

Jul 2016

Monitoring,

Evaluation and

Learning Platform:

System Design &

Architecture

AUTHORS
Aya Mousa, Bashar Ayyash, Mehtab Khan, Victor Kimathi (1);

CONTRIBUTORS
Jalal Eddin Omary, Chandrashekhar Biradar (2); Patricia Bravo, Claudio Proietti (3), Percy Cabello

(4); Moayad Al-Najdawi (5); Belal Mazlom, Enrico Bonaiuti, Valerio Graziano (6);

SUGGESTED CITATION
CRP DS, CRP RTB, CRP DC, CRP GL 2016. Monitoring, Evaluation and Learning Platform:

System Design & Architecture.

DISCLAIMER

The views expressed in this document do not necessarily reflect the views of the CGIAR System

Organization.

This document is licensed for use under the Creative Commons Attribution

3.0 Unported Licence. To view this licence, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/

Unless otherwise noted, you are free to copy, duplicate, or reproduce and distribute, display, or

transmit any part of this publication or portions thereof without permission, and to make

translations, adaptations, or other derivative works under the following conditions:

ATTRIBUTION. The work must be attributed, but not in any way that suggests

endorsement by the publisher or the author(s).

1iMMAP
2International Center for Agricultural Research in Dry Areas (ICARDA)
3CGIAR Research Program on Roots, Tubers and Bananas (RTB)
4 International Potato Center (CIP)
5 CodeObia
6 CGIAR Research Program on Dryland Systems (DS)

http://creativecommons.org/licenses/by-nc-sa/3.0/

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

3 | P a g e

Revision History

Table 1. Revision Summary

Version Date Author(s) Description

0.1 01-Mar-16 Mehtab Khan Baseline Version

0.2 15-Mar-16 Enrico Bonaiuti Business Logic

1.0 04-Apr-16 Aya Mousa Alpha Compilation

1.0 05-Apr-16 Victor Kimathi Alpha Finalization

2.0 25-Apr-16 Aya Mousa Beta Compilation

2.5 10-May-16
Bashar Ayyash

Aya Mousa
Final Compilation

2.6 16-Jul-16 Enrico Bonaiuti CGIAR Branding

2.7 9-Aug-16 Valerio Graziano CGIAR System Organization Branding

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

4 | P a g e

Table of Contents

List of Tables .. 7
List of Figures ... 7

1. Introduction ... 10
1.1 Document Overview ... 10

1.2 Scope ... 12

1.3 Audience ... 12

1.4 Related Documentation .. 13

1.5 Document Conventions .. 14

2. General Overview and Approach ... 17
2.1 General Overview ... 17

2.1.1 Overview of the System ... 17
2.1.2 System Requirements .. 18

2.2 Business Processes .. 20

2.3 Assumptions / Constraints / Risks ... 20

2.3.1 Assumptions ... 20
2.3.2 Constraints ... 20
2.3.3 Risks ... 23

3. Design Considerations .. 25
3.1 Goals and Guidelines... 25

3.2 Development Methods & Contingencies .. 27

3.3 Architectural Strategies .. 27

4. System Architecture ... 29
4.1 Hardware Architecture ... 31

4.1.1 Performance Hardware Architecture .. 31
4.2 Software Architecture ... 31

4.2.1 Performance Software Architecture .. 33
4.3 Information Architecture .. 34

4.4 Internal Communications Architecture .. 35

4.5 System Architecture Diagram ... 41

5. System Design .. 43
5.1 Business Requirements ... 43

5.2 Database Design .. 46

5.2.1 Data Objects and Resultant Data Structures ... 49
5.3 File and Database Structures .. 50

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

5 | P a g e

5.3.1 Database Management System Files ... 52
5.3.2 Non-Database Management System Files ... 61

5.4 Database Information ... 62

5.5 Data Conversion .. 62

5.6 User Interface Design .. 62

6. Operational Scenarios ... 64
6.1 Operational Modes ... 64

6.2 Operational Scenarios ... 65

6.3 Data Flow Diagrams .. 76

7. Detailed Design .. 82
7.1 Quick Installation Guide .. 82

7.2 Conceptual Infrastructure Design ... 83

7.3 Hardware Detailed Design .. 83

7.4 Application Users .. 84

7.4.1 Inputs ... 85
7.4.2 Outputs .. 85

7.5 Software Detailed Design .. 86

7.5.1 Authentication (Zend_Auth) .. 86
7.5.2 Authorization (Zend_Acl) ... 90
7.5.3 System Layout (Zend_Layout) .. 104
7.5.4 CRUD (Create, Retrieve, Update, Delete) .. 143

7.6 Software Functions ... 158

7.7 Security Detailed Design ... 158

7.8 Performance Detailed Design ... 160

7.9 Software Components Off the Shelf (COTS) ... 161

7.10 Achievement of functional requirements ... 161

8. System Integrity Controls .. 165

9. External Interfaces .. 167
9.1 Interface Architecture ... 167

9.2 Interface Detailed Design .. 169

Appendix A: Acronyms ... 171
Appendix B: Glossary ... 172
Appendix C: Approvals ... 175
Appendix D: Security Architecture .. 176

D.1 Security Policy ... 177
D.1.1 Security Development ... 177

D.1.1.1 Security Analysis ... 177

D.1.1.2 Cryptography .. 178

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

6 | P a g e

D.1.1.3 Risk Assessment .. 178

D.1.2 Security Infrastructure ... 179
D.2 Security Analysis ... 179

Appendix E: Performance ... 181
E.1 Performance ... 181

E.1.1 Static Content ... 182
E.1.2 Business Logic .. 184
E.1.3 Storage ... 184

E.2 Scalability .. 184

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

7 | P a g e

List of Tables
Table 1. Revision Summary ... 3
Table 2. MEL System Related Documentation .. 13
Table 3. MEL System Requirements Mapping .. 19
Table 4. Application Context Mapping.. 30
Table 5. Business Process 0: Project Definition .. 43
Table 6. Business Process 1: Project Planning and Monitoring .. 43
Table 7. Business Process 2: Financial Accounting ... 44
Table 8. Business Process 3: Human Resources Allocation .. 44
Table 9. Business Process 4: Surveys .. 45
Table 10. Business Process 5: Impact Pathway ... 45
Table 11. Business Process 6: Knowledge Sharing .. 45
Table 12. Database Naming Convention ... 49
Table 13. Code Naming Convention ... 49
Table 14. Application Locations .. 83
Table 15. Role and Resource Mapping ... 84
Table 16. MEL Access Controls.. 92
Table 17. headMeta() types .. 106
Table 18. url function parameters .. 110
Table 19. Feature #1 Project Management .. 158
Table 20. Workflow / Sequence 0: Project Definition .. 161
Table 21. Workflow / Sequence 1: Project Planning and Monitoring .. 162
Table 22. Workflow / Sequence 2: Financial Accounting ... 162
Table 23. Workflow / Sequence 3: Human Resources Allocation .. 163
Table 24. Workflow / Sequence 4: Surveys .. 163
Table 25. Workflow / Sequence 5: Impact Pathway ... 163
Table 26. Workflow / Sequence 6: Knowledge Sharing .. 164
Table 27. Acronyms ... 171
Table 28. Glossary ... 172
Table 29. MEL System Analysis ... 179
Table 30. Web Application Levels, Core Technologies, and Performance and Scalability Techniques
 .. 182

List of Figures
Figure 1. Semantic Versioning Numbers ... 12
Figure 2. The MEL System Used Flowcharts Symbols and Meanings ... 14
Figure 3. Context Diagram Symbols and Meanings .. 15
Figure 4. The MEL System Used Data Flow Diagram Notations ... 15
Figure 5. UML Diagram ... 16
Figure 6. MEL System High-level Context Diagram ... 17
Figure 7. MEL System Focus .. 18
Figure 8. Zend MVC Design Pattern Structure .. 26
Figure 9. MEL Application Context Mapping .. 29
Figure 10. File caching inside PlanningController class .. 34
Figure 11. MEL System Information Architecture General-to-Specific Approach 35
Figure 12. DSpace Internal Communication ... 37
Figure 13. Controller to Action Internal Communication ... 38
Figure 14. Controller to View Internal Communication .. 38

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

8 | P a g e

Figure 15. System Architecture ... 41
Figure 16. Sample Extracted Database Model .. 46
Figure 17. Columns in tbl_activity ... 47
Figure 18. Server validation rule for activity_id field in tbl_activity ... 47
Figure 19. Model level diagram for MainDB ... 48
Figure 20. Directory Structure (Application) ... 50
Figure 21. Directory Structure (Assets) ... 50
Figure 22. Directory Structure (Documents) ... 51
Figure 23. Directory Structure (KML) .. 51
Figure 24. Directory Structure (Library) .. 51
Figure 25. Directory Structure (Uploads) .. 52
Figure 26. Directory Structure (Root) ... 52
Figure 27. Database Tables .. 53
Figure 28. Action site Tables Relationships... 53
Figure 29. Country Tables Relationships ... 54
Figure 30. Discussion Tables Relationship .. 54
Figure 31. Field site Tables Relationship ... 55
Figure 32. Flagship Tables Relationships .. 55
Figure 33. Flagship Activity Tables Relationships ... 55
Figure 34. Flagship Activity Details Tables Relationship ... 57
Figure 35. IDO Tables Relationship ... 59
Figure 36. Partner Tables Relationship ... 59
Figure 37. Project Tables Relationship .. 60
Figure 38. Reports Tables Relationships ... 60
Figure 39. User Tables Relationship .. 61
Figure 40. User Interface... 63
Figure 41. MEL System Operational Scenarios Sorted Based on Roles .. 64
Figure 42. MEL System Operational Scenarios Sorted Based on Actions ... 65
Figure 43. Creation of Partners and Contacts Operation ... 65
Figure 44. Creation of Users Operation .. 66
Figure 45. Creation of ALS Operation ... 66
Figure 46. Creation of IDO Operation ... 67
Figure 47. Creation of Flagships Operation .. 67
Figure 48. Creation of Action Sites/Cluster of Activities Operation ... 68
Figure 49. Creation of Projects Agreements Operation.. 68
Figure 50. Creation of Projects Operation .. 69
Figure 51. Creation of Activities Operation .. 69
Figure 52. Editing Projects Information Operation ... 70
Figure 53. Editing Activities Information Operation ... 70
Figure 54. Planning within Projects and Activities Operation .. 71
Figure 55. Reporting Operation .. 71
Figure 56. Self-Assess a project Operation ... 72
Figure 57. Launching and Reviewing a Survey Operation ... 72
Figure 58. Consulting Overview Operation ... 73
Figure 59. Consulting Open Facts Operation .. 73
Figure 60. Exporting Data Operation .. 74
Figure 61. FP and CoA Leaders Approval Operation ... 74
Figure 62. Partners and Contacts Approval Operation ... 75

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

9 | P a g e

Figure 63. Open Access Approval Operation .. 75
Figure 64. Discussion Forum Operation .. 76
Figure 65. Technical Assistance Request Operation ... 76
Figure 66. Activity/Project Creation Data Flow Diagram .. 77
Figure 67. Pre-planning, Exporting, Open Facts Consulting Data Flow Diagram for Administrator,
Activity/Project Leader, Cluster of Activity/Action Site Leader, and Flagship Leader 78
Figure 68. Reporting Data Flow Diagram for Administrator, Activity/Project Leader, Cluster of
Activity/Action Site Leader, and Flagship Leader ... 79
Figure 69. Open Access Approval data flow diagram for Administrator, Activity/Project Leader, Cluster
of Activity/Action Site Leader, and Flagship Leader ... 80
Figure 70. Editing Projects/Activities Data Flow Diagram for Administrator, Activity/Project Leader,
Cluster of Activity/Action Site Leader, and Flagship Leader ... 81
Figure 71. MEL System Default Layout ... 105
Figure 72. Horizontal Menu .. 114
Figure 73. Search Box .. 117
Figure 74. User Menu Top Navigation Menu .. 118
Figure 75. Discussion Live Box .. 120
Figure 76. HTML Footer .. 122
Figure 77. Route Convention .. 123
Figure 78. Request Cycle through Zend Application ... 123
Figure 79. Multiple templates are used to build up complete page .. 124
Figure 80. View folder structure ... 125
Figure 81. Overview main page (http://mel.cgiar.org/overview) .. 126
Figure 82. User Index Page (http://mel.cgiar.org/user) ... 131
Figure 83. Login View Page (http://mel.cgiar.org/user/login) .. 132
Figure 84. View When the System Is Down (http://mel.cgiar.org/user/message) 134
Figure 85. Login view (http://mel.cgiar.org/user/pdgmulogin) ... 134
Figure 86. Reset Password View (http://mel.cgiar.org/user/reset) ... 135
Figure 87. Input fields that will be validated before the form will be submitted to the action 142
Figure 88. Data Mapper Representative Flow (Flower, 2002) .. 143
Figure 89. Table Data Gateway Representative Flow ... 144
Figure 90. Security Detailed Diagram ... 159
Figure 91. Performance Detailed Design .. 160
Figure 92. Process of Getting an Open Access Approval for a Document .. 166
Figure 93. DSpace System Architecture (Bass, Stuve, & Tansley, 2002) ... 168
Figure 94. DSpace Conceptual Model (http://cs.calstatela.edu) .. 169
Figure 95. Page Components .. 181

file:///C:/Users/Valerio/Desktop/MEL%20guides/MEL%20System%20Design%20&%20Architecture.docx%23_Toc460849937

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

10 | P a g e

1. Introduction
Instructions: Provide identifying information for the existing system (e.g., the full names and

acronyms for the existing system), and expected evolution of the document. Also describe any

security or privacy considerations associated with use of this document.

The web-based Monitoring, Evaluation and Learning (MEL) platform enables better result-based

management including planning, reporting, coordination, risk management, performance

evaluation, management of legal mechanisms in place among partners, as well as knowledge

sharing and learning amongst different groups of stakeholders (donors, partners, project/program

implementers, managers and collaborators) within and across Projects and Programs. The MEL

platform was initially developed by the in-house team of the CGIAR Research Program on Dryland

Systems and launched at the end of 2014.

The system shall undergo further development and expansion over the coming period in order to

adapt to partners and donors needs in the framework of the Development Assistance Committee

(DAC) of the Organization for Economic Co-operation and Development (OECD) Official

Development Assistance (ODA).

This document is a living document and template; it shall be updated over the lifetime of iMMAP’s

engagement with ICARDA as the system evolves. The document is used by all Partners7

customizing and developing the system in order to support broad understanding and report funds

allocated for more efficient and effective Monitoring and Evaluation. It will serve as a guide to

document the system and its evolution.

The present document is designed to be open access and accessible to all stakeholders in order

to increase customization and adaptation of different institutions partners of this initiative. As per

CGIAR Policy8 the information products including codes and software should be accessible and use

granted free of cost using appropriate licence (https://creativecommons.org).

1.1 Document Overview
Instructions: Describe the document.

This dual-use document has been developed by iMMAP Inc. for the Dryland Systems Program led

by the International Centre for Agricultural Research in Dry Areas (ICARDA) and its partners for their

Monitoring and Evaluation System. This document was developed from review of components of

the system by iMMAP staff (Aya Mousa, Bashar Ayyash and Victor Kimahi) and the original system

developer; former ICARDA staff (Jalal Omary Eddin), and is intended to satisfy the customers’

requirements, objectives and expectations as:

 A Technical Documentation of the system, and

 A guidance for future development of the system

Although this document will go into some detail about system specifications and technical details,

developers are encouraged to use their best judgment when making implementation decisions.

Remaining sections of this document are organized as follows:

72016: MEL System development partners: CGIAR Research Program on Roots, Tubers and Bananas (RTB) -

http://www.rtb.cgiar.org; International Potato Center (CIP) - http://cipotato.org; International Center for Agricultural

Research in Dry Areas (ICARDA) - http://icarda.org; IMMAP - http://www.immap.org; CODEOBIA - http://codeobia.com,

CGIAR Dryland Cereals (DC) http://drylandcereals.cgiar.org; CGIAR Grain Legumes (GL); http://grainlegumes.cgiar.org.
8 https://library.cgiar.org/bitstream/handle/10947/2875/CGIAR%20OA%20Policy%20-

%20October%202%202013%20-%20Approved%20by%20Consortium%20Board.pdf?sequence=4

https://creativecommons.org/
http://www.rtb.cgiar.org/
http://cipotato.org/
http://icarda.org/
http://www.immap.org/
http://codeobia.com/
http://drylandcereals.cgiar.org/
http://grainlegumes.cgiar.org/
https://library.cgiar.org/bitstream/handle/10947/2875/CGIAR%20OA%20Policy%20-%20October%202%202013%20-%20Approved%20by%20Consortium%20Board.pdf?sequence=4
https://library.cgiar.org/bitstream/handle/10947/2875/CGIAR%20OA%20Policy%20-%20October%202%202013%20-%20Approved%20by%20Consortium%20Board.pdf?sequence=4

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

11 | P a g e

 Section 2: General Overview and Approach: Provides an overview of the system and software

architectures and the design goals.

 Section 3: Design Considerations: Describes issues which were addressed or resolved when

designing the system, along with the development methods and, architectural strategies.

 Section 4: System Architecture: Describes how the functionality and responsibilities of the

system were partitioned and then assigned to subsystems or components, and how the

application interacts with other applications.

 Section 5: System Design: Describes the business requirements, database design and

management system.

 Section 6: Operational Scenarios: Describes the general functionality of the system from the

users’ perspectives.

 Section 7: Detailed Design: Provides the information needed for a system development team

to actually build and integrate the hardware components, code and integrate the software

components, and interconnect the hardware and software segments into a functional product.

 Section 8: System Integrity Controls: Provides design specifications for certain levels of

control.

 Section 9: External Interfaces: Describes any interfaces that exist with external systems that

are not within the scope of the system.

 Appendix A: Acronyms: Lists acronyms and associated literal translations used in this

document.

 Appendix B: Glossary: Defines terms used in this document.

 Appendix C: Approvals.

 Appendix D: Security Architecture.

 Appendix E: Performance.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

12 | P a g e

1.2 Scope
Instructions: Provide a summary of models and versions of software to which this document

relates.

Release management are not yet applied to the system, though we encourage ICARDA to start

applying GIT for this. The current MEL system release is V1.0.0, upcoming releases will follow

semantic versioning as shown in (Fig. 1).

Figure 1. Semantic Versioning Numbers

Given a version number MAJOR. MINOR. PATCH, increment the:

1. MAJOR version when the new API is not back compatible with and the previously shipped

API. It does not matter how different it is, if the API acts differently, change the MAJOR

version.
2. MINOR version when the API is changed, but it is completely back compatible with previous

versions of this MAJOR release. Use this when ADDING features to API, too.
3. PATCH version when made bug fixes do not affect the API.

To keep iMMAP's, CODEOBIA’s, DS/ICARDA's, RTB/CIP’s, DC’s, and GL’s development teams’

commits organized, and meaningful, Vincent branching model will be followed in both changelog

and releases.

1.3 Audience
Instructions: State the skills required and assumptions.

This document is developed for two primary audiences:

 Business Owners:

Those with intimate knowledge of the functional requirements of the users of the system, i.e.

Project Managers, Research for Development Organisations involved in ODA interventions,

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

13 | P a g e

Donors, Academia and Advance Research Institutions involved in development

project/program implementation.

 System Developers:

Those charged with developing the system further. It is assumed they are conversant with the

following:

- MVC software architecture (Zend Framework).

- Standard system design documentation.

- PHP, JavaScript, AJAX, JQuery, and MySQL RDBMS.

1.4 Related Documentation
Instructions: List related documents including supplier documentation, test plans and results as

appropriate for this document; List any naming standard of common business process documents

to guide. List any supporting Interface Control Documents, and indicate how to obtain these.

MEL System documentation includes the following:

Table 2. MEL System Related Documentation

Document Title Related To Source

Metronic User Guide Global system template
http://metronicwordpress.com/d

ocumentation

PHP Manual Programming language
http://php.net/manual/en/index.

php

Zend Framework

Manual
Framework

http://framework.zend.com/man

ual/1.12/en/manual.html

jQuery API

Documentation
Other Libraries https://api.jquery.com

DSpace
Digital resources open access

package
https://wiki.duraspace.org

Pest RESTful web services
https://github.com/educoder/pe

st

SimpleHtmlDom A HTML DOM parser
http://simplehtmldom.sourceforg

e.net/manual.htm

PHPExcel Spreadsheet engine https://phpexcel.codeplex.com

ImageLib Image manipulation
http://wideimage.sourceforge.net

/documentation

Modules Supplier documentation ICARDA

Database design

physical report
Database

The Full Physical Report.html in

the root of this documentation

delivery

Vincent Branching

Model
System Semantic Versioning

http://nvie.com/posts/a-

successful-git-branching-model

Theme Support User Interface Theme

http://themeforest.net/item/met

ronic-responsive-admin-

dashboard-

template/4021469?ref=keenthe

mes

CG Core Metadata

Schema (V3)
Information Architecture

http://mel.cgiar.org/xmlui/handl

e/20.500.11766/4764

http://metronicwordpress.com/documentation
http://metronicwordpress.com/documentation
http://php.net/manual/en/index.php
http://php.net/manual/en/index.php
http://framework.zend.com/manual/1.12/en/manual.html
http://framework.zend.com/manual/1.12/en/manual.html
https://api.jquery.com/
https://wiki.duraspace.org/
https://github.com/educoder/pest
https://github.com/educoder/pest
http://simplehtmldom.sourceforge.net/manual.htm
http://simplehtmldom.sourceforge.net/manual.htm
https://phpexcel.codeplex.com/
http://wideimage.sourceforge.net/documentation
http://wideimage.sourceforge.net/documentation
http://nvie.com/posts/a-successful-git-branching-model
http://nvie.com/posts/a-successful-git-branching-model
http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469?ref=keenthemes
http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469?ref=keenthemes
http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469?ref=keenthemes
http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469?ref=keenthemes
http://themeforest.net/item/metronic-responsive-admin-dashboard-template/4021469?ref=keenthemes
http://mel.cgiar.org/xmlui/handle/20.500.11766/4764
http://mel.cgiar.org/xmlui/handle/20.500.11766/4764

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

14 | P a g e

Document Title Related To Source

Reference for

Information Architecture
Information Architecture

http://web.mit.edu/dspace/live/i

mplementation/design_documen

ts/architecture.pdf

Security Architecture Security Architecture Appendix D

Performance Performance Appendix E

1.5 Document Conventions
Instructions: Describe what diagrammatic notation has been used in this document to represent

architectural views.

The following standards are applied to the document:

 Tables and Figures (Sequential Numbering):

Tables and Diagrams are numbered sequentially e.g. Table 1, Figure 2 etc.

 Flowcharts (Standard Notation Flow Chart):

A flowchart is a visual representation of the sequence of steps and decisions needed to

perform a process. Each step in the sequence is noted within a diagram shape. Steps are

linked by connecting lines and directional arrows. This allows anyone to view the flowchart and

logically follow the process from beginning to end. The MEL System used flowcharts symbols

and meanings can be found in (Fig. 2).

Figure 2. The MEL System Used Flowcharts Symbols and Meanings

 Context Diagram:

A high-level view of the overall business or system boundaries. It identifies the external entities

along with major data interfaces that interact with the target single high-level process. This

process centric diagram symbols and meanings are shown in (Fig. 3).

http://web.mit.edu/dspace/live/implementation/design_documents/architecture.pdf
http://web.mit.edu/dspace/live/implementation/design_documents/architecture.pdf
http://web.mit.edu/dspace/live/implementation/design_documents/architecture.pdf

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

15 | P a g e

Figure 3. Context Diagram Symbols and Meanings

 Data Flow Diagrams:

A data flow diagram (DFD) illustrates how data is processed by a system in terms of inputs and

outputs. As its name indicates, its focus is on the flow of information, where data comes from,

where it goes and how it gets stored.

MEL is using Yourdon & Coad's (YC) Object Oriented Analysis and Design (OOA/OOD). The

currently used YC notations are shown in (Fig. 4).

Figure 4. The MEL System Used Data Flow Diagram Notations

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

16 | P a g e

 UML Diagram:

Represents elements of systems and organize them into related groups to minimize

dependencies between system components.

This diagram is used to describe the architecture of MEL system and the interaction between

its component.

Figure 5. UML Diagram

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

17 | P a g e

2. General Overview and Approach

2.1 General Overview
Instructions: Briefly introduce the system context and organisation. Provide a brief overview of the

system and software architectures and the design goals. Include the high-level context diagram(s)

for the system and subsystems.

Over the years, Dryland Systems has needed a Monitoring and Evaluation system to provide a

central location for projects and scientists from all over the world to record their activities and to

manage funds for results in efficient and effective manners in order to maximize taxpayers’ funds

invested in ODA. To this end, the MEL system was developed in-house by the Lead Centre, ICARDA,

which has an advance unit for Geo-Informatics Unit (http://geoagro.icarda.org) with experienced

staff to integrate programming skills, scientific software knowledge and practical experience in

research for development projects and programs.

Figure 6. MEL System High-level Context Diagram

2.1.1 Overview of the System
Instructions: A brief functional description with key concepts. Provide a top-level description of the

system and its major external interfaces to aid the reader in understanding what the software is

to accomplish. Reference appropriate graphics, illustrations, tables etc. to show functions.

- In what environment it works
- Who the users are
- What it is for
- The main functions
- The main interfaces, inputs and outputs

The system is designed for managers and staff in projects and programs. It reduces users reporting

time while aggregating information across well-known indicators in order to manage resources

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

18 | P a g e

effectively and efficiently. It allows manager to identify resources, partnerships and plan for results

while predicting a shortfall of planned deliverables in order to re-allocate projects/programs

elements. It generates knowledge sharing through discussion forum and keywords analysis.

The system consists of several modules, each module completing a specific task. The system

monitors project deliverables, participation, and feeds back to the overall goals of the project

allowing for monitoring of the impact of the projects within a Program.

There are several modules on Project information: Staff, consultants allocation and productivity,

partners engagement and evaluation, research output phases from discovery to scaling up and

out, outputs and deliverables planned, un-expected and completed, outcomes risks and

assumptions, budget allocation and burn rate, outcomes-based budget, capacity development,

gender, intellectual assets monitoring, reporting, interoperable repository with Dublin core

metadata, discussion forum, partners mapping, projects interaction and clustering, survey tool,

open facts and dynamic impact pathways.

Figure 7. MEL System Focus

2.1.2 System Requirements
Instructions: Include a description of each major requirement in narrative and include a table of

the mapping of requirements to modules and current status: These should include significant

functional workload and functional performance, operational, technical, security and any other

special requirements.

Requirement 0: Project Definition

The system is expected to register and archive all project information and display them for

comprehensive knowledge.

Requirement 1: Project Monitoring

The system is expected to allow manager to plan for results and monitor the products and

deliverables from projects and at programs’ level. The products may take different forms, the

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

19 | P a g e

system focuses on electronic ones, such as data. Electronic Deliverables such as reports are also

stored on the system allowing for reference.

Requirement 2: Financial Accounting

The System monitors budget allocation and burn rate in projects at country level, outcome, output

and key sectors (i.e. Gender/Capacity Development) levels. This information is entered in tables

and processed by the system in order to produce informative reports to managers to take strategic

decision on resources allocation.

Requirement 3: Human Resources Allocation

The System monitors scientists and consultants time allocated in projects. This information is

selected by Project Managers and processed by the system in order to produce informative reports

to managers to take strategic decision on resources allocation and staff (user) performance

evaluation.

Requirement 4: Surveys

The System sends surveys to selected users and contacts to assess their level of knowledge, Skills

and Attitude (KSA) in order to plan future interventions or assess the impact of ongoing activities.

This information is organized by users and launched by the system via email in order to produce

informative reports to managers to take strategic decision.

Requirement 5: Impact Pathway

The System generates dynamic impact pathways aggregating information from Projects, sites,

countries and regions. This information is entered by users and the system produce visual

pathways to link outputs, outcomes, risks, assumptions, indicators and strategic result framework

contribution. It is used to analyse effects of integrated interventions to identify synergies and

redundancies.

Requirement 6: Knowledge Sharing

The System has a build in discussion forum linked with research outputs and deliverables to share

opinion and improve quality. The reporting module provide a standard metadata schema (Dublin

core) and it is linked to an external open access repository (D-Space) to share knowledge with

existing partners and broadly with stakeholders.

Table 3. MEL System Requirements Mapping

Requirement Details Modules

Project Monitoring

Electronic Product Warehousing

Electronic Deliverable

Warehousing

Project Manage: Results

(Outputs)

Reporting

Capacity Development

Financial Accounting Electronic data warehousing
Project Manage: Budget

Project Info

Human Resources

Allocation
Electronic data warehousing

User

Project Manage: Scientists

and consultants

Surveys Electronic data warehousing Survey

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

20 | P a g e

Requirement Details Modules

Impact Pathway Electronic data warehousing

Project Manage: Outputs

Project Manage: Outcomes

Project Manage: Budget

Project Manage: SRF

mapping

Project Manage: Outcome

Indicators

Project Manage: Related

Outputs

Project Manage: Related

Outcomes

Project Manage: Risks and

Assumptions

Knowledge Sharing
Electronic Deliverable

Warehousing

Project Reporting

D-Space

2.2 Business Processes
Instructions: Briefly describe the various business processes at a system overview level;

descriptions of the specific business process will be tackled later in this document.

The overall business process of the system is monitoring and evaluation of projects and programs.

This includes monitoring of deliverables, mapping of impacts, financial accounting and reporting

to various stakeholders.

2.3 Assumptions / Constraints / Risks

2.3.1 Assumptions
Instructions: Describe any assumptions or dependencies regarding the system and its use. These

may concern such issues as related software or hardware, operating systems, end-user

characteristics, and possible and/or probable changes in functionality.

The usual assumptions on user, system administrators and developers’ prerequisite knowledge

are taken for granted. The system is known to require module addition and evolution in the coming

years.

2.3.2 Constraints
Instructions: Describe any limitations or constraints that have a significant impact on the system,

software and/or communications, and describe the associated impact. Such constraints may be

imposed by any of the following (the list is not exhaustive):

a) Hardware or software environment

b) End-user environment

c) Availability or volatility of resources

d) Standards compliance

e) Interoperability requirements

f) Interface/protocol requirements

g) Licensing requirements

h) Data repository and distribution requirements

i) Security requirements (or other such regulations)

j) Memory or other capacity limitations

k) Performance requirements

l) Network communications

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

21 | P a g e

m) Verification and validation requirements (testing)

n) Other means of addressing quality goals

o) Other requirements described in the Requirements Document

Zend Framework requires a PHP 5 interpreter with a web server configured to handle PHP scripts

correctly. Zend recommends the most current release of PHP for critical security and performance

enhancements, and currently supports PHP 5.2.11 or later.

a) Hardware or software environment

MEL web server should have the mod_rewrite module installed and enabled. To prevent files

manipulation processes from getting the service down, a max_execution_time should be

increased to 360 ms. Other PHP configurations are:

memory_limit = 128 MB

upload_max_filesize = 200 MB

b) End-user environment

A basic compatible browser with JavaScript is needed, IE is not recommended, as it is not fully

compatible with MEL.

c) Availability or volatility of resources

No limitations, nor constraints are found.

d) Standards compliance

No limitations, nor constraints are found.

e) Interoperability requirements

No limitations, nor constraints are found.

f) Interface/protocol requirements

No limitations, nor constraints are found.

g) Licensing requirements
MEL is using a paid Theme called Metronic, license details are reported below:

Also, MEL is using Zend Framework, an open source framework for developing web

applications and services using PHP, and is under the following BSD license:

Copyright (c) 2005-2016, Zend Technologies USA, Inc. All rights reserved.

 Redistribution and use in source and binary forms, with or without modification.

 Redistributions of source code must retain the above copyright notice, this list of

conditions and the following disclaimer.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

22 | P a g e

 Redistributions in binary form must reproduce the above copyright notice, this list of

conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

 Neither the name of Zend Technologies USA, Inc. nor the names of its contributors may

be used to endorse or promote products derived from this software without specific

prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR

ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

h) Data repository and distribution requirements
No limitations, nor constraints are found.

i) Security requirements (or other such regulations)
No limitations, nor constraints are found.

j) Memory or other capacity limitations
No limitations, nor constraints are found.

k) Performance requirements
No limitations, nor constraints are found.

l) Network communications
No limitations, nor constraints are found.

m) Verification and validation requirements (testing)
No limitations, nor constraints are found.

n) Other means of addressing quality goals
MEL is trying to follow Zend Framework condign standards, to help ensure that the code is high

quality, has fewer bugs, and can be easily maintained. The following has a brief explanation of

what coding standards Zend Framework requires:

 PHP File Formatting

- Indentation

Indentation should consist of four spaces. Tabs are not allowed.

- Maximum Line Length

The target line length is 80 characters. That is to say, Zend Framework developers should

strive keep each line of their code under 80 characters where possible and practical.

However, longer lines are acceptable in some circumstances. The maximum length of any

line of PHP code is 120 characters.

- Line Termination

Line termination follows the UNIX text file convention. Lines must end with a single linefeed

(LF) character. Linefeed characters are represented as ordinal 10, or hexadecimal 0x0A.

 Naming Conventions
- Classes

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

23 | P a g e

Zend Framework standardizes on a class naming convention whereby the names of the

classes directly map to the directories in which they are stored. The root level directory of

Zend Framework's standard library is the "Zend/" directory, whereas the root level directory

of Zend Framework's extras library is the "ZendX/" directory. All Zend Framework classes

are stored hierarchically under these root directories. Class names may only contain

alphanumeric characters. Numbers are permitted in class names but are discouraged in

most cases. Underscores are only permitted in place of the path separator; the filename

"Zend/Db/Table.php" must map to the class name "Zend_Db_Table".

- Abstract Classes

In general, abstract classes follow the same conventions as classes, with one additional

rule: abstract class names must end in the term, "Abstract", and that term must not be

preceded by an underscore. As an example, Zend_Controller_Plugin_Abstract is considered

an invalid name, but Zend_Controller_PluginAbstract or

Zend_Controller_Plugin_PluginAbstract would be valid names.

- Interfaces

In general, interfaces follow the same conventions as classes, with one additional rule:

interface names may optionally end in the term, "Interface", but that term must not be

preceded by an underscore. As an example, Zend_Controller_Plugin_Interface is

considered an invalid name, but Zend_Controller_PluginInterface or

Zend_Controller_Plugin_PluginInterface would be valid names.

- Filenames

For all other files, only alphanumeric characters, underscores, and the dash character ("-")

are permitted. Spaces are strictly prohibited.

- Functions and Methods

Function names may only contain alphanumeric characters. Underscores are not

permitted. Numbers are permitted in function names but are discouraged in most cases.

Function names must always start with a lowercase letter. When a function name consists

of more than one word, the first letter of each new word must be capitalized. This is

commonly called "camelCase" formatting.

- Variables

Variable names may only contain alphanumeric characters. Underscores are not permitted.

Numbers are permitted in variable names but are discouraged in most cases. For instance,

variables that are declared with the "private" or "protected" modifier, the first character of

the variable name must be a single underscore. This is the only acceptable application of

an underscore in a variable name. Member variables declared "public" should never start

with an underscore.

- Constants

Constants may contain both alphanumeric characters and underscores. Numbers are

permitted in constant names.

All letters used in a constant name must be capitalized, while all words in a constant name

must be separated by underscore characters. For example,

EMBED_SUPPRESS_EMBED_EXCEPTION is permitted but

EMBED_SUPPRESSEMBEDEXCEPTION is not. For more information about Zend Framework

coding style, have a look at:

http://framework.zend.com/manual/1.12/en/coding-standard.coding-style.html

o) Other requirements described in the Requirements Document

2.3.3 Risks
Instructions: Describe any risks associated with the system design and proposed mitigation

strategies.

http://framework.zend.com/manual/1.12/en/coding-standard.coding-style.html

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

24 | P a g e

 MVC pattern is not on the same level
MEL is applying the MVC in a different way than Zend suggests, The M (Model/) exists directly

inside the application/ folder while the VC exist inside the default module/.

iMMAP believes that this approach has no impact on the system flow, but it has an impact on

the MVC design pattern of Zend as it doesn't completely follow it. A suggested movement for

the shared models (User Model) to the default module, with being cautious on not moving the

shared models and keeping a track on the classes’ names -If changed-.

 Missing Data Mapper pattern component
MEL is merging the Data Source Model with the Data Mapper Model.

iMMAP believes that this has an impact on the number of database hits, and the execution

time of mapper models before hitting the database (It might be negligible for now, but worths

mentioning).

 JSON Parsing
Parsing JSON on MySQL version 5.1 has an impact on the performance, MEL solved this by

creating a JSON mapper that takes JSON data and convert to object.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

25 | P a g e

3. Design Considerations
Instructions: Describe issues, which were addressed or resolved when designing the system.

No issues were solved nor addressed, the biggest risk on MEL was the frequently changing

requirements (Fields, relations, features) since the CGIAR Research Program (CRP) Planning and

Reporting requirements have been modified during the period 2013-2016.

As mentioned by Jalal Omary (MEL former developer), design decisions were not based on the best

practices because of the highly changeable requirements.

An example of a decision made based on the frequent requested changes is:

- “We used JSON in some tables because they were changed many times; we used one field for
JSON inside those tables. Performance issue from this arises because of JSON parsing on
MySQL Version 5.1 which doesn't support JSON, this was solved by creating a JSON mapper
that takes JSON data and convert it to object”. Jalal Eddin Omary (MEL System Developer).

3.1 Goals and Guidelines
Instructions: Describe any goals, guidelines, principles, or priorities, which dominate or embody

the design of the system and its software. Examples of such goals might be an emphasis on speed

versus memory use; or working, looking, or “feeling” like an existing product. Guidelines include

coding guidelines and conventions. For each such goal or guideline, describe the reason for its

desirability unless it is implicitly obvious.

MEL system design guidelines focuses on maintainability, and extensibility. The MVC architectural

pattern was the choice to help improve these guidelines and reusability, splitting the application

into three distinct components with certain responsibilities.

The MVC pattern breaks a project into three manageable modules to satisfy the separate functions

in a development process and achieve the loosely coupled design. The result is that the

presentation code can be consolidated in one part with the business logic in another and data

access code in another module. This well-defined separation indispensable for keeping code

organized, especially when more than one developer is working on the same application. A

breakdown of the MVC pattern into individual pieces is shown in (Fig. 8).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

26 | P a g e

Figure 8. Zend MVC Design Pattern Structure

 Model

Contains domain-specific instructions. This is the part of the application that defines its basic

functionality behind a set of abstractions. Data access routines and some business logic can

be defined in the model.

 View

Views define user interface of the controller, and what is exactly presented to the user. Usually

controllers pass data to each view to render in some format. Views will often collect data from

the user, as well. This is where HTML mark-up can be found in MVC applications.

 Controller

Controllers bind the whole pattern together, containing code to handle all the allowed user

events and coordinates the view and models. They manipulate models, decide which view to

display based on the user's request and other factors, pass along the data that each view will

need, or hand off control to another controller entirely. Most MVC experts recommend keeping

controllers as skinny as possible.

The "use-at-will" design assures that each framework component is designed with few

dependencies on other components, and improves the loosely coupled architecture, which allows

developers to use components individually.

With the Object-oriented Goodness and its tested code, Zend Framework 1 (ZF1) was the

framework of the choice.

In addition to MVC, one of the main MEL goals was to create a user-friendly interface; Metronic has

a clean and intuitive metro style design. Metronic comes with a huge collection of plugins and UI

components that enables developer to extend, and enhance feel and look of the system.

A good performance was also one of the MEL System goals. For this, MEL is using Ajax, DataTables,

and MVC to provide performance enhancement guidelines.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

27 | P a g e

3.2 Development Methods & Contingencies
Instructions: Briefly describe the method or approach used for the system and software design

(e.g., structured, object-oriented, prototyping, J2EE, UML, XML, etc.). If one or more formal/

published methods were adopted or adapted, then include a reference to a more detailed

description of these methods. Describe any contingencies that might arise in the design of the

system and software that may change the development direction. Possibilities include lack of

interface agreements with outside agencies or unstable architectures at the time. Address any

possible workarounds or alternative plans.

The MEL system is developed on an Object Oriented Approach based on the Zend MVC framework.

Interface agreements with the Research program on Roots, Tubers, and Bananas (RTB) and the

International Potato Center (CIP) have required forking the current development path to include

their requirements.

ICARDA team has installed and applied some changes on the MEL system to adhere RTB technical

requirements, changes include:

 Overview section sidebar addition to include more information about:

Enhanced genetic resources, Productive varieties and quality seed, resilient crops, Nutritious

food and added value, improving livelihoods at scale, and CIP Strategy and Corporate Plan

(SCP).

 Sections inactivating:

Survey and Open Facts sections are not included in the RTB system.

 Sub-sections changes:

RTB planning section has no Activities, and its Pre-planning section has no IDO, nor ALS. Action

sites are referred to as Clusters in RTB.

3.3 Architectural Strategies
Instructions: Describe any design decisions and/or strategies that affect the overall organization

of the system and its higher-level structures. These strategies should provide insight into the key

abstractions and mechanisms used in the system architecture. Describe the reasoning employed

for each decision and/or strategy (possibly referring to stated design goals and principles) and

how any design goals or priorities were balanced or traded-off.

Examples of design decisions might concern (but are not limited to) things like the following:

a) Use of a particular type of product (programming language, database, library, commercial

off-the-shelf (COTS) product, etc.)

b) Reuse of existing software components to implement various parts/features of the system

c) Future plans for extending or enhancing the software

d) User interface paradigms (or system input and output models)

e) Hardware and/or software interface paradigms

f) Error detection and recovery

g) Memory management policies

h) External databases and/or data storage management and persistence

i) Distributed data or control over a network

j) Generalized approaches to control

k) Concurrency and synchronization

l) Communication mechanisms

m) Management of other resources

a) Use of a particular type of product (programming language, database, library)
As MEL is built on top of Zend Framework 1, the MVC architectural pattern should be used to

follow the framework guidelines. PHP is the main programming language for Zend Framework,

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

28 | P a g e

other used libraries are: jQuery, Bootstrap, SimpleHtmlDom, PHPExcel, ImageLib, Excanvas,

Respond, DataTables, FancyBox. Please refer to Metronic documentation for the full frontend

libraries. MEL is using MySQL, the free, lightweight, and open-source relational database

management system (RDBMS).

b) Reuse of existing software components to implement various parts/features of the system
Metronic, a multi-purpose Bootstrap HTML5 global system theme for MEL and is used for its

user-friendly interface, responsive, and extensibility.

c) Future plans for extending or enhancing the software
No design decisions and/nor strategies taken affecting the overall organization of the system.

d) User interface paradigms (or system input and output models)
No design decisions and/nor strategies taken affecting the overall organization of the system.

e) Hardware and/or software interface paradigms
No design decisions and/nor strategies taken affecting the overall organization of the system.

f) Error detection and recovery
No design decisions and/nor strategies taken affecting the overall organization of the system.

g) Memory management policies
MEL has no applied memory management policy, the requested memory requested by the

developers were provided from ICARDA's side.

h) External databases and/or data storage management and persistence
No design decisions and/nor strategies taken affecting the overall organization of the system.

i) Distributed data or control over a network
No design decisions and/nor strategies taken affecting the overall organization of the system.

j) Generalized approaches to control
No design decisions and/nor strategies taken affecting the overall organization of the system.

k) Concurrency and synchronization
No design decisions and/nor strategies taken affecting the overall organization of the system.

l) Communication mechanisms
No design decisions and/nor strategies taken affecting the overall organization of the system.

m) Management of other resources
No design decisions and/nor strategies taken affecting the overall organization of the system.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

29 | P a g e

4. System Architecture
Instructions: Describe the system architecture, how the application interacts with other

applications. Not necessarily how the application itself works but, how the appropriate data is

correctly passed between applications. Provide an overview of how the functionality and

responsibilities of the system were partitioned and then assigned to subsystems or components.

Don’t go into too much detail about the individual components themselves in this section. A

subsequent section of the System Design Document (SDD) will provide the detailed component

descriptions. The main purpose here is to gain a general understanding of how and why the system

was decomposed, and how the individual parts work together to provide the desired functionality.

At the top-most level, describe the major responsibilities that the software must undertake and

the various roles that the system (or portion of the system) must play. Describe how the system

was broken down into its components/subsystems (identifying each top-level

component/subsystem and the roles/responsibilities assigned to it). Describe how the higher-level

components collaborate with each other in order to achieve the required results. Provide some

sort of rationale for choosing this particular decomposition of the system.

Make use of design patterns whenever possible, either in describing parts of the architecture (in

pattern format), or for referring to elements of the architecture that employ them. Provide rationale

for choosing a particular algorithm or programming idiom (or design pattern) to implement

portions of the system’s functionality.

Figure 9. MEL Application Context Mapping

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

30 | P a g e

 Table 4. Application Context Mapping

Component Description Interface Name Interface System

FP

Aggregation of CoA

with an oversight

leader

Flagship Project Flagship Project

CoA

Aggregation of

Projects/Activities

with an oversight

leader

Cluster of Activities Cluster of Activities

Project/Activities

Planning and

reporting

environment for a

project manager

Project

Activity

Project

Activity

ALS
Cross-cutting

aggregation domain
ALS ALS

The high-level application design identifies the major components of the system and the

relationships of the major application components to each other and the surrounding applications.

The major components of the application are at the subsystem or top-level service area. Core

architecture tenets include:

 Utilization of Commercial Off-the-Shelf (COTS) for visualization and development

framework: MEL is built on top of the COTS capabilities of PHP on the Zend Framework,

Metronic and JQuery. These functions will be maximized as COTS functions to ensure

maximum benefit from the defined architecture. This aligns with the design principles of

ICARDA enterprise initiatives.

 Loose coupling across components: for all COTS and custom components, the principles

of loose coupling have been utilized to maximize the possibility of further enhancements.

To meet this design direction, MEL maximizes the use of standards-based interactions and

limits the use of proprietary data interchange.

 Object-relational mapping (ORM) works by providing the developer with an object-oriented

solution for interacting with the database, each database table is mapped to a

corresponding class. This class is not only able to communicate with the table, performing

tasks such as selecting, inserting, updating, and deleting data, but can also be extended

by the developer to include other behaviour, such as data validation and custom queries.

 The Data Mapper design pattern is a layer of software that separates the in-memory objects

from the database. Its responsibility is to transfer data between the two and to isolate them

from each other. With Data Mapper, the in-memory objects need not know even that there

is a database present; they need no SQL interface code, and certainly no knowledge of the

database schema.

 The Zend_Auth class implements the Singleton pattern - only one instance of the class is

available - through its static getInstance() method.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

31 | P a g e

4.1 Hardware Architecture
Instructions: Describe the overall system hardware and organization, indicating whether the

processing system is distributed or centralized. Identify the type, number, and location of all

hardware components including the presentation, application, development and data servers and

any peripheral devices (e.g., load balancers, SSL accelerator, CDN with a brief description of each

item and diagrams showing the connectivity between the components along with required

firewalls, ports Include resource estimates for processor capacity, memory, on-line storage, and

auxiliary storage.

MEL system is hosted on a server with the following specification:

 Hosting provider

- Netblock owner: CGNET Services International, Inc. 1170 Hamilton Ct. Menlo Park CA

US 94025.

- IP address: 192.156.137.193.

- OS: Windows Server 2012.

- Web server: Apache/2.4.17 Win32 OpenSSL/1.0.2d PHP/5.6.14.

- Nameserver: ns-752.awsdns-30.net.

 OpenSSL

- A collaborative effort project to develop a robust, commercial-grade, full-featured, and

Open Source toolkit implementing the Secure Sockets Layer (SSL v2/v3) and Transport

Layer Security (TLS v1) protocols as well as a full-strength general purpose

cryptography library.

- OpenSSL: OpenSSL/1.0.2d.

4.1.1 Performance Hardware Architecture
Instructions: Describe the hardware components and configuration supporting the performance

and reliability of the system. Identify single points of failure and, if relevant, describe high

availability design (e.g., clustering). The selection process of the cloud host and description from

the hosting providers should suffice. The proposed use of a Content Delivery Network (CDN) should

be described here too.

MEL has no dedicated hardware to enhance the system performance, nothing of the following were

implemented: load balancer, CDN, clusters.

4.2 Software Architecture
Instructions: Describe all software that is needed to support the system, and specify the physical

location of all software systems. List such things as logical components (e.g., CSS in presentation

layer, Controllers in application layer, MySQL connectors in data layer), database platforms,

computer languages, utilities, operating systems, communications software, commercial off-the-

shelf (COTS) software, open source frameworks, etc., with a brief description of the function of

each item and any identifying information such as manufacturer, version number, number and

types of licenses needed, etc., as appropriate. Identify all Computer Software Configuration Items

(CSCIs), Computer Software Components (CSCs) and Application Programming Interfaces (APIs) to

include name, type, purpose and function for each; the interfaces, messaging, and protocols for

those elements; and rationale for the software architectural design. Include software modules that

are functions, subroutines, or classes. Use functional hierarchy diagrams, structured organization

diagrams (e.g., structure charts), or object-oriented diagrams that show the various segmentation

levels down to the lowest level. All features on the diagrams should have reference numbers and

names.

Include a narrative that expands on and enhances the understanding of the functional breakdown.

If necessary, describe how a component was further divided into subcomponents, and the

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

32 | P a g e

relationships and interactions between the subcomponents. Proceed into as many

levels/subsections of discussion as needed in order to provide a high-level understanding of the

entire system or subsystem, leaving the details for inclusion in a later section of the SDD. Include

data flow diagrams that conform to appropriate standards (e.g., Yourdon-Demarco conventions)

and provide the physical process and data flow related to the logical process and data flow

decomposed to the primitive process level (describing how each input is processed/transformed

into the resulting output).

 Frameworks

Zend, an open source, object-oriented web application framework implemented in PHP 5 and

licensed under the New BSD License. PHP is a widely-used general-purpose scripting language that

is especially suited for Web development and can be embedded into HTML.

 JavaScript Libraries

- JQuery 1.11.0
JQuery is a fast, concise, JavaScript Library that simplifies how you traverse HTML

documents, handle events, perform animations, and add Ajax interactions to your web

pages.

- JQuery UI
JQuery UI provides abstractions for low-level interaction and animation, advanced effects

and high-level, themeable widgets, built on top of the jQuery JavaScript Library, that you

can use to build highly interactive web applications.

- JQuery BlockUI
JQuery BlockUI Plugin lets you simulate synchronous behaviour when using AJAX, without

locking the browser.

- Uniform
Uniform masks your standard form controls with custom themed controls.

- JQuery Form
JQuery Form Plugin allows you to easily and unobtrusively upgrade HTML forms to use AJAX.

- JQuery Validate
JQuery Form Validation Plugin.

- Backstretch
A simple jQuery plugin that allows you to add a dynamically resized, slideshow-capable

background image to any page or element.

 Widgets

- Google Font API
The Google Font API helps you add web fonts to any web page.

- Font Awesome
Iconic font and CSS toolkit.

 Document Information

- HTML5 DocType
The DOCTYPE is a required preamble for HTML5 websites.

- Conditional Comments
The website uses conditional comments that are supported by Microsoft Internet Explorer.

They allow web developers to show or hide HTML code based on the version of the viewer's

browser.

- X-UA-Compatible
Allows a website to define how a page is rendered in Internet Explorer 8, allowing a website

to decide to use IE7 style rendering over IE8 rendering.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

33 | P a g e

- Cascading Style Sheets
Cascading Style Sheets (CSS) is a stylesheet language used to describe the presentation

of a document written in a mark-up language. Its most common application is to style web

pages written in HTML.

- Twitter Bootstrap
Bootstrap is a toolkit from Twitter designed to kick-start development of webapps and sites.

- JavaScript
JavaScript is a scripting language most often used for client-side web development. Its

proper name is ECMAScript, though "JavaScript" is much more commonly used. The

website uses JavaScript.

 Encoding

- UTF-8
UTF-8 (8-bit UCS/Unicode Transformation Format) is a variable-length character encoding

for Unicode. It is the preferred encoding for web pages.

4.2.1 Performance Software Architecture
Instructions: Describe the software components and configuration supporting the performance

and reliability of the system. Identify single points of failure and, if relevant, describe high

availability design (e.g., clustering).

MEL system is using AJAX: ajaxForm and ajaxSubmit, to gather information from the form element

to determine how to manage the submit process.

In addition, DataTables the table plug-in for jQuery is used to enhance instant search, multi-column

ordering, hidden columns, dynamic creation of tables, and Ajax auto loading of data.

MEL Application is using the following two techniques to increase performance inside classes:

 Classes are written in a way to improve data communication between classes by using

absolute paths instead of include path and reduce the numbers of include paths example:

defined('APPLICATION_PATH')

 || define('APPLICATION_PATH', realpath(dirname(__FILE__) . '/application'));

defined('UPLOAD_PATH')

 || define('UPLOAD_PATH', realpath(dirname(__FILE__) . '/uploads'));

defined('LIBRARY_PATH')

 || define('LIBRARY_PATH', realpath(dirname(__FILE__) . '/library'));

 In the following code it shows how to using caching mechanism:

protected function cacheActivities()

{

 $_flagshipActivityMapper = new Model_Mapper_FlagshipActivity ();

 $_flagshipActivityCollection = $_flagshipActivityMapper->fetchMany(null, array(

 'parent_activity_id ASC',

 'code ASC'

));

 $this->view->flagshipActivityCollection = $_flagshipActivityCollection;

 $_cachedActivities = $this->view->render('planning/flagshipactivities.phtml');

 file_put_contents(APPLICATION_PATH . '/cache/activities.dat', $_cachedActivities);

}

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

34 | P a g e

The function gets FlagshipActivities from Model_Mapper_FlagshipActivity and

file_put_contents render flagshipactivities.phtml page and store the output in cache folder

to load the activities from file instead of the database, as shown in the following figure:

Figure 10. File caching inside PlanningController class

4.3 Information Architecture
Instructions: Describe the information that will be stored in the system (e.g. Project information,

research data, etc.).

MEL users store multiple types of information:

 CGIAR Information:

Strategy and Results Framework (SRF) (System-Level Outcome (SLO), Intermediate

Development Outcomes (IDO), Sub-IDO), Financial Details (One Corporate System (OCS) and L-

Series format), type of funding (Window 1 / Window 2, Window 3, Bilateral), Output Type,

Deliverables Type, Deliverables Metadata Schema (incl. Country List ISO 3166).

 CGIAR Research Programs Information (Roots, Tubers and Banana (RTB), Dryland Systems

(DS), Grain Legumes (GL), Development Countries (DC)): Partners Type, Nested Partner

Convention, Indicators, CapDev Elements.

 Program characterization information: which includes static information such as, Flagship

Projects, Cluster of Activities, Indicators.

 Project information: which includes: Project name, status, reference code to activate web

services with other organizational systems (e.g. OCS), Donors, Leadership, Implementation

period, CRP mapping, Objectives, Goals, Outputs, deliverables, Outcomes, indicators,

relations Output-Outcome (Impact Pathway dynamic generation), Research Phase,

Scientists and Partners, Budget (planned, revised and current expenditures disaggregated

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

35 | P a g e

in different categories, Capacity Development Intervention (as a special sub-set of

deliverables), Project files as part of the reporting process to meet planned deliverables.

It is also allowed to report un-planned deliverables, online survey data.

A general to specific view of the stored Information architecture us shown in (Fig. 11).

Figure 11. MEL System Information Architecture General-to-Specific Approach

Additionally, the following three types of information will be added in 2016:

 UN SDG, Indicators and Regions.

 USAID Feed the Future Indicators.

 IFAD Result Framework.

For UN SDG, and USAID Feed the Future Indicators, a detailed reference is handed over in this

documentation delivery as: “CG Core Metadata Schema and Application Profile.pdf”, and
“Reference for Information Architecture.xlsx”.

4.4 Internal Communications Architecture
Instructions: Provide a diagram depicting the communications flow between the system and

subsystem components.

MEL System components interacts with each other in systematic defined ways, definition depends

on either Zend Framework logic itself, or a customized way built for a custom feature in the system

i.e. Open access repository. The following will cover these internal interactions with code snippets.

 Open Access Repository
As MEL is using the DSpace digital repository to grant open access to deliverables and

outcomes, internal communication between MEL and this repository located at

http://mel.cgiar.org/repo is customized by a PHP client library for RESTful web services (PEST).

http://mel.cgiar.org/repo

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

36 | P a g e

Unlike Zend_Rest_Client, which is not really a "REST" client at all (more like RPC-over-HTTP),

Pest supports the four REST verbs (GET/POST/PUT/DELETE) and pays attention to HTTP

response status codes.

Pest's get(), post(), put(), and delete() return the raw response body as a string. PestJSON –

what MEL is using- is a JSON-centric version of Pest, specifically targeted at REST services that

return JSON data. Rather than returning the raw response body as a string, PestJSON will try

to parse the service's response into a JSON object. The following getCollection method located

at (library/Dspace/Dspace.php) illustrates the idea:

 public function getCollection($id = 0)

 {

 if (!empty($id) && $id > 0) {

 try {

 $response = $this->pestRequest->get('/collections/' . $id);

 return array('status' => 1, 'result' => json_decode($response));

 } catch (Exception $e) {

 return array('status' => 0, 'message' => $e->getMessage(), 'code' => $e-

>getCode());

 }

 } else {

 return array('status' => 0, 'message' => 'ID not provided', 'code' => -1);

 }

 }

Although DSpace class located at (library/Dspace/Dspace.php) requires both PestJSON.php, and

PestXML.php, but its Constructor method is defaulting the response type to JSON as follows:

require_once LIBRARY_PATH . '/Pest/PestJSON.php';

require_once LIBRARY_PATH . '/Pest/PestXML.php';

class Dspace
{

 private $base_url;

 private $domain;

 private $pestRequest = null;

 public $authToken = null;

 public $authEmail = null;

 public $authPassword = null;

 public function __construct($domain, $typeResponse = 'JSON')

 {

 $this->domain = $domain;

 $this->base_url = $domain . "/rest";

 if (!empty($this->base_url)) {

 if ($typeResponse == "JSON") {

 $this->pestRequest = new PestJSON($this->base_url);

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

37 | P a g e

 } else {

 $this->pestRequest = new PestXML($this->base_url);

 }

 }

 }

}

The internal communications of the DSpace open repository is shown in (Fig. 12), with its

corresponding Controllers, Domain and Mapper Models.

Figure 12. DSpace Internal Communication

 Controller to Database
MEL is implementing its Custom Data Access object (DAO) pattern, by the missing Data Source

element (More information on this at Section 7: Software Modules/CRUD).

A resultant Database to Controller internal communication can be summarized in (Fig. 13).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

38 | P a g e

Figure 13. Controller to Action Internal Communication

 Controller to View
MEL is following Zend Framework logic by passing data from Controller to View via the front

controller that enables the ViewRenderer action helper. This helper takes care of injecting the

view object into the controller, as well as automatically rendering views. (Fig. 14) Shows this

Front Controller pattern.

Figure 14. Controller to View Internal Communication

A direct example of this can be found at

(application/modules/default/controllers/OverviewController.php) as follows:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

39 | P a g e

class OverviewController extends Zend_Controller_Action

{

 $this->view->mainTitle = $_flagshipEntity->name;

 $this->view->subTitle = 'Overview';

}

 JavaScript to Controller
This is where MEL is initiating URL Controller at (application/views/layouts/default.phtml) as

follows:

<script>
base_url = "<?=$this->baseUrl()?>";

var discussionsHomeLink ='<?=$this-

>url(array('module'=>'default','controller'=>'discussion','action'=>'index'),null

,true)?>';

var userDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'user','action'=>'getallusers'),null,

true)?>';

var discussionCountLink ='<?=$this-

>url(array('module'=>'default','controller'=>'discussion','action'=>'discussions

count'),null,true)?>';

</script>

 View to Controller/Scripts
Because our JS files are isolated in the assets/ directory, we are defining global variables with

the URLs names as values, and are being passed to those JS scripts. Those Ajax calls URLs are

Zend URLs so they are compatible with the default route.

An example can give a better understanding of this view to controller direction, JS variables at

(application/modules/default/views/scripts/planning/activities.phtml) are defined as follows:

<?php $this->placeholder('styleVars')->captureEnd() ?>

<?php $this->placeholder('jsvars')->captureStart();?>

var tableDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'planning','action'=>'flagshipactiv

ities'),null,true)?>';

var tableDataCountLink ='<?=$this-

>url(array('module'=>'default','controller'=>'planning','action'=>'flagshipactiv

itiescount'),null,true)?>';

var getDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'planning','action'=>'getflagshipac

tivity'),null,true)?>';

var deleteDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'planning','action'=>'delflagshipac

tivity'),null,true)?>';

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

40 | P a g e

var alsDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'preplanning','action'=>'getallals'),

null,true)?>';

var actionsiteDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'preplanning','action'=>'getallacti

onsites'),null,true)?>';

var flagshipDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'preplanning','action'=>'getallflag

ships'),null,true)?>';

var actionsiteDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'preplanning','action'=>'getallacti

onsites'),null,true)?>';

var userDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'user','action'=>'getallusers'),null,

true)?>';

<?php $this->placeholder('jsvars')->captureEnd() ?>

 View to View
According to the previous snippet of code; MEL views talk to each other via the Placeholders.

MEL views do not write inside the same view, they write inside a place holder, or write a new

placeholder. This placeholder has place inside the layout.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

41 | P a g e

4.5 System Architecture Diagram
Instructions: Using the hardware, software, communications, and information designs described

above, depict the overall, integrated structure of the system in terms of presentation, application,

and data regions.

Diagram(s) must reflect the complete system’s context, i.e., more detailed software components,

internal/external interfaces, and their underlying infrastructure, etc.

Include a table of Objects that are in the diagram.

Figure 15. System Architecture

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

42 | P a g e

This diagram illustrates system architecture and its internal components and their relations. The

system inside hardware container (CGNET Server) and it includes 3 main nodes each node

represents the functionality of the specified node components. Presentation region consists of

system components that are responsible for displaying data from application stage as following:

 Zend_View component transfer data between the view script files and the Front Controller.
 Zend_Placeholder component pass data between views.
 Javascript component initiate controller URLs to transfer data from and to the controller.

In the application region, it contains the components that are responsible for controlling the data

and pass them between data region, outside DSpace repository and view region.

The data region contains the components responsible for preserving the data either in database

or cache.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

43 | P a g e

5. System Design

5.1 Business Requirements
Instructions: Describe each top level business process including actors and process flows. Insert

any related project business requirements or provide a reference to where they are stored.

The following tables (Table. 5 – Table. 11) represent MEL System business processes with a

detailed description on Actors, Process Flow, and Requirements.

Table 5. Business Process 0: Project Definition

Actors

i. Admin User.
ii. Project Manager (User).

iii. Financial Administrator (User-Focal Point).
iv. Guest.

Process Flow

i. Admin User:
Collects basic project information and enters on the MEL

Interface to create a project.

ii. Project Manager (User):
Add detail information and enters on the MEL interface to

complete the project.

iii. Financial Administrator (User-Focal Point):
Add budget details for the project.

iv. Guest:
View information about project.

Requirements i. Detailed project information.
ii. Project Budget.

Table 6. Business Process 1: Project Planning and Monitoring

Actors

i. Project Manager (User).
ii. Reviewers (User-Center Focal Point; CapDev Focal Point;

Gender Focal Point)).
iii. Guest.

Process Flow

i. Project Manager (User):
Add Management Information in terms of Inputs/Outputs and

enters on the MEL interface to complete the project.
ii. Reviewers (User-Center Focal Point; CapDev Focal Point;

Gender Focal Point)):
a. Approve the entered inputs, outputs to confirm project

start.
b. Monitor deliverables and burn rate in dedicated

dashboard.
iii. Financial Administrator (User-Focal Point):

Add budget details for the project.

iv. Guest:
View planned results of the projects and check resources

involved.

Requirements i. Project management information (Resources, inputs, and
outputs).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

44 | P a g e

Table 7. Business Process 2: Financial Accounting

Actors

i. Financial Administrator (User-Focal Point).
ii. Project Manager (User).

iii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point).

iv. System.
v. Guest.

Process Flow

i. Financial Administrator (User-Focal Point):
Add Financial information at project start and quarterly for

project expenditures.

ii. Project Manager (User):
Add required resources and modify along project implementation

requesting approval for modifications.

iii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point):

Approve plan of work and budget.

iv. System:
a. Calculate is planned resources are covered by available

budget.
b. Notify any shortage or un-planned budget and request

explanation.
c. Display budget by different levels.

v. Guest:
View information from Flagship, Cluster, Project and Open Facts

Section.

Requirements i. Project financial information.
ii. Project time-line.

Table 8. Business Process 3: Human Resources Allocation

Actors
i. Project Manager (User).

ii. Reviewers (User-Center Focal Point).
iii. Guests and Users selected in the Projects.

Process Flow

i. Project Manager (User):
Add required resources and modify along project implementation

requesting approval for modifications.

ii. Reviewers (User-Center Focal Point):
Approve required resources.

iii. Guests and Users selected in the Projects:
a. Staff (user) involved receive notification.
b. Dashboard displays allocation of time across projects

available to Guests and Users.
Requirements i. Project allocated resources (people).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

45 | P a g e

Table 9. Business Process 4: Surveys

Actors i. Guests and Users (incl. Project Manager and Focal Points).
ii. Admin User.

Process Flow

i. Guests and Users (incl. Project Manager and Focal Points):
User request Admin to activate Survey Dashboard providing

Survey title, scope and intended audience.

ii. Admin User:
a. Admin Approve Survey.
b. Create title and activate Launch Survey Module and Report

Survey Module.

Requirements i. Survey access approval.
ii. Survey scope, type, and audience.

Table 10. Business Process 5: Impact Pathway

Actors i. Project Manager (User).
ii. System.

Process Flow

i. Project Manager (User):
Project Manager specifies Impact Pathway (IP) elements and

activate links.

ii. System:

System displays interactive, collapsible, impact pathway.

Requirements iii. Impact Pathway (IP) elements.

Table 11. Business Process 6: Knowledge Sharing

Actors
i. Guests and Users.

ii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point).

Process Flow

i. Guests and Users:
Guests and Users can initiate a multi-stakeholder discussion with

any Contact in the system.

ii. Reviewers (User-Center Focal Point; CapDev Focal Point;

Gender Focal Point):

Reviewers can initiate a discussion during the review/approval

process.

Requirements iv. Once technical/Scientific assistance is needed.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

46 | P a g e

5.2 Database Design
Instructions: Describe the design of all database management system (DBMS) files and non-DBMS

files associated with the system. Provide a comprehensive data dictionary showing data element

name, type, length, source, validation rules, maintenance (create, read, update, delete (CRUD)

capability), data stores, outputs, aliases, and description. The Data Design information can be

included as an appendix or recorded in a separate Database Design Document (DDD), as

appropriate, which would be referenced here.

At MEL system the used data storage for the application is MySQL as RDBMS, the best very fast,

very reliable and very feature-rich open-source RDBMS.

A physical data model (PDM) is provided in html format file name (Full Physical Report.html) which

helps you to analyze the tables, views, and other objects in a database, including multidimensional

objects necessary for data warehousing. A PDM is more concrete than a conceptual (CDM) or

logical (LDM) data model. You can model, reverse-engineer, and generate for all the most popular

DBMSs.

 A physical data diagram provides a graphical view of your database structure, and helps to

analyze its tables (including their columns, indexes, and triggers), views, and procedures,

and the references between them.

 A multidimensional data diagram provides a graphical view of the DataMart or data

warehouse database, and helps you identify its facts, cubes and dimensions.

Here are some parts of the Table tbl_activity modeling:

Figure 16. Sample Extracted Database Model

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

47 | P a g e

Figure 17. Columns in tbl_activity

Figure 18. Server validation rule for activity_id field in tbl_activity

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

48 | P a g e

Figure 19. Model level diagram for MainDB

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

49 | P a g e

A full Physical Data Model diagram is available here: Full Physical Report.html.

5.2.1 Data Objects and Resultant Data Structures
Instructions: For each functional data object, specify the data structure(s) which will be used to

store and process the data. Describe any data structures that are a major part of the system,

including major data structures that are passed between components. List all functions and

function parameters. For functions, give function input and output names in the description. Refer

as appropriate to the decomposition diagrams.

 Database Naming Conventions
In the database, there are mainly tables. Delimiter-separated words are used for naming all

the objects. Every table name contains the module name to which the table belongs as a prefix

followed by underscore and then table name.

 Table 12. Database Naming Convention

Database Object Naming Convention Example

Table Prefix_tablename tbl_partner

Table Prefix_tablename Tbl_partner_type

View Prefix_viewname View_users

View Prefix_viewname View_activity_budget

 Code Naming Conventions
The following table shows the naming conventions for different objects used in the code for

the platform.

 Table 13. Code Naming Convention

Type/Control Naming Convention Example

Namespace There is one app

namespace “Application”

Classes Pascal Casing DataAnalysisController

Method Camel Casing indexAction

Dropdown list Delimiter-separated words partner_type_id

Text box Delimiter-separated words

Label Delimiter-separated words

List box Delimiter-separated words

Button Delimiter-separated words

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

50 | P a g e

5.3 File and Database Structures
Instructions: Using the Logical Data Model (LDM), create a physical data model that describes

data storage and manipulation in the systems architectural setting. Describe file structures and

their locations. Explain how data may be structured in the selected DBMS, if applicable. Refer to

a separate DDD, as appropriate.

The following describes the use cases for each directory:

Figure 20. Directory Structure (Application)

 application/: This directory contains your application. It will house the MVC system, as well

as configurations, services used, and your bootstrap file.

 configs/: The application-wide configuration directory.

 model/, and views/: These directories serve as the default model or view directories.

Having these two directories inside the application directory provides the best layout for

starting a simple project as well as starting a modular project that has global models/views.

 views/helpers/: These directories will contain view helpers.

 views/layouts/: This layout directory is for MVC-based layouts. Since Zend_Layout is

capable of MVC- and non-MVC-based layouts, the location of this directory reflects that

layouts are not on a 1-to-1 relationship with controllers and are independent of templates

within views/.

 plugins/: This directory provides a place to store user code to be called when certain events

occur in the controller process lifetime, these event methods are defined in the abstract

class Zend_Controller_Plugin_Abstract.

 modules/: Modules allow a developer to group a set of related controllers into a logically

organized group. The structure under the modules directory would resemble the structure

under the application directory.

 cache/: This directory provides a place to store application cache files that is volatile and

possibly temporary.

 Bootstrap.php: This file is the entry point for your application, and should implement

Zend_Application_Bootstrap_Bootstrapper. The purpose for this file is to bootstrap the

application and make components available to the application by initializing them.

Figure 21. Directory Structure (Assets)

 assets/: This directory provides a place to store Metronic admin, frontend, and global files.

 admin/pages/scripts/: This directory stores MEL custom admin JS files.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

51 | P a g e

Figure 22. Directory Structure (Documents)

 documents/: This directory contains documentation, either generated or directly authored.

Figure 23. Directory Structure (KML)

 KML/: This directory provides a place to store an XML based file format used to display

geographic data in an Earth browser such as Google Earth, Google Maps, and Google Maps

for mobile. With KML, you can display pretty much everything on a map.

Figure 24. Directory Structure (Library)

 library/: This directory is for common libraries on which the application depends, and

should be on the PHP include_path.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

52 | P a g e

Figure 25. Directory Structure (Uploads)

 public/: This directory contains all public files for your application. index.php sets up and

invokes Zend_Application, which in turn invokes the application/Bootstrap.php file,

resulting in dispatching the front controller. The web root of your web server would typically

be set to this directory. MEL has this directory empty, we are placing index.php file and

.htaccess in the root directory with some compatibilty changes made on the .htaccess file.

 uploads/: This directory provides a place to store files uploaded from discussions, reports,

and related uploads.

Figure 26. Directory Structure (Root)

 .htaccess: At the root of your web server, you should have an .htaccess file that redirects

all non-file requests to your ZF application. Anything that exists as an actual file (like CSS,

Javascript, images, etc.) will be served like normal, but all others will be routed to your ZF

application.

 index.php: This file is where it all begins. All of your .htaccess files should point here. It sets

up your environment, the include path, and creates the Zend_Application based on your

configuration file. The very last actions it takes is bootstrapping the application and running

it.

5.3.1 Database Management System Files
Instructions: Provide the detailed design of the DBMS files. Generally, this information should be

documented in a separate DDD that should be referenced within this section.

MEL system database consisting of independent and related tables to store and split system data,

DDD can be found here.

The system contains 99 tables as follows:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

53 | P a g e

Figure 27. Database Tables

Figures from (Fig. 28 to Fig. 39) shows detailed design for relations between tables:

Figure 28. Action site Tables Relationships

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

54 | P a g e

Figure 29. Country Tables Relationships

Figure 30. Discussion Tables Relationship

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

55 | P a g e

Figure 31. Field site Tables Relationship

Figure 32. Flagship Tables Relationships

Figure 33. Flagship Activity Tables Relationships

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

56 | P a g e

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

57 | P a g e

Figure 34. Flagship Activity Details Tables Relationship

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

58 | P a g e

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

59 | P a g e

Figure 35. IDO Tables Relationship

Figure 36. Partner Tables Relationship

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

60 | P a g e

Figure 37. Project Tables Relationship

Figure 38. Reports Tables Relationships

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

61 | P a g e

Figure 39. User Tables Relationship

5.3.2 Non-Database Management System Files
Instructions: Provide the detailed description of all non-DBMS files and include a narrative

description of the usage of each file that identifies if the file is used for input, output, or both, and

if the file is a temporary file. Also provide an indication of which modules read and write the file

and include file structures (refer to the data dictionary). As appropriate, the file structure

information should include the following:

a) Record structures, record keys or indexes, and data elements referenced within the

records

b) Record length (fixed or maximum variable length) and blocking factors

c) Access method (e.g., index sequential, virtual sequential, random access, etc.)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

62 | P a g e

d) Estimate of the file size or volume of data within the file, including overhead resulting from

file access methods

e) Definition of the update frequency of the file (If the file is part of an online transaction-

based system, provide the estimated number of transactions per unit of time, and the

statistical mean, mode, and distribution of those transactions.)

f) Backup and recovery specifications

f) Backup and recovery specifications

MEL has two backups tasks performed, and are done as follows:

 A server level backup policy (Daily).

 A full local database backup (Per 30 Minutes) via SQLyog on Windows scheduler.

5.4 Database Information

MEL has a single database hosted on CGNET server, with the following specifications:

 Database name: crpdump.

 Database adapter: PDO_MYSQL.

 Database host: localhost.

 Database user name: root.

 Current database size: 85.6 MB.

5.5 Data Conversion
Instructions: Insert any documents describing any necessary data conversions or provide a

reference to where they are stored.

Zend_Json provides convenience methods for serializing native PHP to JSON and decoding JSON

to native PHP.

JSON, JavaScript Object Notation, can be used for data interchange between JavaScript and other

languages. Since JSON can be directly evaluated by JavaScript, it is a more efficient and lightweight

format than XML for exchanging data with JavaScript clients.

In addition, Zend_Json provides a useful way to convert any arbitrary XML formatted string into a

JSON formatted string. This built-in feature will enable PHP developers to transform the enterprise

data encoded in XML format into JSON format before sending it to browser-based Ajax client

applications. It provides an easy way to do dynamic data conversion on the server-side code

thereby avoiding unnecessary XML parsing in the browser-side applications. It offers a nice utility

function that results in easier application-specific data processing techniques.

5.6 User Interface Design
Instructions: Insert any user interface design documents or provide a reference to where they are

stored.

All template files have fixed structure consisting of header, top menu, content and footer as shown

below:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

63 | P a g e

Figure 40. User Interface

1. Header: Header contains of logo and top menu bar and it used in all pages.
2. Content: Content consists of page title, breadcrumbs and page's main body.
3. Top Menu: Top menu enables an easy access to most frequently accessed information

and pages.
4. Collapse/Expand: metronic component collapse and expand panels.
5. handlePortletTools: Initializes & handles portlet tools as described in above image.

A detailed template structure and code snippets can be found in the Metronic documentation.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

64 | P a g e

6. Operational Scenarios
Instructions: Describe the general functionality of the system from the users’ perspectives and

provide an execution or operational flow of the system via operational scenarios that provide step-

by-step descriptions of how the system should operate and interact with its users and its external

interfaces under a given set of circumstances. The scenarios tie together all parts of the system,

the users, and other entities by describing how they interact, and may also be used to describe

what the system should not do.

Operational scenarios should be described for all operational modes, transactions, and all classes

of users identified for the proposed system. For each transaction, provide an estimate of the size

(use maximum, if variable) and frequency (e.g., average number per session). Identify if there any

transactional peak periods and include an estimate of frequency during those periods. Each

scenario should include events, actions, stimuli, information, and interactions as appropriate to

provide a comprehensive understanding of the operational aspects of the proposed system.

 The scenarios can be presented in several different ways: 1) for each major processing function

of the proposed system, or 2) thread-based, where each scenario follows one type of transaction

type through the proposed system, or 3) following the information flow through the system for each

user capability, following the control flows, or focusing on the objects and events in the system.

The number of scenarios and level of detail specified will be proportional to the perceived risk and

the criticality of the project.

6.1 Operational Modes

MEL System enables user to perform operations based on his/her role (Administrator, User, or

Guest) plus actions based on both roles, and project phase. A role based view of operational

scenarios is shown in (Fig. 41). Additionally, an action based view of operational scenarios is shown

in (Fig. 42).

Figure 41. MEL System Operational Scenarios Sorted Based on Roles

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

65 | P a g e

Figure 42. MEL System Operational Scenarios Sorted Based on Actions

6.2 Operational Scenarios

Once MEL Roles are granted to the different users types, a couple of actions/scenarios can be

achieved on the system, (Fig. 43 – Fig. 65) show how to operate on MEL.

Figure 43. Creation of Partners and Contacts Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

66 | P a g e

Figure 44. Creation of Users Operation

Figure 45. Creation of ALS Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

67 | P a g e

Figure 46. Creation of IDO Operation

Figure 47. Creation of Flagships Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

68 | P a g e

Figure 48. Creation of Action Sites/Cluster of Activities Operation

Figure 49. Creation of Projects Agreements Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

69 | P a g e

Figure 50. Creation of Projects Operation

Figure 51. Creation of Activities Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

70 | P a g e

Figure 52. Editing Projects Information Operation

Figure 53. Editing Activities Information Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

71 | P a g e

Figure 54. Planning within Projects and Activities Operation

Figure 55. Reporting Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

72 | P a g e

Figure 56. Self-Assess a project Operation

Figure 57. Launching and Reviewing a Survey Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

73 | P a g e

Figure 58. Consulting Overview Operation

Figure 59. Consulting Open Facts Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

74 | P a g e

Figure 60. Exporting Data Operation

Figure 61. FP and CoA Leaders Approval Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

75 | P a g e

Figure 62. Partners and Contacts Approval Operation

Figure 63. Open Access Approval Operation

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

76 | P a g e

Figure 64. Discussion Forum Operation

Figure 65. Technical Assistance Request Operation

6.3 Data Flow Diagrams
Instructions: Provide different levels of DFDs; summary of top-level, system level (between

system(s)/users/modules) for each software module, and one layer inside the software module.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

77 | P a g e

The following flowchart shows Administrator, Activity/Project Leader, Cluster of Activity/Action Site

Leader, and Flagship Leader data flow diagram:

Figure 66. Activity/Project Creation Data Flow Diagram

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

78 | P a g e

Figure 67. Pre-planning, Exporting, Open Facts Consulting Data Flow Diagram for Administrator, Activity/Project
Leader, Cluster of Activity/Action Site Leader, and Flagship Leader

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

79 | P a g e

Figure 68. Reporting Data Flow Diagram for Administrator, Activity/Project Leader, Cluster of Activity/Action Site
Leader, and Flagship Leader

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

80 | P a g e

Figure 69. Open Access Approval data flow diagram for Administrator, Activity/Project Leader, Cluster of
Activity/Action Site Leader, and Flagship Leader

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

81 | P a g e

Figure 70. Editing Projects/Activities Data Flow Diagram for Administrator, Activity/Project Leader, Cluster of
Activity/Action Site Leader, and Flagship Leader

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

82 | P a g e

7. Detailed Design
Instructions: Provide the information needed for a system development team to actually build and

integrate the hardware components, code and integrate the software components, and

interconnect the hardware and software segments into a functional product. Additionally, address

the detailed procedures for combining separate COTS packages into the system.

7.1 Quick Installation Guide
This guide is for rapid deployment on Ubuntu operating systems.

 System requirements:
On all Operating systems available, development environment needs to have the following

installed before running Zend Framework:

- Apache, MySQL, PHP 5.2.11 or later.

 Installation Guide
- Zend Framework requires the PHP rewrite module to be installed and enabled, the

following command will enable it:
sudo a2enmod rewrite

- Create Database by the following:
mysql -u RootUser –p
create database DbName;

- MEL System Database has some defined users on it, you will need to create those users,
and grant access by the following:
create user 'jalal'@'%';
create user 'remote'@'%';
grant all on *.* to 'jalal'@'%' identified by 'root' with grant option;
grant all on *.* to 'remote'@'%' identified by 'root' with grant option;
flush privileges;

- Finally, you will need to update the definer on your DB:
UPDATE mysql.proc SET definer = 'root@localhost' WHERE db = 'DbName';

- Place your code instance inside your local server directory, which will be under:
var/www/html
Or
htdocs/

- Go to your MEL system root directory /application/configs/application.ini, and change the
following database parameters to what you have on your system:
resources.db.params.username = DbUserName
resources.db.params.password = DbPassword
resources.db.params.dbname = DbName

- Ubuntu system users of MEL has to symlink the following directories to come over case-
sensitivity on Ubuntu:
application/model > Make Link > Then rename the Link to Model
Symlink application/Model/mapper > Make Link > Then rename the Link to Mapper

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

83 | P a g e

- MEL system can be accessed via the webserver
http://localhost/MELRoot

7.2 Conceptual Infrastructure Design
Instructions: Describe the infrastructure selected and why. Pay attention to Operating Systems,

Versions of Software, Fault tolerance in the setup, Service Level Agreements and User Loads

MEL is using the following operating system, and software versions:

- OS: Windows Server 2012.
- Apache: 2.4.17
- PHP: 5.6.14
- MySQL: 5.7

Zend Framework was chosen due to development team expertise, extensibility, standards

firmness, and that it’s supported by Zend (The PHP Company). Windows Server was chosen

because the already existed server is Windows as ICARDA uses GIS.

7.3 Hardware Detailed Design
Instructions: Provide enough detailed information about each of the individual hardware

components to correctly build and/or procure all the hardware for the system (or integrate COTS

items). If there are many components or if the component documentation is extensive, place it in

an appendix. Add additional diagrams and information, if necessary, to describe each component

and its functions adequately. Industry-standard component specification practices should be

followed. For COTS components, identify specific vendor and appropriate item names and model

numbers. Include the following information in the detailed component designs, as applicable:

 Application Locations
MEL is using XAMPP package and all installation locations are based on default one

(c:\xampp).

Location: CGNET Server.

 Table 14. Application Locations

Application

Component
Description Location Type

MySQL database Database
CGNET

Server:\xampp\mysql
Data

SVN Version control CGNET Server Code repository

PHP
programming

language

CGNET

Server:\xampp\php

Backend

programming

language

XAMPP Web server c:\xampp\htdocs
Cross-platform

server solution

 Server Hardware
- Processor: Intel(R) Xeon(R) E5-2603 v3 @ 1.60GHz.
- Installed memory (RAM): 16.0 GB (15.7 GB usable).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

84 | P a g e

7.4 Application Users
Instructions: Provide a description of each user class or role associated with the system. A user

class is distinguished by the ways in which users interact with the proposed system or situation.

Factors that distinguish a user class include common responsibilities, skill levels, work activities,

and modes of interaction with the system. In this context, a user is anyone who interacts with the

proposed system, including operational users, data entry personnel, system operators, operational

support personnel, system maintainers, and trainers. For each user class, provide estimates of

the total number of users anticipated, a maximum number of concurrent users, and the number

of external users.

MEL roles are divided as: Admin, User, and Guest. User has some assertion rules that will give

some users privileges over other users. A detailed explanation for each assertion rule can be found

at Section 7: Software Modules (Zend_Acl). A role and resource mapping can be found at (Table

18).

Table 15. Role and Resource Mapping

Resources Admin User Guest

 Action Assert

Index Allow Allow Allow All Not Asserted

Api Allow Allow Allow All Not Asserted

Overview Allow Allow Allow All Not Asserted

Dataanalysis Allow Allow Allow All Not Asserted

User Allow Partial

allow

Partial

allow

Index, deluser,

deluserdiscipline,

submituserdiscipl

ine.

Not Asserted

Error Allow Allow Allow All Not Asserted

Preplanning Allow Partial

allow

Deny All submit

actions,

All del actions

App_Acl_Assert_Preplanni

ng

Planning Allow Partial

allow

Deny Index,

Submitflagshipac

tivity

App_Acl_Assert_Planning

planning_lead

er

Deny Deny Deny All Not Asserted

Project Allow Partial

allow

Partial

allow

details,

getallagreements,

edit,

form,

submitproject

Custom Assertion

Selfassessme

nt

Allow Partial

allowllo

w

Deny All App_Acl_Assert_SelfAsse

ssment

Export Allow Partial

allow

Deny centerresults Not Asserted

Cd Allow Allow Deny Not Asserted

Reporting Partial

allow

Partial

allow

Partial

allow

Workflow,

download

Not Asserted

Discussion Allow Allow Deny All Not Asserted

Graph Allow Allow Allow All Not Asserted

Gender Allow Allow Allow All Not Asserted

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

85 | P a g e

Resources Admin User Guest

 Action Assert

Log Allow Deny Deny All Not Asserted

Ip Allow Allow Allow All Not Asserted

Import Allow Deny Deny All Not Asserted

7.4.1 Inputs
Instructions: Provide a description of the input media used by the user/operator for providing

information to the system. Show a mapping to the high-level data flows (e.g., data entry screens).

If appropriate, the input record types, file structures, and database structures provided in the

section for Data Design, may be referenced. Include data element definitions, or refer to the data

dictionary. Provide the layout of all input data screens or graphical user interfaces (GUIs) (e.g.,

windows). Define all data elements associated with each screen or GUI, or reference the data

dictionary. Provide edit criteria for the data elements, including specific values, range of values,

mandatory/optional, alphanumeric values, and length. Also address data entry controls to prevent

edit bypassing.

MEL system users use the web-based application interface to input projects related data, on the

pre-planning, planning, and surveying phases. This interface includes tables that are filled by

editing the required part of the project and/or program.

Reporting phase has its own uploading feature, allowing users to input different deliverables files

i.e. 'jpg','jpeg','pdf','doc','docx','xls','xlsx','tif','ppt','pptx','zip','rar','png','gif','mp4','3gpp'.

While the allowed extensions in the related files section are:

'jpg','jpeg','pdf','doc','docx','xls','xlsx','tif','ppt','pptx','zip','rar','png','gif','mp4'.

There is no limitation on which operating system users have to use, as MEL is a web-based

application. Best tested browsers are: Chrome, and Mozilla Firefox.

7.4.2 Outputs
Instructions: Describe the system output design relative to the user/operator. Show a mapping to

the high-level data flows. System outputs include reports, data display screens and GUIs, query

results, etc. The output files described in the section for Data Design may be referenced. The

following should be provided, if appropriate:

a) Identification of codes and names for reports and data display screens

b) Description of report and screen contents (provide a graphical representation of each

layout and define all data elements associated with the layout or reference the data

dictionary)

c) Description of the purpose of the output, including identification of the primary users

d) Report distribution requirements, if any (include frequency for periodic reports)

e) Description of any access restrictions or security considerations

All the projects, programs, deliverables, outputs, outcomes from the completed projects gives a

repository of knowledge that ICARDA can re-use to get more projects, and to show high potential

achievement history.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

86 | P a g e

7.5 Software Detailed Design
Instructions: Provide a detailed description for each system software Service that addresses the

following software Service attributes. Much of the information that appears in this section should

be contained in the headers/prologues and comment sections of the source code for each

component, subsystem, module, and subroutine. If so, this section may largely consist of

references to or excerpts of annotated diagrams and source code.

Service Identifier – the unique identifier and/or name of the software Service.

Purpose –

Summary of Functions -

Classification – the kind of Service (e.g., application, data service, etc.)

Definition – the specific purpose and semantic meaning of the Service.

Requirements – the specific functional or non-functional requirements that the Service satisfies.

Data Definitions - Internal / External Data Structures – the internal/external data structures for

the Service.

Constraints – any relevant, assumptions, limitations, or constraints for the Service. This should

include constraints on timing, storage, or Service state, and might include rules for interacting with

the Service (encompassing pre-conditions, post-conditions, invariants, other constraints on input

or output values and local or global values, data formats and data access, synchronization,

exceptions, etc.)

Composition – a description of the use and meaning of the subservices that are a part of the

Service.

Users/Interactions – a description of the Service’s collaborations with other Services. What other

Services is this entity used by? What other Services do this entity use (including any side-effects

this Service might have on other parts of the system)? This includes the method of interaction, as

well as the interaction itself. Object-oriented designs should include a description of any known or

anticipated sub-classes, super-classes, and meta-classes.

Processing – a description of precisely how the Service goes about performing the duties

necessary to fulfil its responsibilities. This should encompass a description of any algorithms used;

changes or state; relevant time or space complexity; concurrency; methods of creation,

initialization, and clean-up; and handling of exceptional conditions.

Language/Implementation approach/Error Handling

Models/Views/Controllers

Execution Location/List of Source Files

Diagrams

Interfaces/Exports – the set of services (resources, data types, constants, subroutines, and

exceptions) that are provided by the Service. The precise definition or declaration of each such

element should be present, along with comments or annotations describing the meanings of

values, parameters, etc. For each service element described, include or provide a reference in its

discussion to a description of its important software Service attributes (Component Identifier,

Classification, Language, SLOC Estimate, Definition, Responsibilities, Requirements, Internal Data

Structures, Constraints, Composition, Uses/Interactions, Resources, Processing, and

Interfaces/Exports).

Reporting Design and Integration – if built in, provide details on data traffic and volumes.

7.5.1 Authentication (Zend_Auth)
Zend_Auth is concerned with determining whether an entity actually is what it purports to be (i.e.,

identification), based on some set of credentials. It is used to authenticate against a particular type

of authentication service, such as LDAP, RDBMS, or file-based storage. Additionally, it comes with

three different adapters that can be used to define custom authentication methods;

Zend_Auth_Adapter_DbTable, Zend_Auth_Adapter_Digest, and Zend_Auth_Adapter_Http.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

87 | P a g e

At MEL, Zend_Auth_Adapter_DbTable adapter is used to authenticate against RDBMS via

instantiating this adapter at "library/App/Auth.php".

MEL has its custom authentication class "App_Auth" located at "library/App/Auth.php", this class

defines one method, authenticate(), which is implemented to perform an authentication query.

 public function authenticate($user, $password) {

$authAdapter = new Zend_Auth_Adapter_DbTable (

Zend_Db_Table::getDefaultAdapter (), $this->_name, $this->_identityColumn, $this-

>_passwordColumn);

 try {

 $_userMapper= new Model_Mapper_User();

 $UserByEmail = $_userMapper->fetchOne(array('email'=>$user));

 } catch (Exception $e) {

 return -1;

 }

 $credential= sha1 ($password . $UserByEmail->salt);

 $authAdapter->setIdentity ($user)->setCredential ($credential);

 $result = $authAdapter->authenticate ();

 if ($result->isValid ()) {

 $this->_storage = $storage = $this->_auth->getStorage ();

 $storage->write ($UserByEmail);

 }

 return $result->getCode();

 }

Prior to calling authenticate(), class "App_Auth" is prepared by setting up credentials (e.g.,

username and password) and defining values for adapter-specific configuration options, such as

database connection settings for a database table adapter. This preparation is done by the

following:

1. Defining adapter-specific configuration options as protected class properties:

class App_Auth {

 protected $_name;

 protected $_identityColumn;

 protected $_passwordColumn; }

2. Passing them to the class Constructor method, to be required on App_Auth class

instantiating:

public function __construct($tableName, $identityColumn, $passwordColumn) {

 $this->_name = $tableName;

 $this->_identityColumn = $identityColumn;

 $this->_passwordColumn = $passwordColumn;

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

88 | P a g e

 }

Previous configuration options include:

 tableName: This is the name of the database table that contains the authentication

credentials, and against which the database authentication query is performed.

 identityColumn: This is the name of the database table column used to represent the

identity. The identity column must contain unique values, such as a username or e-mail

address.

 passwordColumn: This is the name of the database table column used to represent the

credential. Under a simple identity and password authentication scheme, the credential

value corresponds to the password.

As MEL is using Zend_Auth_Adapter_DbTable to authenticate against credentials stored in a

database table, and because Zend_Auth_Adapter_DbTable requires an instance of

Zend_Db_Adapter_Abstract to be passed to its constructor -that serves as the database

connection to which the authentication adapter instance is bound-, each instance is bound to a

particular database connection. Other configuration options may be set through the constructor

and through instance methods, one for each option.

Next, class App_Auth will implement the authenticate() method to perform an authentication query

by the following:

1. Creation of an adapter to authenticate against credentials stored in a database table.

Instantiating Zend_Db_Table::getDefaultAdapter and passing the three previous class

properties ($tableName, $identityColumn, and $passwordColumn):

$authAdapter = new Zend_Auth_Adapter_DbTable (

Zend_Db_Table::getDefaultAdapter (), $this->_name, $this->_identityColumn, $this-

>_passwordColumn);

At this point, the authentication adapter instance is ready to accept authentication queries.

2. In order to formulate an authentication query, the input credential values ($user,

$password) are passed to the adapter:

$authAdapter->setIdentity ($user)->setCredential ($credential);

But, before this we need to retrieve the table row upon authentication success which is done by:

try {

 $_userMapper= new Model_Mapper_User();

 $UserByEmail = $_userMapper->fetchOne(array('email'=>$user));

 } catch (Exception $e) {

 return -1;

 }

Now, we know that we are setting the user identity "setIdentity ($user)" to its email, what are we

setting at "setCredential ($credential)"?

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

89 | P a g e

We are setting the user password, which is calculated via:

$credential= sha1 ($password . $UserByEmail->salt);

This manipulation must be identical with what the User model is setting for the user password, at

"application/model/User.php":

 public function _setRawpassword($password)

 {

 $_salt = $this->salt;

 $_saltedPassowrd = sha1($password . $_salt);

 $this->password = $_saltedPassowrd;

 }

Lastly, Zend_Auth_Adapter_DbTable returns the identity supplied back to the auth object upon

successful authentication.

The following code is storing an instance of Zend_Auth_Result which is what Zend_Auth adapters

return to represent the results of an authentication attempt.

$result = $authAdapter->authenticate ();

To determine if this authentication attempt went successfully, isValid() method is used as follows:

 if ($result->isValid ()) {

 $this->_storage = $storage = $this->_auth->getStorage ();

 $storage->write ($UserByEmail);

 }

 return $result->getCode();

 }

After checking if the attempt was successful, we are getting the Zend_Auth’s default storage and

storing in it the user information. We store data to the auth adapter for use in all subsequent

requests. The default storage is a session with namespace Zend_Auth.

For the getCode() method: It returns a Zend_Auth_Result constant identifier for determining the

type of authentication failure or whether success has occurred. We are using return statement to

operate upon its code at "application/modules/default/controllers/UserController.php" as follows:

 if ($result > 0)

 $this->_helper->json->sendJson(array(

 'message' => 'success'

));

 elseif ($result == -1)

 $this->_helper->json->sendJson(array(

 'message' => 'Account not Found'

));

 elseif ($result == -99)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

90 | P a g e

 $this->_helper->json->sendJson(array(

 'message' => 'Account not Active'

));

 else
 $this->_helper->json->sendJson(array(

 'message' => 'Login Failed'

));

Till now, MEL is using the Zend_Auth adapters in a direct way through the adapter's authenticate()

method.

The following illustrates how MEL is using Zend_Auth adapter indirectly, through

Zend_Auth::authenticate():

 This is the logoutAction located at

(application/modules/default/controllers/UserController.php). It's clearing the identity from

Zend_Auth, which is also clearing all data from the Zend_Auth session namespace. And,

redirecting back to the home page.

 public function logoutAction()

 {

 Zend_Auth::getInstance()->clearIdentity();

 Zend_Session::forgetMe();

 $this->_redirect('/');

 }

Note: The Zend_Auth class implements the Singleton pattern - only one instance of the class

is available - through its static getInstance() method. This means that using the new operator

and the clone keyword will not work with the Zend_Auth class; use Zend_Auth::getInstance()

instead.

 Another example of MEL using Zend_Auth indirectly is at

(application/modules/default/controllers/ProjectController.php). Here we are trying to get a

reference to the singleton instance of Zend_Auth stored in $_auth, then checks if the identity

exists to forward to the deniedAction() inside UserControlled.php as follows:

$_auth = Zend_Auth::getInstance();

if($_auth->hasIdentity())

return $this->forward('denied','user');

else

return $this->forward('login','user');

}

7.5.2 Authorization (Zend_Acl)
Authorization, is the process of deciding whether to allow an entity to access to, or to perform

operations upon, other entities. Access Control List (ACL) indicates who has access to do what on

a given resource, this list is used to control access to certain protected objects by other requesting

objects.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

91 | P a g e

There are two main concepts at in Zend_Acl: Resources and Roles. A Resource is something that

needs to be accessed and a Role is the thing that is trying to access the Resource. To have access

to a resource, you need to have the correct Role.

 Resources

For Zend_Acl to recognize an object as a resource; a class needs to implement

Zend_Acl_Resource_Interface interface, which consists of a single method, getResourceId().

Zend_Acl_Resource is provided by Zend_Acl as a basic resource implementation to be

extended as needed.

You can add multiple resources to Zend_Acl, these resources will be added as tree structure.

Tree structure allows to organize resources from general to the specific. The resource on the

top of tree structure will have general privileges, while nodes down in the tree structure will

have privileges that are more specific.

Zend_Acl provides a tree structure to which multiple resources can be added. Since resources

are stored in such a tree structure, they can be organized from the general (toward the tree

root) to the specific (toward the tree leaves). Queries on a specific resource will automatically

search the resource's hierarchy for rules assigned to ancestor resources, allowing for simple

inheritance of rules. A resource may inherit from only one parent resource, though this parent

resource can have its own parent resource, etc.

 Roles

For Zend_Acl to recognize an object as a role; a class needs to implement

Zend_Acl_Role_Interface interface, which consists of a single method, getRoleId().

Zend_Acl_Role is provided by Zend_Acl as a basic role implementation to be extended as

needed. MEL User model is implementing Zend_Acl_Role_Interface and is overriding

getRoleId() ar (application/model/User.php) as follows:

class Model_User extends App_Model_ModelAbstract implements

Zend_Acl_Role_Interface {
 public function getRoleId()

 {

 return $this->role;

 }

}

A Role may inherit from one or more Roles. This is to support inheritance of rules among roles.

When specifying multiple parents for a role, keep in mind that the last parent listed is the first

one searched for rules applicable to an authorization query.

 MEL Access Control List

At (library/App/Acl/Acl.php), MEL is creating its ACL by extending Zend_Acl as follows:

class App_Acl_Acl extends Zend_Acl { }

To get the list created at the instantiating time of class App_Acl_Acl; Roles registering,

Resources assigning, and rules creation are done inside this class Constructor method.

 Registering Roles

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

92 | P a g e

At MEL, we have three main access requesting objects (Roles) that we need to grant

access for to resources, here is how MEL is registering those Roles to the ACL along

with the ACL for MEL:

 Table 16. MEL Access Controls

Role Name Inherits Permissions From

Guest N/A

User Guest

Admin User

1. MEL is creating Roles using Zend_Acl_Role, but any object that implements

Zend_Acl_Role_Interface can do the same.

 public function __construct() {

 $guest = new Zend_Acl_Role ("guest");

 $user = new Zend_Acl_Role ("user");

 $admin = new Zend_Acl_Role ("admin");

}
2. MEL is defining Roles. Some Roles are defined with an additional argument, this argument

specifies what role the new role inherits from. Thus, as we apply privileges for one role, any

role that inherits from that role will also receive those privileges.

$this->addRole ($guest)->addRole ($user, "guest")->addRole ($admin,

"user");

Thus, guest Role inherits no Role, user Role inherits guest, and admin inherits user Role

which already inherits guest.

Any allowed Rule for guest will be by default allowed for user, and any allowed Rule for both

user and guest Roles will be allowed by default to admin.

 Adding Resources

In Zend, resource can be a "module" or "controller" or "controller action" or file or any block of

code. At MEL, we are defining our Resources as Controllers, except that we have a custom Rule

created for checking purposes which is explained later on this module. Here is how MEL is

creating and adding Resources for the Rules:

1. Resources creation via instationation class App_Acl_Resource, and specifying the

controller name:

$indexResource = new App_Acl_Resource ("index");

$apiResource = new App_Acl_Resource ("api");

$overviewResource = new App_Acl_Resource ("overview");

$dataanalysisResource = new App_Acl_Resource ("dataanalysis");

$userResource = new App_Acl_Resource ("user");

$errorResource = new App_Acl_Resource ("error");

$preplanningResource = new App_Acl_Resource ("preplanning");

$planningResource = new App_Acl_Resource ("planning");

$planningLeaderResource = new App_Acl_Resource ("planning_leader");

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

93 | P a g e

$projectResource = new App_Acl_Resource ("project");

$selfassessmentResource = new App_Acl_Resource ("selfassessment");

$exportResource = new App_Acl_Resource ("export");

$cdResource = new App_Acl_Resource ("cd");

$reportingResource = new App_Acl_Resource ("reporting");

$discussionResource = new App_Acl_Resource ("discussion");

$graphResource = new App_Acl_Resource ("graph");

$genderResource = new App_Acl_Resource ("gender");

$logResource = new App_Acl_Resource ("log");

$ipResource = new App_Acl_Resource ("ip");

$importResource = new App_Acl_Resource ("import");

Class App_Acl_Resource located at (library/App/Acl/Resource.php) is just the same as

Zend_Acl_Resource, as it's extending it with no overrides, neither added properties/methods -

It might be extended for a new feature to be added but was not done at that time.

class App_Acl_Resource extends Zend_Acl_Resource {}

2. Resources adding to the ACL.

$this->addResource ($indexResource)->addResource ($overviewResource)-

>addResource ($dataanalysisResource)->addResource ($userResource)-

>addResource ($apiResource)->addResource ($errorResource)->addResource (

$preplanningResource)->addResource ($planningResource)->addResource (

$projectResource)->addResource ($planningLeaderResource)-

>add($selfassessmentResource)->addResource($exportResource)-

>addResource($cdResource)->addResource($reportingResource)-

>addResource($discussionResource)->addResource($graphResource)-

>addResource($genderResource)->addResource($logResource)-

>addResource($ipResource)->addResource($importResource);

 Defining Privileges (Rules):

Rules are established to define how resources may be accessed by roles. Which is to specify

privileges available on each resource based on the role accessing the resource. This is done

via the allow() method.

Zend_Acl suggests implementing rules from general to specific, to minimize the number of

rules needed -Resources and Roles inherit rules defined upon their ancestors-. Zend_Acl also

obeys a rule if and only if a more specific rule does not apply.

At MEL, Rules/Privileges are controller's actions, the following snippet of code is defining Rules

for each Role.

$this->allow ($guest, $indexResource);

 $this->allow ($guest, $overviewResource);

 $this->allow ($guest, $dataanalysisResource);

 $this->allow ($guest, $userResource);

 $this->allow ($guest, $graphResource);

 $this->allow ($guest, $genderResource);

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

94 | P a g e

 $this->allow ($user, $reportingResource);

 $this->deny ($user, $reportingResource ,array('workflow'));

 $this->allow ($admin, $reportingResource ,array('workflow'));

 $this->allow ($guest, $reportingResource,array('download'));

 $this->allow ($guest, $ipResource);

 $this->deny ($guest, $userResource, array (

 'index',

 'deluser',

 'deluserdiscipline',

 'submituserdiscipline'

));

 $this->allow ($guest, $apiResource);

 $this->allow ($guest, $errorResource);

 $this->allow ($guest, $projectResource, array (

 'details'

));

 $this->allow ($user, $projectResource, array (

 'getallagreements',

 'edit',

 'form' ,

 'submitproject'

));

$this->allow ($guest, $projectResource, array ('edit_check'), new

App_Acl_Assert_Project());

$this->allow ($user, $preplanningResource, null, new App_Acl_Assert_Preplanning

());

 $this->deny ($user, $planningResource,'index');

 $this->allow ($user, $planningResource,null, new App_Acl_Assert_Planning ());

$this->allow ($user, $selfassessmentResource,null, new

App_Acl_Assert_SelfAssessment ());

 $this->allow ($user, $cdResource);

 $this->allow ($user, $discussionResource);

 $this->allow ($user, $exportResource,array('centerresults'));

 $this->allow ($admin, $preplanningResource);

 $this->allow ($admin, $planningResource);

 $this->allow ($admin, $projectResource);

 $this->allow ($admin, $userResource);

 $this->allow ($admin, $selfassessmentResource);

 $this->allow ($admin, $exportResource);

 $this->allow ($admin, $cdResource);

 $this->allow ($admin, $logResource);

 $this->allow ($admin, $importResource);

This Rule allows guest Role to access all IndexController.php actions:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

95 | P a g e

$this->allow ($guest, $indexResource);

This Rule allows guest Role to access donwloadAction only from the ReportingController.php:

$this->allow ($guest, $reportingResource,array('download'));

This Rule denies user Role from accessing the PlanningController.php indexAction:

$this->deny ($user, $planningResource,'index');

This Rule allows user Role to access multiple actions (getallagreementsAction, editAction,

formAction, submitprojectAction) from the ProjectController.php:

 $this->allow ($user, $projectResource, array (

 'getallagreements',

 'edit',

 'form' ,

 'submitproject'

));

 This long list of privileges can be easily enhanced by following Zend's best practices by

implementing rules from general to specific, to minimize the number of rules needed. i.e.

admin Role can inherit from no other Role but has it's Rule as follows:

 $this->allow ($admin);

This indicates that admin inherits nothing, but allowed to all controllers and actions.

 MEL ACL Plugin (A Front Controller Plugin)

In Zend Framework applications, the resource and privilege can often be determined from the

request object. Thus, we need to automatically check when there is a request for some

controller action to be checked against the acl. This checking takes place in preDispatch()

method that is called before every call to the controller action.

MEL has this done via a plugin which checks the acl and located at

(application/plugins/Acl.php):

class Plugin_Acl extends Zend_Controller_Plugin_Abstract {

 public function preDispatch(Zend_Controller_Request_Abstract $request) {

 $module = $request->getModuleName();

 $controller = $request->getControllerName();

 $action = $request->getActionName();

 $_auth=Zend_Auth::getInstance ();

 if($_auth->hasIdentity())

 {

 $_user=$_auth->getIdentity();

 Zend_Registry::set('user', $_user);

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

96 | P a g e

 $_loggedIn=true;

 }

 else{

 Zend_Registry::set('user', null);

 $_user=new Model_User();

 $_user->user_id=-1;

 $_user->name='Guest';

 $_user->role='guest';

 $_loggedIn=false;

 }

 Zend_Registry::set('role', $_user->role);

 $_acl=new App_Acl_Acl();

 $_acl->setContextValue('request',$request);

 //return $request->setActionName('message')-

>setControllerName('user')->setDispatched(true);

 if(!$_acl->isAllowed($_user,$controller,$action)){

 if($_loggedIn)

 return $request->setActionName('denied')-

>setControllerName('user')->setDispatched(true);

 else
 return $request->setActionName('login')-

>setControllerName('user')->setDispatched(true);

 }

 parent::preDispatch($request);

 }

}

In the code above, Plugin_Acl is creating a predispatch function that takes the current

request as a parameter:

public function preDispatch(Zend_Controller_Request_Abstract $request)

Here MEL is getting the current request parameters, module name(which will always be

default), controller name, and action name:

 $module = $request->getModuleName();

 $controller = $request->getControllerName();

 $action = $request->getActionName();

Here MEL is getting the Role from the Zend_Auth, if no Role is detected then it sets the

Role to guest by default:

$_auth=Zend_Auth::getInstance ();

 if($_auth->hasIdentity())

 {

 $_user=$_auth->getIdentity();

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

97 | P a g e

 Zend_Registry::set('user', $_user);

 $_loggedIn=true;

 }

 else{

 Zend_Registry::set('user', null);

 $_user=new Model_User();

 $_user->user_id=-1;

 $_user->name='Guest';

 $_user->role='guest';

 $_loggedIn=false;

 }

MEL is setting the Role, and creating a new ACL:

 Zend_Registry::set('role', $_user->role);

 $_acl=new App_Acl_Acl();

MEL is requesting an access permission from the ACL to the controller and action for the

provided role, if access is denied then it checks if the user is logged in it will be redirected

to the deniedAction() in the UserController.php, otherwise a login is required. Lastly, even

if we overrode the preDispatch() method, we are calling the parent method before exiting:

 if(!$_acl->isAllowed($_user,$controller,$action)){

 if($_loggedIn)

return $request->setActionName('denied')-> setControllerName('user') -

>setDispatched(true);

 else
return $request->setActionName('login')->setControllerName('user')-

>setDispatched(true);

 }

 parent::preDispatch($request);

 Registering the ACL plugin

Zend will recognize the new ACL plugin by adding the following line inside

(application/configs/application.ini):

resources.frontController.plugins.user = "Plugin_Acl"

 Assertions

Some MEL ACL Rules depends on further conditions to allow or deny access to a specific

resource. Hence, MEL implemented Zend_Acl_Assert_Interface to support conditional rules at

(library/App/Acl/Assert/Interface.php).

Zend_Acl_Assert_Interface usage is done by implementing it by the interface

App_Acl_Assert_Interface, any implementing class for App_Acl_Assert_Interface needs to

override the assert() method.

interface App_Acl_Assert_Interface extends Zend_Acl_Assert_Interface {}

All MEL assertions are mentioned below with a detailed explanation for each conditional Rule:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

98 | P a g e

$this->allow ($guest, $projectResource, array ('edit_check'), new

App_Acl_Assert_Project());

$this->allow ($user, $preplanningResource, null, new App_Acl_Assert_Preplanning

());

$this->allow ($user, $planningResource,null, new App_Acl_Assert_Planning ());

$this->allow ($user, $selfassessmentResource,null, new

App_Acl_Assert_SelfAssessment ());

Zend ACL allow() public function is defined at (library/Zend/Acl.php), and has the following

syntax:

public function allow($roles = null, $resources = null, $privileges = null,

Zend_Acl_Assert_Interface $assert = null)

Note: NULL value indicates application to all roles, resources (Controllers), and privileges (Actions).

 The $preplanningResource assertion interface is located at

(library/App/Acl/Assert/Preplanning.php), and has the following code inside:

class App_Acl_Assert_Preplanning implements App_Acl_Assert_Interface

{

 public function assert(Zend_Acl $acl,

 Zend_Acl_Role_Interface $role = null,

 Zend_Acl_Resource_Interface $resource = null,

 $privilege = null)

 {

 $_auth = Zend_Auth::getInstance();

 if (!$_auth->hasIdentity()) {

 return false;

 }

 $_user = $_auth->getIdentity();

 if(substr($privilege, 0,6)=='submit' || substr($privilege, 0,3)=='del')

 return false;

 return true;

 }

}

Once an assertion class is available (App_Acl_Assert_Preplanning), an instance of the assertion

class (new App_Acl_Assert_Preplanning ()) must be supplied when assigning conditional rules. A

rule that is created with an assertion only applies when the assertion method returns TRUE. This

is done at (library/App/Acl/Acl.php) by this line:

$this->allow ($user, $preplanningResource, null, new App_Acl_Assert_Preplanning

());

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

99 | P a g e

The above code creates a conditional allow Rule that allows the user Role to access the

PreplanningController located at:

(application/modules/default/controllers/PreplanningController.php) on all its actions (NULL),

access is asserted for authenticated users with identity only (logged in) if the action name starts

with "submit", or "del".

As a result, the NULL value provided at the assertion Rule is overridden by the code inside the

assertion interface, so only the following actions are permitted by this assertion:

 Actions (methods) adheres if(substr($privilege, 0,6)=='submit'):
public function submitidoAction()

public function submitalsAction()

public function submitorganizationAction()

public function submitflagshipAction()

public function submitactivityAction()

public function submitpartnerAction()

public function submitpartnercontactAction()

public function submitactionsiteAction()

public function submitidoindicatorAction()

public function submitflagshipindicatorAction()

public function submitidoindicatorvalueAction()

public function submitflagshipindicatorvalueAction()

public function submitflagshipinfoAction()

public function submitactionsiteinfoAction()

public function submitfieldsiteinfoAction()

public function submitfieldsiteAction()

public function submitactionsiteindicatorAction()

public function submitactionsiteindicatorvalueAction()

 Actions adheres if(substr($privilege, 0,3)=='del'))
public function deleterelatedfileAction()

public function deleteentityfileAction()

protected function delidoAction()

protected function delalsAction()

protected function delorganizationAction()

protected function delflagshipAction()

protected function delactivityAction()

protected function delpartnerAction()

protected function delpartnercontactAction()

protected function delactionsiteAction()

protected function delidoindicatorAction()

protected function delflagshipindicatorAction()

protected function delidoindicatorvalueAction()

protected function delflagshipindicatorvalueAction()

protected function delfieldsiteAction()

protected function delactionsiteindicatorAction()

protected function delactionsiteindicatorvalueAction()

- The $planningResource assertion interface is located at

(library/App/Acl/Assert/Planning.php), and has the following code inside:

class App_Acl_Assert_Planning implements App_Acl_Assert_Interface {

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

100 | P a g e

 public function assert(Zend_Acl $acl, Zend_Acl_Role_Interface $role = null,

Zend_Acl_Resource_Interface $resource = null, $privilege = null) {

 $_auth = Zend_Auth::getInstance ();

 if (! $_auth->hasIdentity ()) {

 return false;

 }

 $_user = $_auth->getIdentity ();

 if (! $acl->hasValue ('request'))

 return true;

 $_request = $acl->getContextValue ('request');

 $_id = $_request->getParam ('id', 0);

 $_aid = $_request->getParam ('aid', 0);

 $_flagshipActivityMapper = new Model_Mapper_FlagshipActivity ();

 //Hello

 if($privilege=='submitflagshipactivity'){

 if($_user->role == 'admin')

 return true;

$_flagshipActivityId=$_request->getParam (

'flagship_activity_id', 0);

 if($_flagshipActivityId==0 || $_flagshipActivityId=='')

 return false;

$_flagshipActivity = $_flagshipActivityMapper->fetchOne (

array (

 'flagship_activity_id' => $_flagshipActivityId

));

 if ($_flagshipActivity->focalpoint_id == $_user->user_id)

 return true;

 return false;

 }

 if ($_id == 0 && $_aid == 0)

 return true;

 if ($_id != 0)

 $_activityId = $_id;

 if ($_aid != 0)

 $_activityId = $_aid;

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

101 | P a g e

 try {

$_flagshipActivity = $_flagshipActivityMapper->fetchOne (

array (

 'flagship_activity_id' => $_activityId

));

 if ($_flagshipActivity->focalpoint_id == $_user-

>user_id || $_user->role == 'admin')

 return true;

 } catch (Exception $e) {

 }

 return false;

 }

}

Once an assertion class is available (App_Acl_Assert_Planning), an instance of the assertion class

(new App_Acl_Assert_Planning ()) must be supplied when assigning conditional rules. A rule that is

created with an assertion only applies when the assertion method returns TRUE. This is done at

(library/App/Acl/Acl.php) by this line:

$this->allow ($user, $planningResource,null, new App_Acl_Assert_Planning ());

The above code creates a conditional allow Rule that allows the user Role to access the

PlanningController located at (application/modules/default/controllers/PlanningController.php)

on all it's actions (NULL), access is asserted for authenticated users with identity only (logged in) if

the action name is submitflagshipactivityAction() then admin Role is granted access, or if the user

Role is a focal point.

As a result, the NULL value provided at the assertion Rule is overriden by the code inside the

assertion interface, so only the following action is permitted by this assertion:

protected function submitflagshipactivityAction()

- The $selfassessmentResource assertion interface is located at:

(library/App/Acl/Assert/Selfassessment.php), and has the following code inside:

class App_Acl_Assert_SelfAssessment implements App_Acl_Assert_Interface {

 public function assert(Zend_Acl $acl, Zend_Acl_Role_Interface $role = null,

Zend_Acl_Resource_Interface $resource = null, $privilege = null) {

 $_auth = Zend_Auth::getInstance ();

 if (! $_auth->hasIdentity ()) {

 return false;

 }

 $_user = $_auth->getIdentity ();

 if (! $acl->hasValue ('request'))

 return true;

 $_request = $acl->getContextValue ('request');

 $_id = $_request->getParam ('id', 0);

 $_pid = $_request->getParam ('project_id', 0);

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

102 | P a g e

 $_projectMapper = new Model_Mapper_Project ();

 if ($_id == 0 && $_pid == 0)

 return true;

 if ($_id != 0)

 $_projectId = $_id;

 if ($_pid != 0)

 $_projectId = $_pid;

 try {

 $_projectEntity = $_projectMapper->fetchOne (array (

 'project_id' => $_projectId

));

 if ($_projectEntity->project_manager_id == $_user->user_id ||

$_user->role == 'admin')

 return true;

 } catch (Exception $e) {

 }

 return false;

 }

}

Once an assertion class is available (App_Acl_Assert_Selfassessment), an instance of the

assertion class (new App_Acl_Assert_Selfassessment ()) must be supplied when assigning

conditional rules. A rule that is created with an assertion only applies when the assertion method

returns TRUE. This is done at (library/App/Acl/Acl.php) by this line:

$this->allow ($user, $selfassessmentResource,null, new

App_Acl_Assert_SelfAssessment ());

The above code creates a conditional allow Rule that allows the user Role to access the

SelfassessmentController located at:

(application/modules/default/controllers/SelfassessmentController.php) on all its actions (NULL),

access is asserted for authenticated users with identity only (logged in) if the Role is an admin, or

if the user Role is assigned as a project manager.

 MEL Custom Rule

MEL has this custom Rule that takes the ProjectController as its Resource, but doesn't take

any of its actions as a Privilege:

$this->allow ($guest, $projectResource, array ('edit_check'), new

App_Acl_Assert_Project());

This custom Rule is used twice at:

(application/modules/default/controllers/ProjectController.php).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

103 | P a g e

This snippet of code is using the isAllowed() method to check the current Role status against the

ACL, it's sending 'guest' as a role but the current Role will never be a guest.

This code is creating a new ACL by instantiating App_Acl_Acl(), checking if the Rule is allowed, if

allowed it will get the Role from the Zend_Auth, if no Role is detected then it will redirect to user

login page.

$_acl=new App_Acl_Acl();

 $_acl->setContextValue('project_id',$_projectEntity-

>project_manager_id);

 if(!$_acl->isAllowed('guest','project','edit_check')){

 $_auth = Zend_Auth::getInstance();

 if($_auth->hasIdentity())

 return $this->forward('denied','user');

 else
 return $this->forward('login','user');

 }

 MEL Custom Rule Assertion

The $projectResource assertion interface is located at (library/App/Acl/Assert/Project.php),

and has the following code inside:

class App_Acl_Assert_Project implements App_Acl_Assert_Interface

{

 public function assert(Zend_Acl $acl,

 Zend_Acl_Role_Interface $role = null,

 Zend_Acl_Resource_Interface $resource = null,

 $privilege = null)

 {

 $_auth = Zend_Auth::getInstance();

 if (!$_auth->hasIdentity()) {

 return false;

 }

 $_user = $_auth->getIdentity();

if($acl->getContextValue('project_id')==$_user->user_id || $_user-

>role=='admin')

 return true;

 return false;

 }

}

Once an assertion class is available (App_Acl_Assert_Project), an instance of the assertion class

(new App_Acl_Assert_Project ()) must be supplied when assigning conditional rules. A rule that is

created with an assertion only applies when the assertion method returns TRUE. This is done at

(library/App/Acl/Acl.php) by this line:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

104 | P a g e

$this->allow ($guest, $projectResource, array ('edit_check'), new

App_Acl_Assert_Project());

The above code creates a conditional allow Rule that allows the guest Role (Please read MEL

Custom Rule section for more clarification) to access the ProjectController located at:

(application/modules/default/controllers/ProjectController.php) on all its edit_check action (Not a

real action), access is asserted for authenticated users with identity only (logged in) if the Role is

an admin, or if the user Role is assigned to that project.

7.5.3 System Layout (Zend_Layout)
MEL system uses Zend_Layout component to manages rendering of a master layout script, which

contains content placeholders for embedding content generated by actions or other view scripts.

As with all other Zend framework components, Zend_Layout works with minimum configuration for

most use cases, but if the requirements are more specialized, it is very flexible.

When using Zend_Layout with the MVC components, the startMvc() method is used to initialize it.

This is done in the bootstrap file like this:

Zend_Layout::startMvc(array('layoutPath' => '/path/to/layouts'));

Behind the scenes, startMvc() creates a Singleton instance of Zend_Layout and registers a front

controller plug-in and an action helper that can be interfaced with from the rest of the application.

The front controller plug-in, Zend_Layout_Controller_Plugin_Layout, has a postDispatch() hook

function that renders the layout template at the end of the last dispatched action. The action

helper, Zend_Layout_Controller_Action_Helper_Layout, is used to provide easy

access to the Zend_Layout object from within a controller.

The main layout for the system is default.phtml (/application/views/layouts/default.phtml) serves

as the holder for all the content to be displayed, so it only contains the fundamental structure of

the page design and then delegates the rest of the content to other files. By default, default.phtml

is rendered by default by Zend_Layout.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

105 | P a g e

Figure 71. MEL System Default Layout

The structure of the file consists of two sections (header and body) as follow:

 At the beginning of the file there is php code to check the signed in user is registered in

Zend_Registry scope (Which is a container for storing objects and values in the application

space. By storing the value in the registry, the same object is always available throughout the

application. This mechanism is an alternative to using global storage), html code, metronic and

CSS files for styling plus Zend head view helpers:

<?php

$_menuShowAdmin=false;

$_menuShowUser=false;

$_menuShowGenderSurvey = false;

$_menuShowIpSurvey = false;

if(Zend_Registry::get('user')!=null){

 $_user=Zend_Registry::get('user');

 if($_user->role=='admin')

 $_menuShowAdmin=true;

 else

 $_menuShowUser=true;

 $_menuShowGenderSurvey = false;

 $_menuShowIpSurvey = false;

 if($_user->isMemberOf(5) || $_user->isMemberOf(6)){

 $_menuShowGenderSurvey = true;

 }

 if($_user->isMemberOf(11)){

 $_menuShowIpSurvey = true;

 }

}

?>

The above PHP script use Zend_Registry::get('user') to check if there is user object registered

and assign to $_user variable then check the role of the user and according to that change

the variable for showing the designated menu

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

106 | P a g e

 Inside head html tag the normal html tags included in addition to Zend view helpers:

- headMeta() is used to set all the <meta> tags in the <head> section of the page. There

are two types of meta tags: name and http-equiv, so there are two sets of functions, as

shown in the following table:

 Table 17. headMeta() types

Name Version Http-equiv version

appendName($keyValue, $content,
$conditionalName)

appendHttpEquiv($keyValue, $content,
$conditionalHttpEquiv)

prependName($keyValue, $content,
$conditionalName)

prependHttpEquiv($keyValue, $content,
$conditionalHttpEquiv)

setName($keyValue, $content,
$modifiers)

setHttpEquiv ($keyValue, $content,
$modifiers)

offsetSetName ($index, $keyValue,
$content, $conditionalName)

offsetSetHttpEquiv($index,
$keyValue, $content,
$conditionalHttpEquiv)

- $keyValue field sets either the name or the http-equiv key for the tag. The $content

parameter is used for the value attribute of a name tag or the content attribute of an http-

equiv tag, and the $modifiers parameter is an associative array that can contain the lang

and scheme attributes if required

- headLink() manages <link> elements in the <head> section of the document. This includes

CSS stylesheets, favicons, RSS feeds, and trackbacks. It aggregates the elements together

while rendering each view script and is later used to render the elements into the layout.

- placeHolder() is a generic helper to aggregate content and render it in custom ways, here

in the head section "<?= $this->placeholder('styleVars'); ?>" loads different actions custom

inline styles.

 The <body> tag contains the visible page of the action with the default html layout: (the

explanation for the tags inside html comments)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

107 | P a g e

<!-- BEGIN BODY -->

<body class="page-header-fixed page-quick-sidebar-over-content page-full-width">

.

.

.

 <a href="<?= $this->url(array('module' => 'default', 'controller' => 'preplanning', 'action' =>

'als'), null, true) ?>">ALS <!-- Create named encoded link using url() function-->

.

.

.

<?php if(Zend_Registry::get('user')!=null):?> <!-- Checks if user object signed in and set to user

variable in the registry -->

<?php $_unread=Zend_Registry::get('user')->unread_messages?> <!-- Gets the number of unread

messages, the return value is integer -->

.

.

.

<?php if(Zend_Registry::get('user')->photo!=''):?> <!-- Checks if photo field in user table does

not equal to empty string -->

<div class="clearfix">

</div>

<!-- BEGIN CONTAINER -->

<div class="page-container" <?php if($this->hideLayoutElements):?>style="margin-top:0px"<?php

endif;?>> <!-- Checks if the style set to be hidden by the controller -->

 <!-- BEGIN CONTENT -->

 <div class="page-content-wrapper">

.

.

 <h3 class="page-title">

 <?=$this->mainTitle?> <small><?=$this->subTitle?></small> <!-- Output mainTitle and subtitle

variables -->

 </h3>

 <div class="page-breadcrumb breadcrumb hidden"></div>

 <!--

 <ul class="page-breadcrumb breadcrumb">

 <?php echo $this->breadCrumb();?> <!-- Outputs the breadcrumb but the block set to be hidden

by html comment -->

 -->

 </div>

 </div>

 <!-- END PAGE HEADER-->

 <?php endif;?>

 <!-- BEGIN PAGE CONTENT-->

 <div class="row">

 <div class="col-md-12">

 <?php $messages = Zend_Controller_Action_HelperBroker::getStaticHelper('FlashMessenger')-

>getMessages();?><!-- Checks if there are informative notifications returned from the controller --

>

 <?php foreach ($messages as $message):?>

 <?=$message?> <!-- Loop over all the messages if there are more than one and output them -->

 <?php endforeach;?>

 <?php echo $this->layout()->content ?> <!-- The main tag to output pages actions views

according to the route -->

 </div>

 </div>

 </div>

 </div>

 <!-- END CONTENT -->

</div>

<!-- END CONTAINER -->

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

108 | P a g e

 The footer section inside the <body> tag which consists of plain html code and the

discussion form including javascript libraries:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

109 | P a g e

<?php if(!$this->hideLayoutElements):?> <!-- Check if the footer html section set to not be hidden

so it can be displayed, to set hideLayoutElements value from the controller with this line of code

$this->_helper->layout()->disableLayout(); -->

 <!-- BEGIN FOOTER -->

 <div class="page-footer">

 <div class="page-footer-inner">

 </div>

 <div class="page-footer-tools">

 <i class="fa fa-angle-up"></i>

 </div>

 </div>

<?php endif;?>

<div id="discussion_modal" class="modal container fade" tabindex="-1">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-hidden="true"></button>

 <h4 class="modal-title">New Discussion</h4>

 </div>

 <div class="modal-body">

 <div class="row">

 <div class="col-md-12 form">

 <form action="<?=$this-

>url(array('module'=>'default','controller'=>'discussion','action'=>'startdiscussion'),null,true)?>

" id="start_discussion_form" method="post" class="form-horizontal"> <!-- Output live chatting

action url to forward input fields value -->

.

.

.

.

<?=$this->placeholder('modals');?> <!-- Output modals placeholder values set by the different

script views -->

<!-- Google Analytics Javascript Code -->

<script>

 (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){

 (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),

 m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)

 })(window,document,'script','//www.google-analytics.com/analytics.js','ga');

 ga('create', 'UA-65705913-1', 'auto');

 ga('send', 'pageview');

</script>

<script>

base_url = "<?=$this->baseUrl()?>";

var discussionsHomeLink ='<?=$this-

>url(array('module'=>'default','controller'=>'discussion','action'=>'index'),null,true)?>';

var userDataLink ='<?=$this-

>url(array('module'=>'default','controller'=>'user','action'=>'getallusers'),null,true)?>';

var discussionCountLink ='<?=$this-

>url(array('module'=>'default','controller'=>'discussion','action'=>'discussionscount'),null,true)?

>';

</script>

<!-- END FOOTER -->

<!-- Load javascripts at bottom, this will reduce page load time -->

.

.

.

<!-- Append javascript files and plugins -->

<?php echo $this->headScript(); ?> <!-- Print all the script files appended to headScript() view

helper -->

<script>

<?=$this->placeholder('jsvars');?> <!-- Append all inline javascripts set by script views -->

 jQuery(document).ready(function() {

 Metronic.init();

 Layout.init();

 LayoutCustom.init();

 DiscussionForm.init();

 <?=$this->placeholder('jscalls');?> <!-- Append all inline javascripts set by script views -->

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

110 | P a g e

.

.

.

<!-- END JAVASCRIPTS -->

</body>

<!-- END BODY -->

</html>

 headScript()is used to manage JavaScript files. This allows to add the relevant files to

the helper as the views are rendered.

 baseURL(): In order to create the correct path to the files (stylesheets, javascripts,

images and links) the root URL referred as ($this->baseUrl())

 URL(): The url() view helper creates URL strings based on a named route. The method

signature is:

 Table 18. url function parameters

Parameter Description

$urlOptions Array of options that are used to create the URL string.

$name Name of the route to use to create the URL string. If null, the route name

that originally matched

the current page’s URL is used.

$reset Set to true to reset all the parameters when creating the URL string.

$encode Set to true to urlencode() all the parameter values in $urlOptions.

View Helpers

The layout uses two types of view helpers to perform complex functions over and over: e.g.,

formatting a date, generating form elements, or displaying action links, without copying the code

for a specific helper in every view page

 Zend view helpers

Zend Framework provides a set of helpers to manage the <head> section of an HTML page.

These helpers set up the information in advance and output it within

the layout view script. There are a variety of helpers that mostly begin with the word head* in

the <head> section.

 headMeta()

 headLink()

 headTitle()

 headScript()

 Custom View Helpers

Custom view helper is a simple class prefixed with 'Zend_View_Helper_' and the last segment

of the class name is the helper name; this segment should be TitleCapped and the helpers

folder (/application/views/helpers/*.php)

 BreadCrumb.php: this helper adds breadcrumb view when used in the view script.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

111 | P a g e

<?php

class Zend_View_Helper_BreadCrumb {

 private $_separator='>';

 public function breadCrumb() {

 $Navigation = App_Navigation::getInstance ();

 $i=0;

 $links='';

 foreach ($Navigation as $link => $text) {

 if($i==0 && count($Navigation)!=1)

 $links.= '<i class="fa fa-home"></i>' . $text.'<i class="fa fa-

angle-right"></i>';

 else if ($i==0 && count($Navigation)==1)

 $links.= '<i class="fa fa-home"></i>'.$text.'';

 else if($i!=$Navigation->count()-1)

 //$links.= ''.$text.'<i class="fa fa-angle-right"></i>';

 $links.= '' . $text.'<i class="fa

fa-angle-right"></i>';

 else

 $links.= ''.$text.'';

 $i++;

 }

 return $links;

 }

}

In the public function breadCrumb() use the singleton class App_Navigation through its

static method getInstance() that managing trees of pointers to web pages. Rendering of

this class is done through helper like this <?php echo $this->breadCrumb();?>

Note: breadcrumb is called in the main layout (default.phtml) but it's not displayed

because its inside html comment tag <!-- … -->

 DisplayNumber.phtml: this helper rounds numbers to two digits and adds the unit "B",

"K", "M" according to the number value.
<?php

class Zend_View_Helper_DisplayNumber {

 public function displayNumber($number) {

 if($number>=1000000000)

 return round($number/1000000000,2) ."B";

 if($number>=1000000)

 return round($number/1000000,2) ."M";

 if($number>=1000)

 return round($number/1000,2) ."K";

 }

}

It can be used as <?= displayNumber($anyNumber); ?>

 FullURL.php: returns the complete URL in the view for chosen element (link, image, file,

path).
<?php

class Zend_View_Helper_FullUrl extends Zend_View_Helper_Abstract {

 public function fullUrl($url='') {

 $request = Zend_Controller_Front::getInstance ()->getRequest ();

 $url = $request->getScheme () . "://" . $request->getHttpHost () . $url;

 return $url;

 }

}

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

112 | P a g e

The public function fullUrl($url='') gets the request instance from the Front Controller

which includes the route of the page then gets the protocol and the hostname part of the

path and return the complete URL. For example:
<a href="<?=$this->fullUrl($this-

>url(array('module'=>'default','controller'=>'gender','action'=>'in

dex','code'=>$this->accesscode),null,true))?>">link here

 GenerateUserPopover.php: php script to load bootstrap plugin for on-place confirm boxes

using Popover.
<?php

class Zend_View_Helper_GenerateUserPopover extends Zend_View_Helper_Abstract {

 public function generateUserPopover($userEntity,$placement='top',$subClass='') {

 if(strip_tags($userEntity->bio)=='' && $userEntity->photo=='')

 return ''.$userEntity->name.'';

 if($userEntity->photo !='')

 $photo="view->baseUrl()."/uploads".$userEntity->photo."' class='BioImage'

style='width:150px;' />";

 else

 $photo='';

 return 'name.'"

data-container="body" data-html="true" data-content="'.$photo.str_replace('"', '\'', $userEntity-

>bio).'" data-placement="'.$placement.'" data-trigger="hover">'.$userEntity->name.'';

 }

}

Action Helpers

Zend_Controller_Action_HelperBroker::getStaticHelper('FlashMessenger')->getMessages()

extends Zend_Controller_Action to handle the details of registering helper objects and helper

paths, as well as retrieving helpers on-demand.

Zend Framework includes several action helpers by default: AutoComplete for automating

responses for AJAX autocompletion; ContextSwitch and AjaxContext for serving alternate response

formats for the actions; a FlashMessenger for handling session flash messages; Json for encoding

and sending JSON responses; a Redirector, to provide different implementations for redirecting to

internal and external pages from your application; and a ViewRenderer to automate the process of

setting up the view object in the controllers and rendering views.

MEL system default layout use two action helpers:

 The FlashMessenger helper which allows to pass messages that the user may need to see

on the next request. To accomplish this, FlashMessenger uses Zend_Session_Namespace

to store messages for future or next request retrieval. Zend_Session::start() used in the

bootstrap file so the different components of the system can add to the session and read

from the session.

Available Methods in FlashMessenger

General methods:

- setNamespace($namespace='default') is used to set the namespace into which

messages are stored by default.

- getNamespace() is used to retrieve the name of the default namespace. The default

namespace is 'default'.

- resetNamespace() is used to reset the namespace name to the default value, 'default'.

Methods for manipulating messages set in the previous request:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

113 | P a g e

- hasMessages($namespace=NULL) is used to determine if messages have been

carried from a previous request by the flash messenger. The optional

argument $namespace specifies which namespace to look in. If

the $namespace argument is omitted, the value returned by getNamespace() will be

used.

- getMessages($namespace=NULL) is used to retrieve the messages which have been

carried from a previous request by the flash messenger. The optional

argument $namespace specifies which namespace to pull from. If

the $namespace argument is omitted, the value returned by getNamespace() will be

used.

- getIterator($namespace=NULL) wraps the return value of getMessages() in an

instance of ArrayObject. If the $namespaceargument is omitted, the value returned

by getNamespace() will be used.
- count($namespace=NULL) returns the number of messages contained in the specified

namespace. If the $namespace argument is omitted, the value returned

by getNamespace() will be used.

- clearMessages($namespace=NULL) is used to clear all the messages which have been

carried from a previous request by the flash messenger. The optional

argument $namespace specifies which namespace to clear out. If

the $namespace argument is omitted, the value returned by getNamespace() will be

used.

Methods for manipulating messages set in the current request:

- addMessage($message, $namespace=NULL) is used to add a new message to the

current request. $message contains the message to be added, and the optional

argument $namespace will specify the namespace. If the $namespace argument is

omitted, the value returned by getNamespace() will be used.

- hasCurrentMessages($namespace=NULL) is used to determine if messages have

been added to the flash messenger during the current request. The optional

argument $namespace specifies which namespace to look in. If

the $namespace argument is omitted, the value returned by getNamespace() will be

used.

- getCurrentMessages($namespace=NULL) is used to retrieve the messages which have

been added to the flash messenger during the current request. The optional

argument $namespace specifies which namespace to pull from. If

the $namespace argument is omitted, the value returned by getNamespace() will be

used.

- clearCurrentMessages($namespace=NULL) is used to clear all the messages which

have been added to the flash messenger during the current request. The optional

argument $namespace specifies which namespace to clear out. If

the $namespace argument is omitted, the value returned by getNamespace() will be

used.
 ViewRenderer is the second action helper used in the system to satisfy the following goals:

- Eliminate the need to instantiate view objects within controllers; view objects will be

automatically registered with the controller.

- Automatically set view script, helper, and filter paths based on the default module

(default module that is used in MEL system), and automatically associate the current

module name as a class prefix for helper and filter classes.

- Create a globally available view object for all dispatched controllers and actions.

- Set default view rendering options for all controllers.

- Add the ability to automatically render a view script with no intervention.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

114 | P a g e

- Create different specifications for the view base path and for view script paths.

HTML Elements

The default.phtml layout is using metronic v3.5.0 which is based on bootstrap v3.3.6 that make

MEL system use fluid grid system that appropriately scales up to 12 columns as the device or

viewport size increases. It includes predefined classes for easy layout options.

MEL Grid systems create page layouts through a series of rows and columns that house the

contents. The grid system works as following:

 Rows must be placed within a container div html element

 Use rows to create horizontal groups of columns.

 Content should be placed within columns, and only columns may be immediate children of

rows.

 Predefined grid classes like .row and .col-xs-4 are available for quickly making grid layouts.

 If more than 12 columns are placed within a single row, each group of extra columns will, as

one unit, wrap onto a new line.

Menu HTML Component:

Figure 72. Horizontal Menu

The code for the horizontal menu consists of:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

115 | P a g e

<!-- BEGIN HORIZANTAL MENU -->

<!-- Place "hor-menu-light" class after the "hor-menu" class to have a horizontal menu

with white background -->

<div class="hor-menu hor-menu-light hidden-sm hidden-xs">

 <ul class="nav navbar-nav">

 <!-- To enable the horizontal opening on mouse hover for the horizontal the

following html attributes need to be placed in the list items

- data-hover="dropdown"

- data-close-others="true"

-->

 <li class="classic-menu-dropdown">

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'overview', 'action' => 'index'), null, true) ?>">Overview

 <?php if ($_menuShowUser): ?>

 <li class="classic-menu-dropdown">

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'user', 'action' => 'dashboard'), null, true) ?>">Dashboard

 <?php endif; ?>

 <?php if ($_menuShowAdmin): ?>

 <li class="classic-menu-dropdown">

 <a data-hover="dropdown" data-close-others="true" data-

toggle="dropdown" href="javascript:;">Pre-Planning

 <i class="fa fa-angle-down"></i>

 <ul class="dropdown-menu pull-left">

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'preplanning', 'action' => 'als'), null, true) ?>">ALS

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'preplanning', 'action' => 'actionsites'), null, true) ?>">Action

 Sites

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'preplanning', 'action' => 'flagships'), null, true) ?>">Flagships

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'preplanning', 'action' => 'ido'), null, true) ?>">IDO

 <!-- <a href="<?= $this->url(array('module' =>

'default', 'controller' => 'preplanning', 'action' => 'activities'), null, true)

?>">General Activities -->

 <!-- <a href="<?= $this->url(array('module' =>

'default', 'controller' => 'preplanning', 'action' => 'organization'), null, true)

?>">Organizations -->

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'preplanning', 'action' => 'partners'), null, true) ?>">Partners

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'user', 'action' => 'index'), null, true) ?>">Users

 <li class="classic-menu-dropdown">

 <a data-hover="dropdown" data-close-others="true" data-

toggle="dropdown" href="javascript:;">Planning

 <i class="fa fa-angle-down"></i>

 <ul class="dropdown-menu pull-left">

 <a href="<?= $this->url(array('module' => 'default',

'controller' => 'planning', 'action' => 'index'), null, true) ?>">Activities

 <a href="<?= $this->url(array('module' => 'default',

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

116 | P a g e

'controller' => 'project', 'action' => 'agreements'), null, true) ?>">Project

 Agreements

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'project', 'action' => 'index'), null, true) ?>">Projects

 <li class="classic-menu-dropdown">

 <a data-hover="dropdown" data-close-others="true" data-toggle="dropdown"

href="javascript:;">Reporting

 <i class="fa fa-angle-down"></i>

 <ul class="dropdown-menu pull-left">

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'reporting', 'action' => 'index'), null, true) ?>">Activities

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'reporting', 'action' => 'index'), null, true) ?>">Projects

 <?php endif; ?>

<!-- According to the user group and role the Survey menu will be displayed -->

 <?php if (($_menuShowGenderSurvey && $_menuShowIpSurvey) || $_menuShowAdmin): ?>

 <li class="classic-menu-dropdown">

 <a data-hover="dropdown" data-close-others="true" data-toggle="dropdown"

href="javascript:;">Survey

 <i class="fa fa-angle-down"></i>

 <ul class="dropdown-menu pull-left">

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'gender', 'action' => 'report'), null, true) ?>">Gender

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'ip', 'action' => 'report'), null, true) ?>">Intellectual property

 <?php elseif ($_menuShowGenderSurvey): ?>

 <li class="classic-menu-dropdown">

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'gender', 'action' => 'report'), null, true) ?>">Gender

 survey

 <?php elseif ($_menuShowIpSurvey): ?>

 <li class="classic-menu-dropdown">

 <a href="<?= $this->url(array('module' => 'default', 'controller' => 'ip',

'action' => 'report'), null, true) ?>">Intellectual

 property survey

 <?php endif; ?>

 <li class="classic-menu-dropdown">

 <a href="<?= $this->url(array('module' => 'default', 'controller' =>

'dataanalysis', 'action' => 'index'), null, true) ?>">Open Facts

</div>

<!-- END HORIZANTAL MENU -->

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

117 | P a g e

Search Box Html Component:

Figure 73. Search Box

The search box is used to search the system projects for different keywords.

<!-- BEGIN HEADER SEARCH BOX -->

<!-- Apply "search-form-expanded" right after the "search-form" class to have half

expanded search box -->

<form class="search-form" action="#" method="GET">

 <div class="input-group">

 <input type="text" class="form-control" placeholder="Search..." name="query">

 <i class="icon-magnifier"></i>

 </div>

</form>

<!-- END HEADER SEARCH BOX -->

User Menu Html Component:

It lists the user account and log out menu items.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

118 | P a g e

Figure 74. User Menu Top Navigation Menu

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

119 | P a g e

<!-- BEGIN TOP NAVIGATION MENU -->

<?php if(Zend_Registry::get('user')!=null):?>

<?php $_unread=Zend_Registry::get('user')->unread_messages?>

<div class="top-menu">

 <ul class="nav navbar-nav pull-right">

 <li class="dropdown dropdown-extended dropdown-inbox" id="header_inbox_bar">

 <a href="<?=$this->url(array('action'=>'index',

'controller'=>'discussion'),null,false)?>" class="dropdown-toggle" style="padding-

right:10px;">

 <i class="icon-bubbles"></i>

 <span class="badge badge-danger<?php if($_unread!=0):?> hidden<?php endif;?>"

id="chat_bubble" style="top:5px; right:25px;"><?=$_unread?>

 <!-- BEGIN USER LOGIN DROPDOWN -->

 <li class="dropdown dropdown-user">

 <a href="#" class="dropdown-toggle" data-toggle="dropdown" data-hover="dropdown"

data-close-others="true">

 <?php if(Zend_Registry::get('user')->photo!=''):?>

 <span style="background-image: url('<?=$this-

>baseUrl();?>/uploads/<?=Zend_Registry::get('user')->photo?>');"

class="avatar">

 <?php else:?>

 <img alt="" class="img-circle" src="<?=$this-

>baseUrl();?>/assets/admin/layout/img/avatar-small.jpg"/>

 <?php endif;?>

 <?=Zend_Registry::get('user')->name?> <!-- Print signed in user registered

in Registry scope -->

 <i class="fa fa-angle-down"></i>

 <div class="clearfix"></div>

 <ul class="dropdown-menu">

 <a href="<?=$this->url(array('action'=>'dashboard',

'controller'=>'user'),null,false)?>#tab_1_2">

 <i class="icon-user"></i> My Account

 <li class="divider">

 <a href="<?=$this->url(array('action'=>'logout',

'controller'=>'user'),null,false)?>">

 <i class="icon-key"></i> Log Out

 <!-- END USER LOGIN DROPDOWN -->

</div>

<?php else:?>

<div class="hor-menu hor-menu-light pull-right">

 <ul class="nav navbar-nav pull-right">

 <li class="classic-menu-dropdown">

 <a href="<?=$this-

>url(array('module'=>'default','controller'=>'user','action'=>'login'),null,true)?>">L

ogin

</div>

<?php endif;?>

<!-- END TOP NAVIGATION MENU -->

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

120 | P a g e

Discussion Html Component:

Figure 75. Discussion Live Box

Is a discussion popup stick to the right bottom corner of the screen, enables live chatting between

users. It uses a third-party javascript library "Tawk.to"

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

121 | P a g e

<div id="discussion_modal" class="modal container fade" tabindex="-1">

 <div class="modal-header">

 <button type="button" class="close" data-dismiss="modal" aria-

hidden="true"></button>

 <h4 class="modal-title">New Discussion</h4>

 </div>

 <div class="modal-body">

 <div class="row">

 <div class="col-md-12 form">

 <form action="<?=$this-

>url(array('module'=>'default','controller'=>'discussion','action'=>'startdiscussion')

,null,true)?>" id="start_discussion_form" method="post" class="form-horizontal"> <!—

Output action url when submitting the form, the response is json object -->

 <div class="form-body">

 <div class="alert alert-danger display-hide">

 <button class="close" data-close="alert"></button>

 You have some errors. Please check below.

 </div>

 <div class="alert alert-success display-hide">

 <button class="close" data-close="alert"></button>

 Discussion started successfully, please wait until system redirects you.

 </div>

 <div class="form-group">

 <label class="control-label col-md-3">Discussion Title

 *

 </label>

 <div class="col-md-9">

 <input type="text" name="title" class="form-control required"/>

 </div>

 </div>

 <div class="form-group">

 <label class="control-label col-md-3">Participants

 </label>

 <div class="col-md-9">

 <select class="form-control select2" name="participants[]"

id="participantsSelect" data-placeholder="Select participants..."

multiple="multiple">

 <option value=""></option>

 </select>

 </div>

 </div>

 </div>

 </form>

 </div>

 </div>

 </div>

 <div class="modal-footer">

 <button type="button" data-dismiss="modal" class="btn btn-default">Close</button>

 <button type="button" id="discussion_form_submit" class="btn green" data-

form="#start_discussion_form">Start</button>

 </div>

</div>

Footer Html Component:

Html horizontal dark bar with UP icon on its right side.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

122 | P a g e

Figure 76. HTML Footer

<?php if(!$this->hideLayoutElements):?>

 <!-- BEGIN FOOTER -->

 <div class="page-footer">

 <div class="page-footer-inner">

 </div>

 <div class="page-footer-tools">

 <i class="fa fa-angle-up"></i>

 </div>

 </div>

<?php endif;?>

Managing Views

Zend Framework provides a suite of components (zend_View, system helpers, output filters,

variable escaping) that help make the visual part of MEL system both powerful and flexible and

also easy to maintain in the long term.

Routing Cycle

View pages in MEL system are loaded through URL routing which indicates the controller and the

action that is required to run, if the action is not stated in the URL the system will load the default

action (indexAction()).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

123 | P a g e

Figure 77. Route Convention

MEL system uses Zend Front Controller design pattern. This means that all requests are directed

to a single point public/index.php file. This is done using a .htaccess file containing rewrite rules

that serves all static files (such as CSS & Javascript) and directs all other requests to the index.php.

The index.php file initializes the loader and then bootstraps the application before finally return

the response to the browser. The process looks like the following graph:

Figure 78. Request Cycle through Zend Application

When the controller assign variables and called render(), Zend_View, it requests the view script

and executes it "inside" the scope of the Zend_View instance in the view script. To manipulate or

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

124 | P a g e

render the variables variables in the view script $this->variable_name, as $this points to

the Zend_View instance itself. The Zend_View class keeps the view portion of the application

separate from the rest of the application. It provides helpers, output filters, and variable escaping.

Figure 79. Multiple templates are used to build up complete page

The master template (default.phtml) providing the overall layout and template containing the

action specific content placed inside the placeholders, along with the ViewRenderer action helper

and the action()_view helper, it provides a complete and very flexible display system.

The ViewRenderer expects that all action view scripts are stored in the /views/scripts subdirectory,

they are further subdivided into separate subdirectories per controller, each subdirectory contains

different view for each Zend Action.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

125 | P a g e

Figure 80. View folder structure

Views append required files (javascript libraries, CSS stylesheets and images) for final rendered

page from assets folder, the path of the assets files (/application/assets/)

The asset folder contains two groups of assets files:

1. Common assets group: metronic base files, theme, global scripts and custom general files

from global subfolder.

2. Specific assets for each view loaded from pages subfolder

The assets files types are:

 Images

 Css files: for styling the view

 Scripts files: to manage the client side actions, the scripts use IIFE (Immediately-Invoked

Function Expression) which is javascript design pattern to establish private methods for

accessible functions and expose properties for later use:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

126 | P a g e

/**

Custom module for you to write your own javascript functions

**/

var Custom = function () {

 // private functions & variables

 var myFunc = function(text) {

 alert(text);

 }

 // public functions

 return {

 //main function

 init: function () {

 //initialize here something.

 },

 //some helper function

 doSomeStuff: function () {

 myFunc();

 }

 };

}();

/***

Usage

***/

//Custom.init();

//Custom.doSomeStuff();

View Scripts

1. Overview subdirectory (/application/modules/default/views/scripts/overview/*.phtml):

Figure 81. Overview main page (http://mel.cgiar.org/overview)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

127 | P a g e

The overview subfolder contains view for the google world map which shows different flagships

details in different action sites actionsite.phtml: contains full overview of action site details,

the page can be accessed through link on different pages or with direct URL (for ex.

/overview/actionsite/id/3) and it fills the content of the page from OverviewController.php

(/application/modules/default/controllers/OverviewController.php) which includes different

actions and one of them is actionsiteAction():

public function actionsiteAction()

{

 $_actionsiteId = $this->getRequest()->getParam('id', 0);

 App_Navigation::AddLink($this->view->url(array(

 'module' => 'default',

 'controller' => 'overview',

 'action' => 'actionsite'

), null, false), 'Action Site Overview');

 try {

 $_actionsiteMapper = new Model_Mapper_Actionsite();

 $_actionsiteEntity = $_actionsiteMapper->fetchOne(array('actionsite_id' =>

$_actionsiteId));

 $this->view->mainTitle = $_actionsiteEntity->name;

 $this->view->subTitle = 'Overview';

 $this->view->actionsite = $_actionsiteEntity;

 } catch (Exception $e) {

 }

}

The action function gets the actionsite data from Model_Mapper_Actionsite() after

getting id url parameter, then assigns the result value to ZendView instance variables

which will be rendered in the view script.

 activity.phtml: contains overview of the activity details, the page can be accessed

through link on different pages or with direct URL (for ex. /overview/activity/id/290)

and it renders the content of the page from OverviewController.php which includes

different actions and one of them is activityAction():

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

128 | P a g e

public function activityAction()

{

 $_activityId = $this->getRequest()->getParam('id', 0);

 App_Navigation::AddLink($this->view->url(array(

 'module' => 'default',

 'controller' => 'overview',

 'action' => 'actionsite'

), null, false), 'Action Site Overview');

 try {

 $_activityMapper = new Model_Mapper_FlagshipActivity();

 $_activityEntity = $_activityMapper->fetchOne(array('flagship_activity_id' =>

$_activityId));

 $this->view->mainTitle = 'Activity Overview';

 $this->view->subTitle = 'Overview';

 $this->view->flagshipActivity = $_activityEntity;

 $_projectYearMapper = new Model_Mapper_ProjectYear();

 $_projectYears = $_projectYearMapper->fetchMany();

 $this->view->projectYears = $_projectYears;

 $_partnershipLevelMapper = new Model_Mapper_PartnershipLevel();

 $_partnershipLevelCollection = $_partnershipLevelMapper->fetchMany();

 $this->view->partnershipLevels = $_partnershipLevelCollection;

 $_budgetSourceMapper = new Model_Mapper_BudgetSource();

 $_budgetSources = $_budgetSourceMapper->fetchMany();

 $this->view->budgetSources = $_budgetSources;

 $_idoMapper = new Model_Mapper_Ido();

 $_idos = $_idoMapper->fetchMany();

 $this->view->idos = $_idos;

 } catch (Exception $e) {

 }

}

The action function gets the data for activity view from:

Model_Mapper_FlagshipActivity(),

Model_Mapper_ProjectYear(),

Model_Mapper_PartnershipLevel(),

Model_Mapper_BudgetSource(),

Model_Mapper_Ido(),

sets collections variables after getting id url parameter and sets $_activityEntity result

to ZendView instance variable

 flagship.phtml: this view consist of Flagship Overview, Partners, Action sites, Projects,

Target Countries, and IDO Indicators the page can be accessed through link on

different pages or with direct URL (for ex. /overview/flagship/id/3) and it fills the

content of the page from OverviewController.php which includes different actions and

one of them is flagshipAction():

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

129 | P a g e

public function flagshipAction()

{

 $_flagshipId = $this->getRequest()->getParam('id', 0);

 $_flagshipPartnersMapper = new Model_Mapper_FlagshipPartners();

 if ($_flagshipId > 0) {

 $_partners = $_flagshipPartnersMapper->fetchMany(array('flagship_id' => $_flagshipId));

 $this->view->partners = $_partners->toArray();

 }

 App_Navigation::AddLink($this->view->url(array(

 'module' => 'default',

 'controller' => 'overview',

 'action' => 'flagship'

), null, false), 'Flagship Overview');

 try {

 $_flagshipMapper = new Model_Mapper_Flagship();

 $_flagshipEntity = $_flagshipMapper->fetchOne(array('flagship_id' => $_flagshipId));

 $this->view->mainTitle = $_flagshipEntity->name;

 $this->view->subTitle = 'Overview';

 $this->view->flagship = $_flagshipEntity;

 $_flagshipProjects = array();

 $_projects = $this->_projectData();

 foreach ($_projects as $_projectEntity) {

 foreach ($_projectEntity->flagship_ids as $_projectFlagshipId) {

 if ($_projectFlagshipId == $_flagshipId)

 $_flagshipProjects[] = $_projectEntity;

 }

 }

 $this->view->projects = $_flagshipProjects;

 } catch (Exception $e) {

 }

}

Because this action function gets the required from different data sources, it needed to

instantiate different Mappers (Model_Mapper_FlagshipPartners(),

Model_Mapper_Flagship()) and assign the resulted data to ZendView instance variables.

 Index.phtml: It is the default view for the controller OverviewController.php this view

doesn't require any backend access to get the required information because it

displays google map and draw all the FlagShips with links to view more details about

the selected flagship.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

130 | P a g e

The view add these scripts to headScript() to appear in the final rendered page:

<?php $this->headScript ()->appendFile ("http://google.com/maps/api/js?sensor=true");?>

<?php $this->headScript ()->appendFile ($this->baseUrl().

'/assets/admin/pages/scripts/overview/index.js');?>

<?php $this->placeholder('jsvars')->captureStart();?>

var kml_codes=["ca","esa","nawa","sa","wasds_new_3"];

var overviewLink ='<?=$this-

>url(array('module'=>'default','controller'=>'overview','action'=>'flagship'),null,true)?>';

<?php $this->placeholder('jsvars')->captureEnd();?>

<?php $this->placeholder('jscalls')->captureStart();?>

OverviewMap.init();

<?php $this->placeholder('jscalls')->captureEnd() ?>

The flagship sites are drawn using KML files in (/uploads/flagship/*.kml) these files are XML

based file format used to display flagships geographic data on the displayed google map. Index.js

file contains JSON object to initialize google maps with specific options and styles:

var OverviewMap = function() {

 return {

 init : function() {

 var myLatlng = new google.maps.LatLng(25, 0);

 var mapOptions = {

 zoom : 3,

 center : myLatlng

 };

 var simpleStyle = [{

 "featureType" : "administrative.country",

 "elementType" : "geometry",

 "stylers" : [{

 "visibility" : "simplified"

 }, {

 "hue" : "#ff0000"

 }]

 }];

 var map = new google.maps.Map(document.getElementById('map'),

 mapOptions);

 map.setOptions({ styles : simpleStyle });

 var kmlLayer;

 for (index = 0; index < kml_codes.length; index++) {

 kmlLayer = new google.maps.KmlLayer(

 {

 url : 'http://mel.cgiar.org/uploads/flagship/'+ kml_codes[index] + '.kml',

 suppressInfoWindows : true,

 map : map,

 preserveViewport : true

 });

 google.maps.event.addListener(kmlLayer, 'click', function(kmlEvent) {

 var text = kmlEvent.featureData.description;

 window.location=overviewLink+'/id/'+text;

 });

 }

 }

 };

}();

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

131 | P a g e

1. The init() function which initialize google map with zoom degree centered on specific

coordinates and style then loop over the kml files in the specified path to draw them on the

rendered map.

2. User menu appears for signed user with admin role so he/she can add, delete, and edit users

information.
User directory (/application/modules/default/views/scripts/user/*.phtml):

Figure 82. User Index Page (http://mel.cgiar.org/user)

 dashboard.phtml: contains tabable metronic component to display page section in tab

format user overview, summary information and account settings these information is

loaded from UserController.php dashboardAction() { … }, because this action gets user

info from many database tables it was required to implement Model_Mapper_Project

(), Model_Mapper_FlagshipActivity (), Model_Mapper_Flagship(),

Model_Mapper_ReportFileResult (), Model_Mapper_ReportSurvey(),

Model_Mapper_ResultInfo(), Model_Mapper_FlagshipActivityResultDeliverable(), and

Model_Mapper_FlagshipActivityTrainingResult() then set the results of the operations

on these mappers to Zend_View instance so the result can be rendered in the view.

In My Account tab if the user updated his information the form input elements are

validated using rules set in form-validation.js after pressing Save Changes button and

before processing the data in submituserAction(). The other tabs display the

information inside portlet metronic components.

 denied.phtml: warning view for user with low privilege when try to access a route

he/she is not authorized to access, the deniedAction() just disable the default layout

so the rendered page will use custom view instead of the default layout, because the

view does not use the layout it has all the elements of the layout and the custom view.

 index.phtml: the index view for UserController indexAction() is loaded if there is no

action is specified in the URL (/user/). The view uses bootstrap tables and jquery data

tables plugin to give advance features to the tables (such as Pagination, instant search

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

132 | P a g e

and multi-column ordering). The action sets mainTItle variable to the ZendView

instance.

 login.phtml: the content of the login page, this view contains the fundamental structure

of the login page design style and theme with links to continue as guest if the user has

no membership.

Figure 83. Login View Page (http://mel.cgiar.org/user/login)

The Action:

public function loginAction()

{

 if (Zend_Auth::getInstance()->hasIdentity())

 $this->_helper->_redirector('dashboard');

 else

 $this->_helper->layout()->disableLayout();

}

Check if the user who accessed the login view script has user object then the view object

$this will redirect the request to the dashboard action, if not then the loginAction will

disable the default layout and render the login view script, after entering the login

credentials the form will be submitted to UserController authAction() URL

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

133 | P a g e

public function authAction()

{

 $_userMapper = new Model_Mapper_User ();

 $usersTableName = $_userMapper->getTableName();

 $auth = new App_Auth ($usersTableName, 'email', 'password');

 $email = $this->getRequest()->getParam('email', '');

 $password = $this->getRequest()->getParam('password', '');

 $remember = $this->getRequest()->getParam('remember', 0);

 if ($remember != 0) {

 Zend_Session::rememberMe(60 * 60 * 24 * 60);

 }

 $result = $auth->authenticate($email, $password);

 if ($result > 0)

 $this->_helper->json->sendJson(array(

 'message' => 'success'

));

 elseif ($result == -1)

 $this->_helper->json->sendJson(array(

 'message' => 'Account not Found'

));

 elseif ($result == -99)

 $this->_helper->json->sendJson(array(

 'message' => 'Account not Active'

));

 else

 $this->_helper->json->sendJson(array(

 'message' => 'Login Failed'

));

}

The action use instance of Model_Mapper_User () to get user details stored in the database,

instantiate auth object and get the credentials parameters from the request if the checkbox to

remember user details was checked then the system will generate cookie with the session details

and store it on user machine to 60 days. After that authenticate function will check the credentials

data and compare it with the $usersTable then return integer number according to the user state.

Then compare $result value and send the response as JSON object.

 message.phtml: a view with notification message to be shown when the system is

down, as it has a different layout than the default layout the messageAction() disable

default layout and render the view.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

134 | P a g e

Figure 84. View When the System Is Down (http://mel.cgiar.org/user/message)

Figure 85. Login view (http://mel.cgiar.org/user/pdgmulogin)

 reset.phtml: reset password view which will be given in the email sent to user, the action

resetAction() use Model_Mapper_User () to get user info and inside the try block will get

hash parameter provided by the request after that the mapper will get user row. The action

will check the request object type (Post or Get). The request object is a simple value object

that is passed between Zend_Controller_Front and the router, dispatcher, and controller

classes. It packages the names of the requested module, controller, action, and optional

parameters, as well as the rest of the request environment.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

135 | P a g e

generateRandStr() function helper will generate random string and assign it to salt user

variable and update the password in the mapper object and at the end redirect the user to

his dashboard.

Figure 86. Reset Password View (http://mel.cgiar.org/user/reset)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

136 | P a g e

public function resetAction()

{

 $_userMapper = new Model_Mapper_User ();

 try {

 $_hash = $this->getRequest()->getParam('hash', '');

 $_user = $_userMapper->fetchOne(array('reset_string' => $_hash));

 $this->view->error = '';

 if ($this->getRequest()->isPost()) {

 $_password = $this->getRequest()->getParam('password', '');

 if ($_password != '') {

 $_user->salt = App_Function::generateRandStr(40);

 $_user->rawpassword = $_password;

 $_user->reset_string = '';

 $_userMapper->update($_user->toArray(), 'user_id=' . $_user->user_id);

 $_auth = Zend_Auth::getInstance();

 $_auth->getStorage()->write($_user);

 $this->_helper->redirector('dashboard');

 return;

 }

 $this->view->error = 'System Error';

 }

 $this->view->user = $_user;

 $this->view->as = $_hash;

 } catch (Exception $e) {

 $this->view->error = 'Error in link. Please make sure that you followed the correct link.';

 }

}

resetemail.phtml: is a reset email template assigned with forgetAction():
public function forgetAction()

{

 $_userMapper = new Model_Mapper_User ();

 try {

 $_email = $this->getRequest()->getParam('email', '');

 $_user = $_userMapper->fetchOne(array('email' => $_email));

 $_activationString = App_String::generateRandStr(50);

 $_user->reset_string = $_activationString;

 $_userMapper->update($_user->toArray(), 'user_id=' . $_user->user_id);

 $this->view->reset_hash = $_activationString;

 $userPasswordResetEmail = $this->view->render('user/resetemail.phtml');

 App_Mail_Sender::SendEmail(array(array('Name' => $_user->name, 'Email' => $_user->email)),

'Password reset!', $userPasswordResetEmail);

 $this->_helper->json->sendJson(array(

 'message' => 'success'

));

 } catch (Exception $e) {

 $this->_helper->json->sendJson(array(

 'message' => 'Reset Failed'

));

 }

}

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

137 | P a g e

The action will use Model_Mapper_User () to get user info and generate random string, update the

mapper reset_link, associate the string with reset_hash variable.

The in the template the reset_hash variable will be used to generate complete URL using custom

view helper fullURL, then use App_Mail_Sender::SendEmail function and provide the required

configuration for sending the email with Password reset subject, then return success message to

the helper. If the an error has been generated by the App_Mail_Sender "Reset Failed" message will

be sent as json object to the helper.

o welcomeemail.phtml: welcome email message template sent to the user when he is

added to MEL system.

public function welcomeAction()

{

 $_userMapper = new Model_Mapper_User ();

 try {

 $_email = $this->getRequest()->getParam('email', '');

 $_user = $_userMapper->fetchOne(array('email' => $_email));

 $_activationString = App_String::generateRandStr(50);

 $_user->reset_string = $_activationString;

 $_userMapper->update($_user->toArray(), 'user_id=' . $_user->user_id);

 $this->view->reset_hash = $_activationString;

 $userPasswordResetEmail = $this->view->render('user/welcomeemail.phtml');

 App_Mail_Sender::SendEmail(array(array('Name' => $_user->name, 'Email' => $_user->email)),

'System Access', $userPasswordResetEmail);

 $this->_helper->json->sendJson(array(

 'message' => 'success'

));

 } catch (Exception $e) {

 $this->_helper->json->sendJson(array(

 'message' => 'Reset Failed'

));

 }

}

In the action it gets user information from Model_Mapper_User () and retrieve one record

from the table associated with email then generate and add activation string to reset_string

attribute. App_Mail_Sender::SendEmail is used to send email with subject System Access,

then send success message as JSON object to the view helper if error occurred while

sending an email exception will result with Send Reset Failed error message to the handler.

The handler will be displayed in the view.

App_Mail_Sender class provide functionality to compose and send rich-text emails:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

138 | P a g e

<?php

class App_Mail_Sender {

 public static function SendEmail($arrTo, $Subject, $Body,$replyTo='') {

 $SMTPHost = 'mail.cgmel.org';

 $SMTPUserName = 'noreply@cgmel.org';

 $SMTPPassword = 'n0Wc#5b5';

 $config = array (

 'auth' => 'login',

 'username' => $SMTPUserName,

 'password' => $SMTPPassword,

 'port' => 25

);

 $transport = new Zend_Mail_Transport_Smtp ($SMTPHost, $config);

 $mail = new Zend_Mail ('UTF-8');

 $mail->setBodyText ('Please activate HTML view');

 $mail->setFrom ('noreply@cgmel.org','CRP Dryland Systems Monitoring, Evaluation and Learning

System');

 foreach ($arrTo as $To)

 $mail->addTo ($To ['Email'], $To ['Name']);

 $mail->setSubject ($Subject);

 $mail->addBcc('noreply@cgmel.org');

 if($replyTo!='')

 $mail->setDefaultReplyTo($replyTo);

 try{

 $viewRenderer = Zend_Controller_Action_HelperBroker::getStaticHelper('viewRenderer');

 if (null === $viewRenderer->view) {

 $viewRenderer->initView();

 }

 $view = $viewRenderer->view;

 $view->body=$Body;

 $view->name=$arrTo[0]['Name'];

 $finalBody=$view->render('templates/mail.phtml');

 }catch(Exception $e){

 throw new Exception($e->getMessage());

 }

 $mail->setBodyHtml ($finalBody);

 //$mail->send ($transport);

 }

}

It contains static function SendMail (the use of static method is to give a way to reference

objects in Zend_Registry scope) has 4 parameters that set the email configuration:

 $arrTo: contains the address for the recipient of the email.

 $Subject: the subject of the email.

 $Body: the body of the email.

 $replayTo: is not required parameter if it has not been provided to the function empty

value will be assigned to the parameter.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

139 | P a g e

Because the mail server requires SMTP authentication additional parameters provided in the

body of the function provided to Zend_Mail, the authentication parameters are:

$SMTPHost = 'mail.cgmel.org';

$SMTPUserName = 'noreply@cgmel.org';

$SMTPPassword = 'n0Wc#5b5';

$config = array (

 'auth' => 'login',

 'username' => $SMTPUserName,

 'password' => $SMTPPassword,

 'port' => 25

);

Zend_Mail declared and the default configurations are set (the encoding UTF-8, the text part

of the email just contains 'Please activate HTML view', the sender, the subject and the

recipients of the email), inside the try catch block

Zend_Controller_Action_HelperBroker::getStaticHelper('viewRenderer')

is declared.

Set the body text message to the view body, set name variable, in the array of the recipients

list, to name variable for the $view object, then render the html message template

(application/modules/default/views/scripts/templates/mail.phtml) with the values of the

$view object and set the output to $finaleBody variable.

If everything processed without error the $finalBody is set to the body of the html email:

$mail->setBodyHtml ($finalBody);

Note: Zend_Mail_Transport_Smtp is declared but not registered with Zend_Mail

User views use the following files to validate the forms and get the data from mappers and

display it in the view:

 table-managed.js: to instantiate users data tables and fill the table with data from datalink

"/user/getallusers" this link is registered with getallusersAction() function which gets all

the users details from Model_Mapper_User() function then returns the result set as JSON

object, after the response sent back the plugin will generate table with advance controls

(Search Field, Pagination, Sorting). The initTable function requires jquery-1.11.0.min.js and

jquery.dataTables.min.js to be loaded before table-managed.js is executed

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

140 | P a g e

var initTable = function () {

 var table = $('#user');

 // begin first table

 table.dataTable({

 "sAjaxSource": tableDataLink,

 "sAjaxDataProp": "data",

 "columns": [{

 "mData": "user_id",

 "orderable": false,

 "render": function (data, type, row) {

 return '<input type="checkbox" class="checkboxes" name="user_id[]"

value="'+data+'"/>';

 }}, {

 "mData": "name",

 "orderable": true

 }, {

 "mData": "email",

 "orderable": true

 }, {

 "mData": "title",

 "orderable": true

 }, {

 "mData": "organization",

 "orderable": true

 }, {

 "mData": "discipline",

 "orderable": true

 }, {

 "mData": "user_id",

 "orderable": false,

 "render": function (data, type, row) {

 return '<a href="#" class="btn default btn-xs blue-stripe btn-edit" data-

id="'+data+'">Edit <a href="'+base_url+'/user/loginas/id/'+data+'" class="btn default btn-xs

blue-stripe" data-id="'+data+'">Login <a href="#" class="btn default btn-xs red-stripe btn-

del" data-id="'+data+'">Delete ';

 },

 "width":100

 }],

 "lengthMenu": [

 [10, 15, 20, -1],

 [10, 15, 20, "All"] // change per page values here

],

 // set the initial value

 "pageLength": 10,

 "pagingType": "bootstrap_full_number",

 "language": {

 "lengthMenu": "_MENU_ records",

 "paginate": {

 "previous":"Prev",

 "next": "Next",

 "last": "Last",

 "first": "First"

 }}, "columnDefs": [{ // set default column settings

 'orderable': false,

 'targets': [0]

 }, {

 "searchable": false,

 "targets": [0]

 }],

 "fnRowCallback": function(nRow, aaData, iDisplayIndex) {

 $(nRow).addClass('gradeX');

 $(nRow).children('td').eq(0).addClass('table-checkbox');

 return nRow;

 }, "fnDrawCallback":function(oSettings, json){

 Metronic.init();

 }, "order": [

 [1, "asc"]

] // set first column as a default sort by asc

 });

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

141 | P a g e

 form-validation.js: javascript file contains validation rules for add user and add user

disciplines forms, the file also contains the placement for error messages in addition to

validation handlers. The validation rules function requires jquery-1.11.0.min.js and

jquery.validate.min.js to be loaded before form-validation.js is executed, rules contain the

name of the form elements and the corresponding validations, html inputs that need to be

validated must have name attribute because the selectors to validate an input is the name

attribute.

The structure of validation rules object:

rules:

 {

 input_1:

 {

 validation_1: param_1,

 validation_2: param_2

 }

 input_2:

 {

 validation_3: param_3,

 validation_4: param_4

 }

 }

Snippet of validations in the file:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

142 | P a g e

var handleValidation = function() {

 var form1 = $('#user_form');

 var error1 = $('.alert-danger', form1);

 var success1 = $('.alert-success', form1);

 $('input[name=code]').maxlength({

 limitReachedClass: "label label-danger",

 });

 form1.validate({

 errorElement: 'span', //default input error message container

 errorClass: 'help-block help-block-error', // default input error message class

 focusInvalid: false, // do not focus the last invalid input

 ignore: "", // validate all fields including form hidden input

 rules: {

 name: {

 required: true

 },

 title: {

 required: true

 },

 gender: {

 required: true

 },

 email: {

 required: true,

 email:true

 },
 .

 .

 .

};

Figure 87. Input fields that will be validated before the form will be submitted to the action

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

143 | P a g e

7.5.4 CRUD (Create, Retrieve, Update, Delete)
In Zend Framework’s MVC implementation, each table in the database has an associated class

that manages it. In MEL we refer to this class as the Model. As Zend Framework has not defined a

model interface, class, or other formalism simply -because they wanted to avoid introducing

limitations without significant added value- MEL has defined its custom Model at:

(library/App/Model/).

MEL is defining its custom model implementation that partially derives the Data Mapper pattern,

controllers are extending these custom mapper models that in turn extends Zend_Db_Table class.

The full Data Mapper pattern and a difference to MEL Data Mapper pattern will be briefly described

next, MEL custom mapper model will be explained after that.

 Data Mapper (Flower, 2002)
A layer of Mappers that moves data between objects and a database while keeping them

independent of each other and the mapper itself.

Figure 88. Data Mapper Representative Flow (Flower, 2002)

Objects and relational databases have different mechanisms for structuring data. Many parts of

an object, such as collections and inheritance, are not present in relational databases. When

building an object model with a lot of business logic it is valuable to use these mechanisms to

better organize the data and the behaviour that goes with it. Doing so leads to variant schemas;

that is, the object schema and the relational schema do not match up.

Data transfer between the two schemas will still be needed, and this data transfer becomes a

complexity in its own right. If the in-memory objects know about the relational database structure,

changes in one tend to ripple to the other.

The Data Mapper is a layer of software that separates the in-memory objects from the database.

Its responsibility is to transfer data between the two and to isolate them from each other. With

Data Mapper, the in-memory objects need not know even that there is a database present; they

need no SQL interface code, and certainly no knowledge of the database schema. (The database

schema is always ignorant of the objects that use it.) Since it is a form of Mapper, Data Mapper

itself is even unknown to the domain layer (Flower, 2002).

The Data Mapper will use Table Data Gateway to connect to the data source, which will use

Zend_Db_Table that provides this functionality.

 Table Data Gateway (Flower, Table Data Gateway, 2002)
An object that acts as a Gateway to a database table. One instance handles all the rows

in the table.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

144 | P a g e

Figure 89. Table Data Gateway Representative Flow

Mixing SQL in application logic can cause several problems. Many developers are not comfortable

with SQL, and many who are comfortable may not write it well. Database administrators need to

be able to find SQL easily so they can figure out how to tune and evolve the database.

A Table Data Gateway holds all the SQL for accessing a single table or view: selects, inserts,

updates, and deletes. Other code calls its methods for all interaction with the database (Flower,

Table Data Gateway, 2002).

Data Mapper best practices require the creation of the following three components:

1. Data Source
A based table class; a table data gateway, which is an object that acts as a Gateway to a

database table. It will extend Zend_Db_Table, and provide a table name and optionally the

primary key (if it is not "id").

2. Mapper Model
Maps the Domain Model (Object) to the Data source (Object). It will set and get the data

source, save, insert, update, find, fetchAll, etc.. , from the Domain Model to the data source.

Therefore, it will get fields data from the domain model object and will insert, update, etc.,

to the data source object.

3. Domain Model
Contains the table rows as fields, and sets/gets them as properties via setters and getters

methods.

MEL Mapper Model Customization
MEL system is merging Data Sources with the Mapper Models, so you will find that MEL has no

separate Data Source layer (Models extending Zend_Db_Table and defining table names with no

other logic inside). This Data Source layer is merged with the Data Mapper layer.

MEL Data Mappers are extending the abstract class App_Model_Mapper_MapperAbstract that in

turn extends Zend_Db_Table, this abstraction is found as a custome library located at

(library/App/Model/Mapper/MapperAbstract.php).

abstract class App_Model_Mapper_MapperAbstract extends Zend_Db_Table

Abstract class indicates that App_Model_Mapper_MapperAbstract can't be instantiated on its own,

but can only be sub classed. Class App_Model_Mapper_MapperAbstract code is explained below

along with Zend_Db_Table usage.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

145 | P a g e

 MEL Mapper Model (App_Model_Mapper_MapperAbstract)

- The Zend_Db_Table class is an object-oriented interface to database tables. It provides

methods for many common operations on tables. The base class is extensible, so custom

logic can be added. The Zend_Db_Table solution is an implementation of the mentioned

above Table Data Gateway pattern. The solution also includes a class that implements the

Row Data Gateway pattern (An object that acts as a Gateway to a single record in a data

source. There is one instance per row).

- Class App_Model_Mapper_MapperAbstract defines the following three auxiliary functions

to provide added functionalities/methods on Zend_Db_Table for any class that extends

App_Model_Mapper_MapperAbstract:

1. Classes that extends App_Model_Mapper_MapperAbstract can now get the database

table for which extending class is defined, using the public getTableName() method to

get the protected variable $_name. $_name value is a string, and must contain the

name of the table spelled as it appears in the database.

 public function getTableName(){

 return $this->_name;

 }

An example of a Mapper model defines protected variable $_name as a property can be found at

(application/model/mapper/SelfAssessment.php):

class Model_Mapper_SelfAssessment extends
App_Model_Mapper_MapperAbstract

{

 protected $_name = 'tbl_self_assessment';

}
Note that all MEL Mapper models correspond to a table/view in the database, and has this

protected variable $_name defined.

A getTableName() method usage example can be found at:

(application/modules/default/controllers/UserController.php) inside the authAction() as follows:

 public function authAction()

 {

 $_userMapper = new Model_Mapper_User ();

 $usersTableName = $_userMapper->getTableName();

 }

 The UserController authAction is instantiating Model_Mapper_User() that defines protected

$_name = 'tbl_user' and is being retrieved via $_userMapper->getTableName().

2. Classes that extends App_Model_Mapper_MapperAbstract can now set the database

table name for which extending class is defined, using the public setTableName()

method that takes the protected variable $_name as a parameter.

 public function setTableName($name){

 $this->_name=$name;

 }

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

146 | P a g e

Although setTableName($name) method is defined in the Mapper abstract class, but it was never

used in the MEL system.

3. Classes that extends App_Model_Mapper_MapperAbstract can now get the table primary

key. Primary key column is declared for the primary key using the protected variable

$_primary inside the Mapper models. This is either a string that names the single column

for the primary key, or else it is an array of column names if the primary key is a compound

key.

getPrimary() is retrieving the primary key by using info() method defined at

(library/Zend/Db/Table/Abstract.php), which Returns table information by returning only a part of

this information by supplying its key name ('primary').

 public function getPrimary() {

 return $this->info('primary');

}

If the primary key is not specified, Zend_Db_Table_Abstract tries to discover the primary key based

on the information provided by the describeTable() method.

Setting the primary key inside MEL mapper models is done by: Overriding table setup methods.

Table setup methods are a set of protected methods that initialize metadata for the table called

by the constructor. An example can be found at:

(application/model/mapper/ActionsiteBudget.php)

class Model_Mapper_ActionsiteBudget extends
App_Model_Mapper_MapperAbstract

{

 protected $_name = 'view_actionsite_budget';

 protected function _setupPrimaryKey()

 {

 $this->_primary = 'actionsite_id';

 parent::_setupPrimaryKey();

 }

}

_setupPrimaryKey() method defaults the primary key columns to those reported by describeTable();

checks that the primary key columns are included in the $_cols array. By overriding this method.

 Class App_Model_Mapper_MapperAbstract defines the following two auxiliary

functions to provide added functionalities/methods on Zend_Db_Table for any

class that extends App_Model_Mapper_MapperAbstract. These two methods

manipulates the Zend_Db_Table_Rowset_Abstract class.

1. The _createCollection method takes an object of type

Zend_Db_Table_Rowset_Abstract. A Rowset contains a collection of objects

descending from Zend_Db_Table_Row_Abstract. Because

Zend_Db_Table_Rowset_Abstract implements the SeekableIterator interface, it

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

147 | P a g e

provides the ability to iterate through the Rowset via foreach() and access individual

Row objects, reading or modifying data in the Rows.

 protected function
_createCollection(Zend_Db_Table_Rowset_Abstract $results)

 {

 $collectionClass=str_replace('_Mapper', '',

get_class($this)).'Collection';

 $collection = new $collectionClass;

 foreach ($results as $row) {

 $collection[] = $this->_createEntity($row);

 }

 return $collection;

 }
$collectionClass will contain the replace class name as follows:

It will get the current mapper class name, i.e. class Model_Mapper_ActionsiteAls, it will replace the

_Mapper with nothing to it will become Model_ActionsiteAls, then will append the string 'Collection'

with a final result of: Model_ActionsiteAlsCollection which is an already created Collection class

inside the model/ directory.

Then it will instantiate the collection class, iterate through it saving data in rows as entities in a

name = value format.

2. The _createEntity method takes an object of type Zend_Db_Table_Row_Abstract,

each retrieved value from the Rowset is a Zend_Db_Table_Row_Abstract object

that corresponds to one record from the table. Zend_Db_Table_Row_Abstract

provides accessor methods so columns can be referenced in the row as object

properties:

 protected function _createEntity(Zend_Db_Table_Row_Abstract

$results)

 {

 $entityClass=str_replace('_Mapper', '', get_class($this));

 $entity=new $entityClass;

 foreach ($results as $columnName=>$columnValue)

 $entity->$columnName=$columnValue;

 return $entity;

 }

$entityClass will contain the replaced class name as follows:

It will get the current mapper class name, i.e. class Model_Mapper_ActionsiteAls, it will replace the

_Mapper with nothing to it will become Model_ActionsiteAls, which is an already created Collection

class inside the model/ directory.

Then it will instantiate the coreesponding model class, itertate through it saving data in a name =

value format.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

148 | P a g e

At this point, an override for _createEntity() at:

(library/App/Model/Mapper/JsonMapperAbstract.php) should be mentioned. This

App_Model_Mapper_JsonMapperAbstract class is being ectended by one model mapper only,

which is (application/model/mapper/Project.php). _createEntity() implementation is the same as

above except that the final $columnName, and $columnValue values are decoded via

Zend_Json::decode as follows:

 protected function _createEntity(Zend_Db_Table_Row_Abstract $results)

 {

 $entityClass=str_replace('_Mapper', '', get_class($this));

 $entity=new $entityClass;

 foreach ($results as $columnName=>$columnValue)

 {

 //if(!in_array($columnName, $this->_jsonArray))

 $entity->$columnName=$columnValue;

 }

 foreach ($this->_jsonArray as $fieldName){

 if(isset($results[$fieldName])){

 $decodedArray=Zend_Json::decode($results[$fieldName]);

 foreach ($decodedArray as $jsonFieldName => $jsonFieldValue)

 $entity->$jsonFieldName=$jsonFieldValue;

 }

 }

 return $entity;

 }

Defining custom logic for Insert, Update, and Delete

MEL overriinge the insert(), update(), and delete() methods inside

App_Model_Mapper_MapperAbstract. By this we are implementing custom code that is executed

before performing the database operation. This custom code is the same for the three operations,

and include logging some data about the user and operation, i.e. table_name, user_id, date, and

other operation details. Here you can find the custom MEL delete() method.

 public function delete($where)

 {

 //use log table to add ne wactivity

 $_logMapper = new Model_Mapper_Log();

 $_auth = Zend_Auth::getInstance ();

 $_user = $_auth->getIdentity ();

 $_logModal = new Model_Log();

 $_logModal->action_type = 2;

 $_logModal->table_name = $this->getTableName();

 $_logModal->user_id = $_user->user_id;

 $_logModal->date = gmdate('Y-m-d H:i:s');

 $_logModal->details = json_encode(array('where' => $where));

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

149 | P a g e

 $_logMapper->insert($_logModal->toArray());

 return parent::delete($where);

 }

MEL Custom search methods

MEL has a frequent need to do queries against tables with specific criterias, for this we are

embeding these queries at run time by the help of the following Zend base functions customized

according to our needs.

1. Querying for a single row / fetchRow()
MEL is using the following custom function to query a single row:

 public function fetchOne($criteria=null,$order=null){

 if ($criteria==null && $order==null)

 $results = $this->fetchRow();

 else
 {

 $selectCriteria= $this->select();

 if($criteria!=null){

 foreach ($criteria as $field=>$value){

 if(!is_array($value))

 $selectCriteria->where($field . ' = ?',$value);

 else
 $selectCriteria->where($field . ' IN (?)',$value);

 }

 }

 if($order!=null)

 $selectCriteria->order($order);

 $results = $this->fetchRow($selectCriteria);

 }

 if($results == null)

 throw new Exception('Entity Not Found');

 else
 return $this->_createEntity($results);

 }

As parameters show, this functions relies on a criteria: A criteria is similar to a WHERE clause in

SQL, but it's not in SQL format. It uses objects instead. The function implies the normal use of

fetchRow() if there is no criteria passed, and the where clause implementation based on the

passed criteria.

2. Fetching a rowset / fetchAll()

In Zend, a set of rows query is performed by using any criteria other than the primary key

values, via the fetchAll() method of the Table class. This method returns an object of type

Zend_Db_Table_Rowset_Abstract.

MEL is using the following custom function to query a rowset:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

150 | P a g e

public function fetchMany($criteria=null,$order=null,$count=null,$offset=-

1){

 if ($criteria==null && $order==null)

 $results = $this->fetchAll();

 else
 {

 $selectCriteria= $this->select();

 if ($criteria!=null)

 {

 if(is_array($criteria)){

 foreach ($criteria as $field=>$value){

 if(is_numeric($field)){

 $selectCriteria->where($value);

 }

 else {

 if(substr($field, 0,1)!='!'){

 if(!is_array($value))

 if($value!=null)

 $selectCriteria->where($field . ' = ?',$value);

 else
 $selectCriteria->where($field . ' IS NULL');

 else
 $selectCriteria->where($field . ' IN (?)',$value);

 }

 else{

 $fieldName=substr($field, 1);

 if(!is_array($value))

 if($value!=null)

 $selectCriteria->where($fieldName . ' <>

?',$value);

 else
 $selectCriteria->where($fieldName . ' IS NOT

NULL');

 else
 $selectCriteria->where($fieldName . ' NOT IN

(?)',$value);

 }

 }

 }

 }

 else
 $selectCriteria->where($criteria);

 }

 if($order!=null)

 $selectCriteria->order($order);

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

151 | P a g e

 if($count!=null && $offset!=-1)

 $selectCriteria->limit($count,$offset);

 $results = $this->fetchAll($selectCriteria);

 }

 return $this->_createCollection($results);

 }

The function implies the normal use of fetchAll() if there is no criteria passed, and the where clause

implementation based on the passed criteria.

- App_Model_Mapper_Exception interface located at:
(library/App/Model/Mapper/Exception.php) is extending App_Model_Exception located at

(library/App/Model/Exception.php), this in turn extends App_Exception located at

(library/App/Exception.php) which is an empty interface.

- App_Model_Mapper_RuntimeException located at:
(library/App/Model/Mapper/RuntimeException.php) is extending RuntimeException a base

Zend class located at (library/Zend/Http/Header/Exception/RuntimeException.php), and is

implementing App_Model_Mapper_Exception interface located at:

(library/App/Model/Mapper/Exception.php) is extending App_Model_Exception located at

(library/App/Model/Exception.php), this in turn extends App_Exception located at:

(library/App/Exception.php) which is an empty interface.

 MEL Domain Model (App_Model_ModelAbstract)
MEL Domain models are extending the abstract class App_Model_ModelAbstract located at

(library/App/Model/ModelAbstract.php), App_Model_ModelAbstract is defining the allowed

table fields as an array, along with its values then assign values to field’s property at its

constructor.

abstract class App_Model_ModelAbstract
{

 protected $_fields = array();

 protected $_values = array();

 public function __construct(array $values=array())

 {

 foreach ($this->_fields as $name) {

 $this->$name = '';

 }

 foreach ($values as $name => $value) {

 $this->$name = $value;

 }

 }

}

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

152 | P a g e

 MEL Models Relationship Support

MEL configures models to support relationships, by defining the relationships within the model.

Both getParentRelation(), and getChildrenRelation() define the relationship, informing

Zend_Db of the existence of a column within the $mapper table model which stores a foreign

key pointing to a row managed by the current implementing model.

Both getParentRelation(), and getChildrenRelation() takes an object from

App_Model_Mapper_MapperAbstrac which is the parent/children mapper model, $method

which is the query needs to be done i.e. fetchone, fetchCount, etc ..

$arguments parameter indicates the foreign key between the two tables.

 public function getParentRelation(App_Model_Mapper_MapperAbstract $mapper,

$method, array $arguments){

 $modelRelation=new App_Model_Relation($mapper, $method, $arguments);

 return $modelRelation;

 }

 public function getChildrenRelation(App_Model_Mapper_MapperAbstract

$mapper, $method, array $arguments){

 $modelRelation=new App_Model_Relation($mapper, $method, $arguments);

 return $modelRelation;

 }

This Relationship support is instantiating App_Model_Relation located at:

 (library/App/Model/Relation.php) implementing the following Standard PHP Libraries (SPLs):

ArrayAccess, Countable, IteratorAggregate.

The Standard PHP Library is a great addition to PHP 5. It provides a number of very useful facilities

that expose some of PHP’s internal functionality and allow the “userland” developer to write objects

that are capable of behaving like arrays, or that transparently implement certain iterative design

patterns to PHP’s own core functionality, so that you, for example, use a foreach() construct to loop

through an object as if it were an array, or even access its individual elements using the array

operator [].

SPL works primarily by providing a number of interfaces that can be used to implement the

functionality required to perform certain operations.

1. Accessing Objects as Arrays (ArrayAccess)

The ArrayAccess interface can be used to provide a means for objects to be exposed as

pseudo-arrays to PHP. To implement ArrayAccess four methods should be implemented:

offsetExists, offsetGet, offsetSet and offsetUnset. ArrayAccess::offsetExists must return a

boolean, offsetGet can return any valid PHP type while offsetSet and offsetUnset should

not return any value. The following shows how App_Model_Relation implements them:

 public function offsetExists($offset) {

 return array_key_exists($offset, $this->_iterator);

 }

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

153 | P a g e

 public function offsetGet($offset) {

 if ($this->_iterator === null) {

 $this->_iterator=$this->getIterator();

 }

 return $this->_iterator[$offset];

 }

 public function offsetSet($offset, $entity) {}

 public function offsetUnset ($offset) {

 }

2. Counting elements of an object (Countable)

The Countable interface allows to pass objects that implement it to PHP’s native count

function. To implement Countable Countable::count() method should be added to the

implementing class and this method only needs to return an integer. Passing an object that

implements Countable to the PHP count function, will force the PHP interpreter to

automatically call the count method in the object. This is how App_Model_Relation is

implementing Countable:

 public function count()

 {

 return count($this->getIterator());

 }

3. Looping over objects (IteratorAggregate)

The IteratorAggregate interface defines objects behavior in a foreach loop, this will provide

the ability to define custom logic which governs the values to return when an object is

iterated over. Implementing IteratorAggregate requires getIterator() method and this is how

App_Model_Relation is implementing getIterator():

 public function getIterator()

 {

 if ($this->_iterator === null) {

 $this->_iterator = call_user_func_array(array($this->_mapper, $this-

>_method), $this->_arguments);

 }

 return $this->_iterator;

 }

This is also used to route method calls to the iterator:

 public function __call($name, array $arguments)

 {

 return call_user_func_array(array($this->getIterator(), $name), $arguments);

 }

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

154 | P a g e

 App_Model_ModelAbstract is also overriding the two magic methods (__set(), and __get()),

overriding indicates that MEL can use the syntax (_set) concatenated to the table field

name with first letter capitalized, so if we are setting als we can use the following:

_setAls($name, $value). In the code the first check is trying to find a defined method

named _setAls($name, $value), the second one will accept and set the field value if the

$name is found in the table $fields.

The same logic mentioned above is applied to the __get($name) magic method.

 public function __set($name, $value)

 {

 $method = '_set' .implode('', array_map('ucfirst', explode('_', $name)));

 if (method_exists($this, $method)) {

 $this->{$method}($value);

 } else if (in_array($name, $this->_fields)) {

 $this->_values[$name] = $value;

 } else {

 throw new App_Model_OutOfBoundsException('Field with name ' .

$name . ' does not exist');

 }

 return $this;

 }

 public function __get($name)

 {

 $method = '_get' . implode('', array_map('ucfirst', explode('_', $name)));

 if (method_exists($this, $method)) {

 return $this->{$method}();

 } else if (in_array($name, $this->_fields)) {

 if (!array_key_exists($name, $this->_values)) {

 throw new App_Model_RuntimeException('Trying to accessing

field ' . $name . ' which value was not set yet');

 }

 return $this->_values[$name];

 } else {

 throw new App_Model_OutOfBoundsException('Field with name ' .

$name . ' does not exist');

 }

 }

At this point, an override for _createEntity() at:

(library/App/Model/Mapper/JsonMapperAbstract.php) should be mentioned.

This App_Model_Mapper_JsonMapperAbstract class is being ectended by one model mapper only

which is (application/model/mapper/Project.php). _createEntity() implementation is the same as

above except that the final $columnName, and $columnValue values are decoded via

Zend_Json::decode as follows: (library/App/Model/JsonModelAbstract.php).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

155 | P a g e

 App_Model_RuntimeException located at:
(library/App/Model/RuntimeException.php) is extending RuntimeException a base Zend class

located at (library/Zend/Http/Header/Exception/RuntimeException.php), and is implementing

App_Model_Exception interface located at (library/App/Model/Exception.php), this in turn

extends App_Exception located at (library/App/Exception.php) which is an empty interface.

 App_Model_RowNotFoundException located at:
(library/App/Model/RowNotFoundException.php) is extending RuntimeException a base Zend

class located at (library/Zend/Http/Header/Exception/RuntimeException.php), and is

implementing App_Model_Exception interface located at (library/App/Model/Exception.php),

this in turn extends App_Exception located at (library/App/Exception.php) which is an empty

interface.

 App_Model_OutOfBoundsException located at:
(library/App/Model/OutOfBoundsException.php) is extending RuntimeException a base Zend

class located at (library/Zend/Http/Header/Exception/RuntimeException.php), and is

implementing App_Model_Exception interface located at:

(library/App/Model/Exception.php), this in turn extends App_Exception located at:

(library/App/Exception.php) which is an empty interface.

 App_Model_InvalidArgumentException located at:
(library/App/Model/InvalidArgumentException.php) is extending InvalidArgumentException a

base Zend class located at:

(library/Zend/Http/Header/Exception/InvalidArgumentException.php), and is implementing

App_Model_Exception interface located at (library/App/Model/Exception.php), this in turn

extends App_Exception located at (library/App/Exception.php) which is an empty interface.

 App_Model_InvalidArgumentException located at:
(library/App/Model/InvalidArgumentException.php) is extending InvalidArgumentException a

base Zend class located at:

(library/Zend/Http/Header/Exception/InvalidArgumentException.php), and is implementing

App_Model_Exception interface located at (library/App/Model/Exception.php), this in turn

extends App_Exception located at (library/App/Exception.php) which is an empty interface.

 App_Model_Exception interface is located at (library/App/Model/Exception.php), and is

extending App_Exception located at (library/App/Exception.php) which is an empty

interface.

After learning about Models here is an MEL CRUD example, a simple explanation of CRUD functions

are:

 Create: Create rows directly with Zend_Db_Table’s insert() method

(App_Model_Mapper_MapperAbstract::insert in our case), or creates a new row, add the

data to it, and save it.

 Read/Retrieve: A number of methods exist for reading data, but the two most common are,

first, building a select query using the Zend_Db_Select object and passing this to the

Zend_Db_Table fetch methods and, second, fetching a row using its primary key with

Zend_Db_Table’s find() method. MEL perform reads by the follwoing methods:

App_Model_Mapper_MapperAbstract::fetchOne

App_Model_Mapper_MapperAbstract::fetchMany

App_Model_Mapper_MapperAbstract::fetchCount

 Update: Zend_Db_Table’s update() method is used to update rows, or changes can be

directly made to the row and then use the Zend_Db_Table_Row’s save() method. MEL

perform updates by the follwoing method:

App_Model_Mapper_MapperAbstract::update

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

156 | P a g e

 Delete: Rows can be deleted by passing a WHERE clause to the Zend_Db_Table’s delete().

MEL perform deletion by the follwoing method:

App_Model_Mapper_MapperAbstract::delete

On the PreplanningController located at:

(application/modules/default/controllers/PreplanningController.php), the submitidoAction() is

instantiating its mapper (Model_Mapper_Ido()) which will represent the table named 'tbl_ido'

through the $_idoMapper object.

The $_idoEntity object will include the table fields array definition, with a default primaty key as id.

submitidoAction() will first get these parameters from the request object, instantiating both mapper

and domain model, assigning values to the current object properties, then checks if the $_idoId is

changed then it will recognize this as an update and will perform the update action from

App_Model_Mapper_MapperAbstract::update. Otherwise, action will be considered as a new ido

insertion and App_Model_Mapper_MapperAbstract::insert will be called to create a new row in the

table 'tbl_ido'.

 public function submitidoAction()

 {

 $_idoId = $this->getRequest()->getParam('ido_id', 0);

 $_code = $this->getRequest()->getParam('code', '');

 $_name = $this->getRequest()->getParam('name', '');

 $_notes = $this->getRequest()->getParam('notes', '');

 $_idoMapper = new Model_Mapper_Ido ();

 $_idoEntity = new Model_Ido ();

 $_idoEntity->code = $_code;

 $_idoEntity->name = $_name;

 $_idoEntity->notes = $_notes;

 if ($_idoId != 0) {

 $_idoEntity->ido_id = $_idoId;

 $_idoMapper->update($_idoEntity->toArray(), 'ido_id = ' . $_idoId);

 $_action = 'update';

 } else {

 $_idoMapper->insert($_idoEntity->toArray());

 $_action = 'add';

 }

 $this->_helper->json->sendJson(array(

 'message' => 'success',

 'action' => $_action

));

 }

Retrieve Operation can be shown on the getalsAction() on the same PreplanningController. We first

need the als object data mapper (Database connection), this is done by instantiating the

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

157 | P a g e

(Model_Mapper_Als()), which will represent the table named 'tbl_als' through the $_alsMapper

object. fetchOne() will retrieve a single row based on a clause.

 public function getallalsAction()

 {

 $_alsCollection = $this->_alsData();

 $_jsonArray = array();

 foreach ($_alsCollection as $_alsEntity)

 $_jsonArray [] = $_alsEntity->toArray();

 $this->_helper->json->sendJson(array(

 'data' => $_jsonArray

));

 }

Delete operation can be shown on the delactionsiteAction() on the same PreplanningController.

We first need the actionsite object data mapper (Database connection), this is done by

instantiating the (Model_Mapper_Actionsite()), which will represent the table named

'tbl_actionsite' through the $_actionsiteMapper object. Zend delete() action that is performed by

App_Model_Mapper_MapperAbstract::delete needs a where clause.

 protected function delactionsiteAction()

 {

 $_actionsiteId = $this->getRequest()->getParam('id', 0);

 $_actionsiteMapper = new Model_Mapper_Actionsite ();

 $_actionsiteMapper->delete('actionsite_id = ' . (int)$_actionsiteId);

 $this->_helper->json->sendJson(array(

 'result' => true

));

 }

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

158 | P a g e

7.6 Software Functions
This subsection provides a summary of the major features of the system.

 Table 19. Feature #1 Project Management

Performed by Description Current Functionality

Project Manager
a Flagship, or

actionsite manager

- Edit project info.

- Planning by setting Outputs and

Outcomes.

- Reporting project outputs, and

deliverables.

- Review activities, deliverables for

their scientists and workers, then

approve or reject.

Administrator
ICARDA's MEL

administrators

- Create a partner (organization).

- Create Contacts, those still not users.

- Create a User that assigned to the

created partner.

- Create a FlagShip, and set some

indicators.

- Create an actionsite/cluster.

- Create a project.

- Assign a project manager/leader to

the project.

- Review activities, deliverables, and

approve or reject.

Guest
Scientists, students,

etc...

- Has a full overview of Flagships,

actionsite, workshops, projects, who's

coordinating a flagship, what ALSes

do we have, focal points of each

institution, the billathural projects,

indicators, he can go on action sites

too, and partners information.

7.7 Security Detailed Design
Instructions: Provide a graphical representation with detailed information for each of the individual

security components. Specify the design for the below items as required.

a) Authentication

b) Authorization

c) Logging and Auditing

d) Encryption

e) Network ports usage

f) Intrusion Detection and Prevention (especially if hosted in a non-CMS data centre)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

159 | P a g e

Figure 90. Security Detailed Diagram

This figure shows software security layer provided by the system. First users can access the system

after entering their credentials (email and password) then App_Auth gets request parameters, and

search for a user associated with the entered email through Model_Mapper_User then use sha1

encryption after combining salt record in the database and the entered password, to check user

entered password. After retrieving user information and check accuracy of the password, the

system checks the role of the user and finally register the status of the user to the session using

Zend_Session so protected routes can get the session details and decide whether to allow or

disallow user access according to the role type.

 Authentication

MEL system is combining the usage of Zend_auth and Zend_Auth_Adapter_DbTable inside

library/App/Auth.php to provide a full authentication process for the users by email and

password.

Zend_Auth provides an API for authentication and includes concrete authentication adapters

for common use case scenarios, and is used to authenticate against a particular type of

authentication service, such as LDAP, RDBMS, or file-based storage. Authentication is defined

as determining whether an entity actually is what it purports to be (i.e., identification), based

on some set of credentials.

Zend_Auth_Adapter_DbTable provides the ability to authenticate against credentials stored in

a database table. Because Zend_Auth_Adapter_DbTable requires an instance of

Zend_Db_Adapter_Abstract to be passed to its constructor, each instance is bound to a

particular database connection.

 Authorization

MEL system is using the Zend_Acl component to handle the task of building a tree of roles,

resources and privileges to manage and query authorization requests against. This is done at

library/App/Acl/.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

160 | P a g e

Zend_Acl_Assert_Interface is also implemented to dynamically determine, if some roles has

access to some resources, with some optional privilege that can only be answered by the logic

within the assertion. This is done at library/App/Acl/Assert/.

Authorization is defined as the process of deciding whether to allow an entity access to, or to

perform operations upon other entities.

 Encryption

Simple hashing techniques is used once needed, i.e. sha1 is used at this domain model:

(application/model/User.php).

 Audit Trails

MEL system is logging some important information to database while processing the custom

Model Mapper objects.

MEL model is logging some information to database level. Additionally, Windows server, and

Apache provides logging.

7.8 Performance Detailed Design
Instructions: Provide a graphical representation with detailed information for each of the individual

performance and reliability components to include the below items:

a) Capacity and volume requirements/estimates

b) Performance expectations

c) Availability requirements

d) Performance design to meet capacity requirements

e) Reliability design to meet availability requirements

f) Backup, recovery, and archive design

 Identify single points of failure and, if relevant, describe high availability design (e.g., clustering).

Figure 91. Performance Detailed Design

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

161 | P a g e

In this graph it shows the rendered pages contents (unoptimized contents html, css and javascript

files) of the system, the open ports for accessing the system through firewall, operating system

services which load (web server, zend framework, and database) then how the system loads data

from database or from cached files.

7.9 Software Components Off the Shelf (COTS)
Instructions: For each COTS (Visualisation, version control etc.) describe:

- Its identification and version

- Its purpose

- Where it comes from: manufacturer …

- Whether it is maintained by a third party or not

- Its interfaces and data flows

Metronic is a responsive and multipurpose admin and frontend theme powered with Twitter

Bootstrap 3.1.1 Framework. Metronic can be used for any type of web applications: custom admin

panels, admin dashboards, CMS, CRM, SAAS and websites: business, corporate, portfolio, one

page parallax, blog. Metronic has a sleek, clean and intuitive metro & flat balanced design which

makes your next project look awesome and yet user friendly. Metronic has a huge collection of

plugins and UI components and works seamlessly on all major web browsers, tablets and phones.

7.10 Achievement of functional requirements
Instructions: For each main function of the system, add a description of the sequences / data flow

that occur. Use sequence diagrams, collaboration diagrams. Describe the workflow/sequence of

the main function, from user perspective.

The following tables (Table. 20 – Table. 26) represent MEL System workflow for each MEL process.

Please note that the achievement of functional requirements for any system won’t be completed

unless the project technical requirements is completed, hence the following Workflows is what

MEL system would achieve at its final release that has all the technical requirements done and

complete.

Table 20. Workflow / Sequence 0: Project Definition

Actors

i. Admin User.
ii. Project Manager (User).

iii. Financial Administrator (User-Focal Point).
iv. Guest.

Work Flow

i. Admin User:
a. Select Project from Pre-Planning, Select Add new

Project and fill "General Information": Add Project
Name, Select Implementing Partner, Assign a Project
Manager, Specify the total budget, Define the Country
(ies), Define the CRP mapping, Define Period of
Implementation.

b. Add "Notes".
ii. Project Manager (User):

Complete info related to project : "Objectives and Targets",

"Where we work", "Media", "Key Documents", Donor's

Reports", "Center's Strategic Framework", "Notes".

iii. Financial Administrator (User-Focal Point):
a. Discuss with Project Manager the Budget allocation.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

162 | P a g e

b. Insert the budget allocation by category for each year.
c. Develop a sync with OCS in order to update the burn

rate. If not available add a function for the Financial
Administrator to enter the spent budget every 3-6-12
months.

iv. Guest:
Can register his detail (email, pwd, bio, and picture) and see

all projects info in a view mode.

Table 21. Workflow / Sequence 1: Project Planning and Monitoring

Actors

i. Project Manager (User).
ii. Reviewers (User-Center Focal Point; CapDev Focal Point;

Gender Focal Point).
iii. Guest.

Work Flow

i. Project Manager (User):
a. Add planned resources "Scientists and Consultants",

"Partners", and expected results "Outputs and
Deliverables", "Trainings and Workshops", "Outcomes",
"Research Phase".

b. Review Budget allocation against planned resources.
ii. Reviewers (User-Center Focal Point; CapDev Focal Point;

Gender Focal Point):
Approve related sections as entered by the Project Manager.

iii. Guest:
Can review level of achievements of each expected results.

Table 22. Workflow / Sequence 2: Financial Accounting

Actors

i. Financial Administrator (User-Focal Point).
ii. Project Manager (User).

iii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point).

iv. System.
v. Guest.

Work Flow

i. Financial Administrator (User-Focal Point):
a. Discuss with Project Manager the Budget allocation.
b. Insert the budget allocation by category for each year.
c. Develop a sync with OCS in order to update the burn

rate. If not available add a function for the Financial
Administrator to enter the spent budget every 3-6-12
months. Is notified if resources cannot be covered by
the allocation and/or if budget is not committed.

ii. Project Manager (User):
a. At project start define needed resources. Set time

allocation for staff and system notifies resources of
committed budget.

b. Set consultant time and partners engagement.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

163 | P a g e

c. System notify legal officer to process contractual
obligations.

iii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point):
a. Approve plan of work and budget.
b. Review financial allocation for cross-cutting themes.

iv. System:
a. Notify inconsistency with error message.
b. Display allocation and burn rate to Project Manager,

Financial Administrator and Approval Focal Points.
v. Guest:

System compiles financial information from Flagship, Cluster,

Project and Open Facts Section and return them in each

dedicated section.

Table 23. Workflow / Sequence 3: Human Resources Allocation

Actors
i. Project Manager (User).

ii. Reviewers (User-Center Focal Point).
iii. Guests and Users selected in the Projects.

Work Flow

i. Project Manager (User):
a. Select Staff, Consultants and Partners.
b. Identify staff time needed and assign expected

deliverables.
ii. Reviewers (User-Center Focal Point):

a. Approve resources allocation.
iii. Guests and Users selected in the Projects:

a. User Receives notification and annual allocation across
projects.

b. Guest can view summary under each section (Project,
Flagship, Cluster).

Table 24. Workflow / Sequence 4: Surveys

Actors
i. Guests and Users (incl. Project Manager and Focal Points).

ii. Admin User.

Work Flow

i. Guests and Users (incl. Project Manager and Focal Points):
a. User is required to specify the survey type, intended

scope and audience.
b. User customizes the survey as needed and select

audience from Partners' contact database.
c. User can add contacts to be validated by Admin.

ii. Admin User:
a. Activate function to the requiring user.
b. User approves contacts and allow user to initiate

survey and see reporting.

Table 25. Workflow / Sequence 5: Impact Pathway

Actors
i. Project Manager (User).

ii. System.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

164 | P a g e

Work Flow

i. Project Manager (User):
a. Project Manager in Manage section links Output with

Outcomes.
b. Specifies Output/Outcome characterization, risks,

assumptions, and share.
ii. System:

a. System displays interactive, collapsible, impact
pathway disaggregated by country.

b. Aggregate different IPs under the same country, Cluster
and Flagship.

Table 26. Workflow / Sequence 6: Knowledge Sharing

Actors
i. Guests and Users.

ii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point).

Work Flow

i. Guests and Users:
a. Guests and Users activate a discussion forum organized

with keywords with any contact in the systems.
b. Recipients receive an email and should log-in to reply.

ii. Reviewers (User-Center Focal Point; CapDev Focal Point;
Gender Focal Point):
a. Reviewers activate a discussion forum organized with

keywords directly in the review panel with the Project
Manager or Users submitting a modification (Plan of
Work and Budget; Reporting; Survey; Metadata).

b. Recipients receive an email and should log-in to reply.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

165 | P a g e

8. System Integrity Controls
Instructions: Provide design specifications for the following levels of control and any additional

controls as appropriate or necessary:

a) Internal security to restrict access of critical data items to only those access types required

by users/operators

b) Audit procedures to meet control, reporting, and retention period requirements for

operational and management reports

c) Application audit trails to dynamically audit retrieval access to designated critical data

d) Standard tables to be used or requested for validating data fields

e) Verification processes for additions, deletions, or updates of critical data

f) Ability to identify all audit information by user identification, network terminal

identification, date, time, and data accessed or changed.

After scientists submit deliverables as verifiable indicators of outputs and validate outcome

indicators, the User FP/CoA Leader will review them in order to ensure that planned outputs and

outcomes have been achieved. Then approves, rejects, or initiates a discussion with the leader.

Administrators will still need to check this deliverable info, and metadata to decide on approving

to give it open access approval to the DSpace Repository on http://mel.cgiar.org/repo.

(Fig. 50) Represents the flow of MEL integrity control system through a document submission until

it get an open access approval.

http://mel.cgiar.org/repo

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

166 | P a g e

Figure 92. Process of Getting an Open Access Approval for a Document

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

167 | P a g e

9. External Interfaces
Instructions: Describe any interfaces that exist with external systems that are not within the scope

of the system, regardless whether the other systems are managed by ICARDA or another entity.

Describe the electronic interface(s) between the system being designed and each of the other

systems and/or subsystem(s), emphasizing the point of view of the system being designed. If there

are more than one or two external systems, or if the interfaces are not simplistic, one or more

separate Interface Control Documents (ICDs) should be prepared and referenced here. If

applicable, identify how many ICDs exist and what they are.

MEL has its own public repository exists on http://mel.cgiar.org/repo/, and it is based on DSpace

software.

DSpace is chosen for academic, non-profit, and commercial organizations building open digital

repositories. It is free and easy to install "out of the box" and completely customizable to fit the

needs of any organization.

DSpace preserves and enables easy and open access to all types of digital content including text,

images, moving images, mpegs and data sets. And with an ever-growing community of developers,

committed to continuously expanding and improving the software, each DSpace installation

benefits from the next.

DSpace is a digital service that collects, preserves, and distributes digital material. Repositories

are important tools for preserving an organization's legacy; they facilitate digital preservation and

scholarly communication.

Deliverables will get public and accessible on the DSpace after both FP/CoA leader, and

administrator approval.

9.1 Interface Architecture
Instructions: Describe the interface(s) between the system and other systems (e.g., batch

transfers, queries, etc.), indicating the location of the interfacing system. Include the interface

architecture(s) being implemented (e.g., wide area networks, gateways, etc.) and the interfacing

mechanisms. If remote connectivity is required, identify the method of access. Provide a diagram

depicting the communications path(s) between this system and each of the other systems, which

should map to the context diagram(s) provided in the Section for System Overview. The graphical

representation should depict the connectivity between systems, showing the direction of data flow.

Use subsections or a separate ICD(s) to address each interface independently.

Three Layers Architecture:

The DSpace platform is separated into three distinct layers. From the bottom up, these layers are

the storage, business logic and service layers. (Fig. 92) Shows the DSpace system Architecture

with its three distinct layers.

http://mel.cgiar.org/repo/

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

168 | P a g e

Figure 93. DSpace System Architecture (Bass, Stuve, & Tansley, 2002)

The lowest layer is the storage layer. This presently consists of a relational database for storing

metadata and a “bitstream” storage module for storing content data. Each of these has an

API accessible to the business logic layer. The union of these APIs comprises the storage interface.

The central layer contains the modules that perform the business logic of the system. (Fig. 92)

displays the internal plumbing between these modules. Each module has a “public” API. The union

of these APIs comprises the DSpace “in-process application interface.” It is on this API that services

such as the Web user interface and future interoperability and federation services are built.

The top layer of the Dspace platform is the services layer. At present, the only implemented service

is the Web user interface, though an Open Archives Initiative metadata harvesting protocol service

is to be added shortly. (Fig. 93) Shows the DSpace conceptual model:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

169 | P a g e

9.2 Interface Detailed Design
Instructions: For each external system with which the system being designed interfaces, describe

the information exchange and rules governing the interface. Provide enough detailed information

about the interface to correctly format, transmit, and/or receive data across the interface.

Generally, this information should be documented in a separate ICD(s) that should be referenced

within this section.

MEL system is synchronizing approved deliverables to the DSpace repository

viaapplication/modules/default/controllers/ReportingController.php. Another specification MEL

DSpace is using that it replaces the Zend_Rest_Client with Pest; a PHP client library for RESTful

web services. Pest supports the four REST verbs (GET/POST/PUT/DELETE) and pays attention to

HTTP response status codes, it also has PestXML an XML-centric version of Pest, and PestJSON a

JSON-centric version of Pest.

The storage layer is responsible for physical storage of metadata and content. The business logic

layer deals with managing the content of the archive, users of the archive (e-people),

Figure 94. DSpace Conceptual Model (http://cs.calstatela.edu)

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

170 | P a g e

authorization, and workflow. The application layer contains components that communicate with

the world outside of the individual DSpace installation, for example the Web user interface and

the Open Archives Initiative protocol for metadata harvesting service.

Each layer only invokes the layer below it; the application layer may not use the storage layer

directly, for example. Each component in the storage and business logic layers has a defined public

API. The union of the APIs of those components are referred to as the Storage API (in the case of

the storage layer) and the DSpace Public API (in the case of the business logic layer). These APIs

are in-process Java classes, objects and methods.

It is important to note that each layer is trusted. Although the logic for authorising actions is in the

business logic layer, the system relies on individual applications in the application layer to correctly

and securely authenticate e-people. If a 'hostile' or insecure application were allowed to invoke the

Public API directly, it could very easily perform actions as any e-person in the system.

The reason for this design choice is that authentication methods will vary widely between different

applications, so it makes sense to leave the logic and responsibility for that in these applications.

The source code is organized to cohere very strictly to this three-layer architecture. Also, only

methods in a component's public API are given the public access level. This means that the Java

compiler helps ensure that the source code conforms to the architecture.

A detailed Interface design can be found on the DSpace Resources Wiki Page:

https://wiki.duraspace.org/display/DSPACE/DSpaceResources

https://wiki.duraspace.org/display/DSPACE/DSpaceResources

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

171 | P a g e

Appendix A: Acronyms
Instructions: Provide a list of acronyms and associated literal translations used within the

document. List the acronyms in alphabetical order using a tabular format as depicted below.

Table 27. Acronyms

Acronym Literal Translation

AJAX Asynchronous JavaScript and XML.

API Application Program Interface.

CDM Conceptual Data Model.

CDN Content Data Network.

COTS Commercial Off-the-Shelf.

CSS Cascading Style Sheet.

CapDev Capacity Development.

CRPs CGIAR Research Programs.

CRUD Create, Read, Update and Delete.

DAO Data Access Object.

DC Developing Countries

DDD Database Design Document.

DS Dryland Systems.

GL Grain Legumes.

GUI Graphical User Interface.

HTML Hyper Text Markup Language.

ICD Interface Control Document.

IE Internet Explorer.

IDO Intermediate Development Outcomes.

LAN Local Area Network.

LDM Logical Data Model.

MEL Monitoring, Evaluation & Learning framework.

MVC Model-View-Controller.

PDM Physical Data Model.

PHP PHP: Hypertext Preprocessor.

OCS One Corporate System.

RDBMS Relational Database Management System.

RTP Research program on Roots, Tubers, and Bananas.

SCP Strategy and Corporate Plan.

SDD System Design Document.

SLOC Source Lines of Code.

SLO System-Level Outcome.

SRF Strategy and Results Framework.

UTF Unicode Transformation Format.

WAN Wide Area Network.

W1-W2 Window 1 – Window 2.

W3/bilateral Window 3 / bilateral.

XML Extensible Markup Language.

ZF1 Zend Framework 1.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

172 | P a g e

Appendix B: Glossary
Instructions: Provide clear and concise definitions for terms used in this document that may be

unfamiliar to readers of the document. Terms are to be listed in alphabetical order.

 Table 28. Glossary

Term Definition

AJAX Client-side script that communicates to and from a

server/database without the need for a postback or a

complete page refresh.

API Set of routines, protocols, and tools for building software

and applications.

CDM Map of concepts and their relationships used for databases.

CDN Globally distributed network of proxy servers deployed in

multiple data centers to deliver webpages and other Web

content to a user based on the geographic locations of the

user.

COTS Products that are commercially available and can be bought.

CSS Style sheet language used for describing the presentation of

a document written in a markup language.

CapDev The process through which individuals, organizations and

societies obtain, strengthen and maintain the capabilities to

set and achieve their own development objectives over time.

CRUD The four basic functions of persistent storage.

DAO Object that provides an abstract interface to some type of

database or other persistence mechanism.

Deliverable This is intended to be a sub-component of an output that a

scientist can use to show the contribution to a specific

output. An integrated set of deliverable constitute the

output. The deliverable can be a document (publication) a

dataset, a training/workshop report/material.

DS Partnership of several dozen actors, including national

research systems from 28 countries, universities, extension

agents, civil society organizations, advanced research

centers, CGIAR partners, and other development partners.

GIT

Is a free and open source distributed version control system

designed to handle everything from small to very large

projects with speed and efficiency

GUI

Type of interface that allows users to interact with electronic

devices through graphical icons and visual indicators such

as secondary notation, as opposed to text-based interfaces,

typed command labels or text navigation.

HTML

Standardized system for tagging text files to achieve font,

colour, graphic, and hyperlink effects on World Wide Web

pages.

ICD The interface or interfaces between subsystems or to a

system or subsystem.

Impact Pathway Impact pathways describe these result chains, showing the

linkages between the sequence of steps in getting to

impact.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

173 | P a g e

Term Definition

Indicator Indicators are the measures that help define the change at

the appropriate level – whether output, outcome or impact.

They are precise statements that should be SMART

(Specific, Measurable, Accurate, Reliable and Time-bound).

LAN Group of computers and associated devices that share a

common communications line or wireless link to a server.

MVC Software architectural pattern for implementing user

interfaces on computers.

OCS Software to help staff manage projects, human resources,

and finances, and perform other administrative functions.

Output Output is the products and services resulting directly and

attributably from the activities undertaken. Outputs can be

‘bought’ in the sense that all costs associated with them

should be clear and associated with the program. An output

is an integrated set of deliverables for which it is possible to

define a budget. The output type falls into categories

defined by the CO (Technologies, Policies, Tools,

Framework/Concept, Value Chain and Agro-Ecosystems

assessments, and Innovation Platform).

Outcome Outcomes are the changes (intended or realized) in the

target individuals, institutions and/or systems. These

changes result from the range of outputs, working together

– typically mixing product-related outputs such as tools and

databases, and service-related outputs around training,

workshops and other fora to raise awareness, build interest

and demand.

PDM Representation of a data design which takes into account

the facilities and constraints of a given database

management system.

PHP Server scripting language, and a powerful tool for making

dynamic and interactive Web pages.

RDBMS Database management system (DBMS) that is based on the

relational model.

SCP Organization's process of defining its strategy, or direction,

and making decisions on allocating its resources to pursue

this strategy.

SDD Document includes the design of system components,

modules, interfaces, and data for a system to satisfy

specified requirements.

SLOC Software metric used to measure the size of a computer

program by counting the number of lines in the text of the

program's source code.

Theory of change A theory of change adds to an impact pathway by describing

the causal assumptions behind the links in the pathways—

what has to happen for the causal linkages to be realized.

UTF Character encoding capable of encoding all possible

characters, or code points, defined by Unicode.

WAN Computer network that spans a relatively large geographical

area.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

174 | P a g e

Term Definition

XML Markup language that defines a set of rules for encoding

documents in a format that is both human-readable and

machine-readable.

ZF1 Open source, object oriented web application framework for

PHP 5.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

175 | P a g e

Appendix C: Approvals
Instructions: List the individuals whose signatures are desired. Examples of such individuals are

Business Owner, Project Manager (if identified), and any appropriate stakeholders. Add additional

lines for signature as necessary.

The undersigned acknowledge that they have reviewed the System Design Document and agree

with the information presented within this document. Changes to this Document will be

coordinated with, and approved by, the undersigned, or their designated representatives.

Signature: Date:

Print Name: Enrico Bonaiuti

Title: Research Program Coordinator (DS)

Role: Business Owner

Signature: Date:

Print Name: Dagmar Wittine

Title: Program Management Officer (RTB)

Role: Business Owner

Signature: Date:

Print Name: Hashem Abed

Title: ITU Head (ICARDA)

Role: Software and Infrastructure

Signature: Date:

Print Name: Percy Cabello

Title: Applications and PMO Manager (CIP)

Role: Software and Infrastructure

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

176 | P a g e

Appendix D: Security Architecture
Instructions: Insert any related security architecture documents, including integrity controls, or

provide a reference to where they are stored.

As software applications are developed with minimal security in mind, security architecture must

be implemented to make sure the system is secure, there are many reasons behind that:

 Application analysts/architects mostly concentrate on the problem domain.

 Designers/developers concentrate on implementation details.

 Development teams lack security expertise.

 It is difficult to hire a fulltime security professional on the team.

When deployment dates arrive, everyone realizes the need for protecting the application by

applying the security layer to it. The notion of providing a logon screen to protect the application

is immature by the current security standards, because:

 Threats have multiplied and grown far more sophisticated, ranging from cyber-terrorists to

industrial espionage.

 Application architectures have moved from centralized mainframes to distributed

technologies.

 Security technology has improved over time.

MEL system is using a web-based technology, which make the administrators who are working on

the system decentralized, because the data and services are dynamically available over the

internet, this make the system vulnerable for fraud and online attacks. These threats cannot be

prevented by using network security products like firewalls, routers and intrusion prevention

systems, as the firewalls usually have port 80 open for use by web applications - the very port that

a large number of application and system vulnerabilities take advantage of.

It is a definite need to define architecture for application security. The architecture should work as

a guideline for developing security in the system. Overall, the security architecture should help

ICARDA to:

 Apply the security solutions to any application, no matter what technology it uses.

 Have proper security controls in place for MEL system.

 Protect the application from threats.

 Ease the process of security administrating.

 Easily adopt to change security infrastructure.

This document will define Security Architecture for MEL system, also it will help securing ICARDA’s

developed applications.

MEL system users are classified into various types:

 By project: administrators, scientists, partners, registered user, and guests.

 By network: external and internal users.

There can be a mix of this classification, where an employee can be an external user if he connects

from different places. The same way user can be internal if he/she is on the premises of the

organization.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

177 | P a g e

Various mechanisms are utilized for a user to communicate with MEL system as well as application

layers to communicate with each other. Operating system inter-process communication

mechanisms, like shared memory and semaphores to network protocol based means like TCP/IP,

sockets, remote procedure calls, and distributed objects are being used.

D.1 Security Policy

The security policy needs to be thoroughly applied to the system. Traditionally, it has always been

applied to the network to protect the resources (servers, access points, printers, etc.). Since MEL

application is a resource, there is more risk at this level and more need to protect it thoroughly.

D.1.1 Security Development

As MEL system designed and developed using Zend object-oriented methodology the security life
cycle for the application will have several steps to be followed as shown in the following graph:

D.1.1.1 Security Analysis

Is data and business repository for security analysis purpose available to user over communication

channel. The key security concept that revolve around user is the identification, Zend framework

provide that by Zend_ACL class for authorization and Zend_Auth for authentication, where

authentication is the process that presents an identifier to the system so that the system can

recognize system entities and distinguish them from other entities, authorization is a right or a

permission that is granted to a system entity to access a system resource.

The system implements these two aspects of security through User Email (registered in the system

as the USERID) and a password. To make this available for users a registration process need to be

implemented to assign unique identity to every registered user to the system, once the

administrators add users they give them different role according to their position. This way of

assigning privileges to a user is called access control list (ACL) method.

Once a user is authenticated and is authorized to perform a business function, there may be

data/control transfer between multiple module/objects which perform different logical operations

to accomplish a complete task. In addition to protecting data over communication channels,

protection of static data is required to provide integrity and confidentiality. For example, if the

configuration files containing the connection and initialization attributes (these configurations for

Zend application are set in application.ini file) of the system were compromised, integrity and

confidentiality of the application resources could be severely compromised.

The following tasks must be accomplished in order to grant best security layer for the system:

 Establish secure connections with users by installing secure socket layer (SSL) on the web

server to encrypt the transferred data between user and MEL system, especially user

dashboard which contain users’ information.
 Validate all values sent from the users by client-side and server-side validation to filter the

entered data by users.
 Authenticate user on different roles types, to prevent normal users from accessing

sensitive data.
 Separate public and restricted areas by specifying allowed sections for users.
 Use account lockout policy for End-User accounts.
 Support password expiration periods.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

178 | P a g e

 Make the ability to disable user accounts.
 Store user passwords in different table than user table.
 Require strong passwords.
 Protect authentication cookies using encrypted and secure communication layer.
 Limit http session lifetime to mitigate the risk of session hijacking and replay attacks.

D.1.1.2 Cryptography

Is the art or science encompassing the principles and methods of transforming an intelligible

message into one that is unintelligible and then retransforming that message back to its original

form, this implemented in MEL system after getting the credentials for user when being registered

and add salt (which is a generated random) string being added to the password and encrypt the

both string using SHA-1 then stored in the database under password field and the salt string stored

under salt field. When the user is logging in the password will be combined with the salt field value

and encoded then Zend_auth class will compare the two encoded values if they are equal the user

will be allowed to access the system.

The best practices to use cryptography in the best way as follow:

 Use cryptographic algorithms and routines used and tested before, like cryptographic

services provided by the platform. This includes the Zend Framework and the underlying

operating system. Do not develop custom implementations because these frequently result

in weak protection.

 Use the correct algorithm and correct key size, in the following list it shows algorithm types

and its key size, the larger key size the more security:

 Data Encryption Standard (DES) 64-bit key (8 bytes).
 TripleDES 128-bit key or 192-bit key (16 or 24 bytes).

 TripleDES 128-bit key or 192-bit key (16 or 24 bytes).

 TripleDES 128-bit key or 192-bit key (16 or 24 bytes).

 Secure encryption keys which are secret numbers used as input to the encryption and

decryption processes, by protecting the storage that contains them.
 Log detailed error messages, send detailed error messages to the error log and send

minimal information to the user.
 Secure log files by using Windows ACLs and restrict access to the log files. Authorize access

only to highly trusted accounts such as administrators.

D.1.1.3 Risk Assessment

System need to be assessed at the business level to ascertain the risk based on information

compromise, unauthorized access and availability for determining the security level that needs to

be assigned to it. After developing the system and functionally tested and before deploying it to

production environment, a security risk assessment need to be performed with assurance test.

This test will help ensure the total system is in compliance based on the security level assigned to

it. These tests need to be mandated on all the developing lifecycle, newly developed modules or

changing to the system after deployment. Risk checklists need to be developed to assure that

proper security controls have been placed at the appropriate locations within the system. The

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

179 | P a g e

checklist must be updated at a regular interval to accommodate newer technologies and threats.

The checklist should contain all aspects of logical access for various security levels including:

 User identification (registration process).

 Authentication (level, password strength, sign-on attempts, account lockout policies,

processes to forgot password, session tracking) authorization.

 Authorization.

 Encrypting and hashing.

Apart from the system tests any system software such as operating system, web application server

(XAMPP) and RDBMS (MySQL) need to be assessed and patched to the latest security compliant

level.

System contingency plans should be reviewed to make all backup and recovery plans are up to

date so that there is no disruption of system availability.

D.1.2 Security Infrastructure

The infrastructure needs to be interoperable with the system and be maintained by a team that

can keep pace with the latest standards. Accomplishing the above and offering security as a

centralized component can be a tedious and painful task. But the results for that deserve it and

cause cost savings and controlled environment. This centralized infrastructure should:

 Authentication, authorization, integrity and audit components.

 Stick to industry standards.

 Scalability.

 Easily manageable.

D.2 Security Analysis

Table 29. MEL System Analysis

Characteristic Value Description

Name MEL (Monitoring, Evaluation and Learning) Platform

Number of Users 256 Number of registered users

Type Client/Server Web based

Software Used PHP, MySQL, XAMPP Software Server, Database

OS Windows Windows 2012 r2

Identity Source Database Adding users

Identity Used User email and password User credentials

Network Internet Type of communication

Data Classification Restricted access Restricted, Non-restricted

User Access Custom Client IE, Chrome, Firefox

Attacks that the System can be vulnerable to:

 Cross-Site Scripting (XSS): which enables attackers to inject client-side scripts into the

system and it may be used by attackers to bypass access controls such as the same-origin

policy.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

180 | P a g e

 Injection Flaws: allow attackers to relay malicious code through the system to another

system. These attacks include calls to the operating system via system calls, the use of

external programs via shell commands, as well as calls to backend databases via SQL (like

SQL injection).
 File Inclusion Vulnerabilities: is a vulnerability that occurs due to user input or uploads to

the system not being properly handled or poor data validation by the system.
 Cross-site request forgery: is a type of malicious exploit of the system where unauthorized

commands are transmitted from a user that the system trusts through login cookies.
 Insecure Cryptographic Storage: is a common vulnerability that occurs when sensitive data

is not stored securely. Protecting sensitive data by encrypting it should be a highly

considered when storing user data.

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

181 | P a g e

Appendix E: Performance
Instructions: Insert any performance documents or provide a reference to where they are stored.

Performance and scalability are key principles that affect the system after increase in users, which

in turn increases the amount of data, processing power and other resources needed to keep MEL

system running smoothly.

The topics of performance and scalability are multidimensional, as they need to be followed in

different levels of the system (from the operating system, programming language, web server,

database or other parts). And can also be addressed in various ways, from simple changes made

to source code or configuration files, to deep design choices.

E.1 Performance

When the system renders a page at the end user browser all the above components will collaborate

together to generate the view.

Figure 95. Page Components

To optimize the system for best performance each of these levels need to be handled separately

the following table illustrates the implied technologies for each level:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

182 | P a g e

Table 30. Web Application Levels, Core Technologies, and Performance and Scalability Techniques

Level Static Content Business Logic Storage

Used
Technologies

1. Client-side languages
(HTML, JavaScript, CSS)
2. Web servers
3. Browsers

1. Server-side
programming/web
frameworks/scripting
languages (PHP and
Zend Framework)
2. Web servers /
Application servers
3. Operating systems

1. Data storage engines
(RDBMS, Column
orientated)
2. Data access
mechanisms (SQL, ORM)
3. Operating systems

Performance
Techniques

1. Compression (HTML,
JavaScript, CSS)
2. Tuning/profiling
(JavaScript)
3. HTTP headers
4. Client-side (Browser)
caching
5. Web server tuning

1. Tuning/profiling
(PHP)
2. Refactoring (PHP)
3. Server-side caching
4. Web server tuning
5. Operating system
tuning

1. Tuning/profiling
(RDBMS)
2. Indexes
3. Operating system
tuning

E.1.1 Static Content

This is the top most level of the system, which displays information related to the system and user

interactions. In this level the system needs to render pages in a high speed and load time. This can

be accomplished by the following techniques, which are related to this level and optimize Zend

view script code.

 Compress and combine related files with the same type together (JS, CSS).

 Compress html output reduces 10%-20% of the loading time for the page.

 As the system is using apache two of its modules, indicated in the following paragraph, can

help improve the performance:

 mod_deflate and Mod_gzip when these modules are enabled and add the following

directive to the .htaccess file they will compress the response for any request sent

to MEL system with gzip compression:

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

183 | P a g e

<IfModule mod_gzip.c>

 mod_gzip_on Yes

 mod_gzip_dechunk Yes

 mod_gzip_item_include file \.(html?|txt|css|js|php|pl)$

 mod_gzip_item_include handler ^cgi-script$

 mod_gzip_item_include mime ^text/.*

 mod_gzip_item_include mime ^application/x-javascript.*

 mod_gzip_item_exclude mime ^image/.*

 mod_gzip_item_exclude rspheader ^Content-Encoding:.*gzip.*

</IfModule>

 Web Caching to store the contents from previous requests this increase the experience of

the system. The benefits of caching:

 Decrease network cost.

 Improve system responsiveness.

 Increase performance on the server.

 Availability of content during network interruptions.

To enable web caching enable mod_expires on the apache server and add the following

directive to the .htaccess file:

<IfModule mod_expires.c>

ExpiresActive On

ExpiresByType image/jpg "access plus 1 year"

ExpiresByType image/jpeg "access plus 1 year"

ExpiresByType image/gif "access plus 1 year"

ExpiresByType image/png "access plus 1 year"

ExpiresByType text/css "access plus 1 month"

ExpiresByType application/pdf "access plus 1 month"

ExpiresByType text/x-javascript "access plus 1 month"

ExpiresByType application/x-shockwave-flash "access plus 1 month"

ExpiresByType image/x-icon "access plus 1 year"

ExpiresDefault "access plus 2 days"

</IfModule>

 Specify displayed images dimension, this technique allows for faster rendering by

eliminating the need for unnecessary reflows and repaints.

 Host static contents on content delivery network server (a server cdn uses to store content

in many locations so content is geographically/physically closer to users, resulting in faster

performance).

 Monitoring, Evaluation and Learning Platform: System Design & Architecture

184 | P a g e

E.1.2 Business Logic

This level controls the system functionality by performing dynamic content processing, also it

controls the flow of the data.

The following steps describe how to increase performance for this level:

 Follow the best practices of Zend framework coding:

 Reduce the usage of include_path and use absolute path instead.

 Define zend framework path at early stage.

 Speed up components plugins loading by using plugin loader.

 Use zend_db_table and metadata cache as zend_db_table optionally utilize

zend_cache to cache table metadata.

 Speed up resolution of view helpers by defining custom helper methods in separate

classes and calling them as if they were direct methods of zend_view.

 Server-side caching: by use file caching for none modified data, which renders the output

of requests to the database in a template, and store it in a separate cache folder, this

folder will be cleaned when data is modified in the backend so the user can see the latest

data stored in the system.

E.1.3 Storage

Data storage, comprising both data sets and the database management system that manages and

provides access to the data.

Below are techniques to optimize storage level:

 Indexing data store: Using an index to access the stored data quickly, this is the most well-

known performance technique when it comes to database.

 Fine tune database server: increasing buffer size, concurrent user access, increase query

cache size so the long queries will result in less time to read queries from database.

E.2 Scalability

Scalability can refer to many different parameters of the system:

 How much additional traffic can it handle?

 How easy to add more storage capacity? or even how many more transactions can be

processed?

To make the system scalable, there are two types of scaling the hardware:

 Scaling up: this can be achieved by increasing the number of cpu, ram, or hard disk storage.

 Scaling out: this can be achieved by increasing the number of server hardware.

