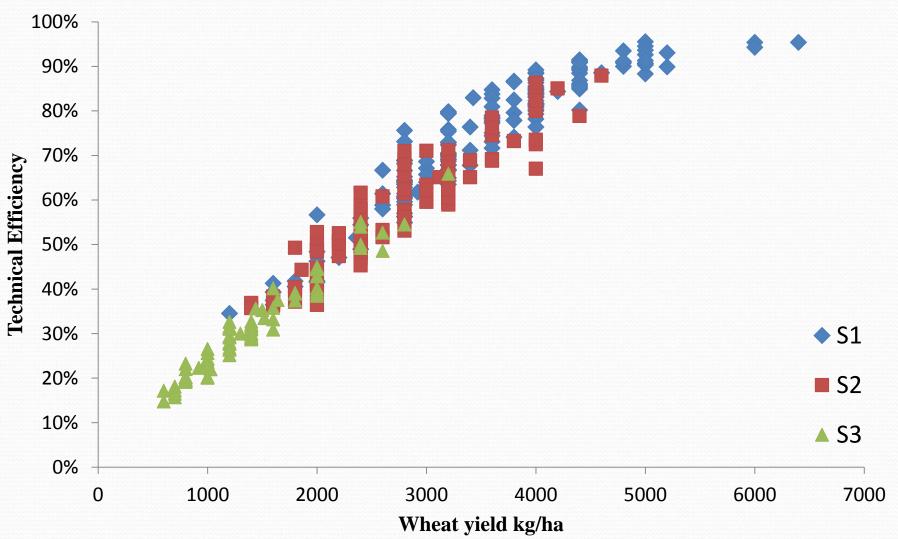
Unreclaimation Unreclaimation (main river) Sime-reclaimation Reclamation

### Mean of inputs and soil salinity

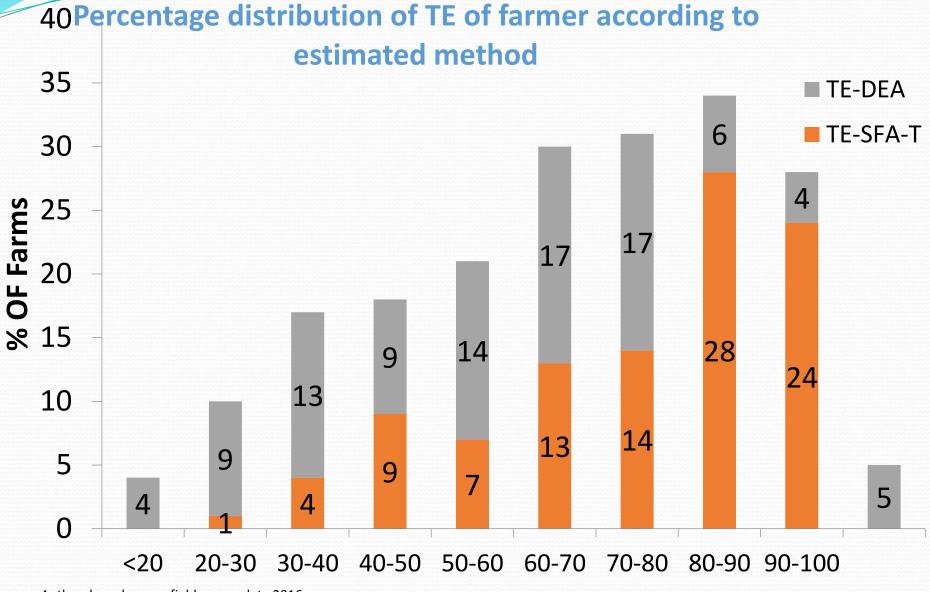
|                       | No.Far. | EC    | yield kg/ha | No. Of Irr | Agri-Ch | Fer<br>Kg/ha | SQ kg/ha | Man-<br>h/ha | Mech-<br>h/ha |
|-----------------------|---------|-------|-------------|------------|---------|--------------|----------|--------------|---------------|
| <b>S</b> <sub>1</sub> | 148     | 1.21  | 3466        | 4.23       | 1       | 286          | 244      | 6            | 7.34          |
| S <sub>2</sub>        | 79      | 4.45  | 2413        | 3.91       | 0.97    | 286          | 256      | 5.98         | 7.44          |
| S <sub>3</sub>        | 43      | 10.85 | 1576        | 4          | 1       | 325          | 253      | 6.12         | 7.6           |
| Total                 | 270     | 4.77  | 3466        | 4.23       | 1       | 286          | 244      | 6            | 7.34          |



#### **CD** parameters of technical efficiency estimation


|                              | coefficient | standard-error |
|------------------------------|-------------|----------------|
| Constant                     | 7.56        | 0.55           |
| Ln (Number of Irrigation)    | 0.20***     | 0.08           |
| Ln (Agri-chemical )L/ha      | -0.004      | 0.02           |
| Ln (Fertilizer ) kg/ha       | 0.09**      | 0.04           |
| Ln (Seed Quantity ) kg/ha    | -0.02       | 0.09           |
| Ln ( Labour) Man-days        | -0.02       | 0.06           |
| Ln (Mechanization) Mach-hour | 0.10        | 0.13           |
| Ln (EC)                      | -0.22***    | 0.02           |
| Inefficiency Variables       |             |                |
| Soil EC level                | -0.33**     | 0.16           |
| Location                     | 0.08        | 0.14           |
| Position                     | 0.00        | 0.00           |
| Education Level              | 0.11        | 0.15           |
| Agricultural Experience      | -1.35***    | 0.44           |
| Wheat Variety                | 0.18        | 0.27           |
| Wheat share                  | 0.13        | 0.14           |
| sigma-squared                | 0.34***     | 0.09           |
| gamma                        | 0.96***     | 0.01           |

#### **Resource use efficiency indicators**


| Variables         | Total Sample |       |       |        |       |      | r              |                       |                       |
|-------------------|--------------|-------|-------|--------|-------|------|----------------|-----------------------|-----------------------|
| Variables         | APP          | MPP   | Е     | MVP    | MFC   | r    | $\mathbf{S}_1$ | <b>S</b> <sub>2</sub> | <b>S</b> <sub>3</sub> |
| No. of Irrigation | 696          | 136.6 | 0.196 | 102417 | 12796 | 8.00 | 10.85          | 6.40                  | 3.67                  |
| Agri. Chemical    | 2887         | 10.3  | 0.004 | 7697   | 31395 | 0.25 | 0.30           | 0.21                  | 0.14                  |
| Fertilizer        | 10           | 0.9   | 0.090 | 658    | 564   | 1.17 | 1.46           | 0.98                  | 0.60                  |
| Seed              | 11           | 0.2   | 0.015 | 129    | 886   | 0.15 | 0.18           | 0.12                  | 0.08                  |
| Labour            | 473          | 10.4  | 0.022 | 7801   | 25000 | 0.31 | 0.38           | 0.27                  | 0.17                  |
| Mechanization     | 382          | 40.0  | 0.105 | 30013  | 45063 | 0.67 | 0.78           | 0.58                  | 0.39                  |
|                   |              |       |       |        |       |      |                |                       |                       |

Source : Author, based on our field survey data 2016

TE and wheat yield



| SFA vs DEA Technical Efficiency Estimation           |         |        |       |  |  |  |  |
|------------------------------------------------------|---------|--------|-------|--|--|--|--|
|                                                      | Average |        |       |  |  |  |  |
| Soil salinity level                                  | TE-SFA  | TE-DEA | EC    |  |  |  |  |
| <b>S</b> 1                                           | 0.77    | 0.68   | 1.21  |  |  |  |  |
| S2                                                   | 0.75    | 0.51   | 4.45  |  |  |  |  |
| <b>S</b> 3                                           | 0.66    | 0.33   | 10.85 |  |  |  |  |
| Total sample                                         | 0.74    | 0.57   | 3.69  |  |  |  |  |
| Source : Author, based on our field survey data 2016 |         |        |       |  |  |  |  |



Source : Author, based on our field survey data 2016

TE

#### **Concluding Remarks and Implications**

:Soil salinity has multi-sided impacts The first impact is on the inputs side, in which farmers in salt-induced soil use more quantities of inputs compare with the farmers in the low salinity soil. Soil salinity causes different damages on each input. Some of these damages lead to reduce .the productivity of that input

The second impact is on the production side in which farming in high salinity land .lead to reduce wheat production by 50% in irrigated wheat system The last impact is unaccounted ones, in which salinity has negative externalities on environment such as downstream water pollution by unabsorbed quantities of fertilizer and agricultural chemicals given their massive use by farmers to mitigate .the salinity level

Mitigate soil salinity through investment in reclaimed projects and maintenance .infrastructure in established reclaimed project Iraqi government should rehabilitate irrigation and draining systems, and increase .price support of wheat Additionally, reduce subsides of overutilized inputs and increase subsides of

.underutilized inputs

#### ACKNOWLEDGMENT

The authors express their thanks to the International Center for Agricultural Research in the Dry Areas (ICARDA) and Arab Fund for Economic and Social .Development (AFESD) for funding this research

# Thank You For Your Attention!







