Promoting utilization of alternative available feed to substitute commercial diets in smallholder beef production systems in the sub humid region in Zimbabwe

Chakoma I.C., Manyawu G.J., Moyo S., Gwiriri L., Dube S., Chikosi V.E., Halimani T., Chakoma C., Maasdorp B. and Buwu V.

Grassland Society of Southern Africa, Pietermaritzburg, South Africa 21 July 2015

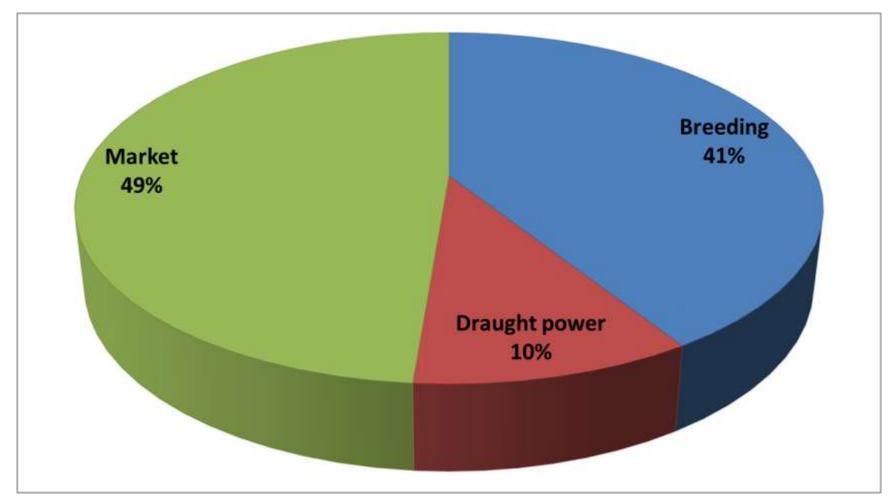
Introduction

- Cattle depend on natural pasture as main source of feed
- Protein content declines in the dry season
- Little or no protein supplement offered

- Conserve forage legumes and crop residues for dry season feeding
- Use of alternative protein sources (forage legumes, groundnut stover and poultry litter) to feed cattle

Objectives

- > To demonstrate that forage legumes, crop residues and poultry litter can be used as supplementary feed in beef cattle production;
- > To determine the economic impact of beef feeding using farm produced feeds as compared to commercial feed.

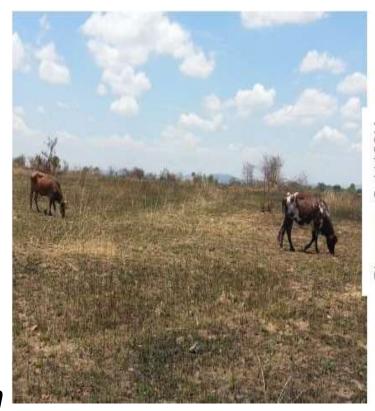

Materials and methods

- Goromonzi and Murehwa districts
- Experiment 1- 2013
- 1 farm site, 12 beef cattle randomly assigned to four treatment groups
- Weekly measurements
- **❖** Experiment 2 2014
- 17 farm sites, 39 animals randomly allocated to 5 dietary treatments
- Fortnightly measurements

Proportion of cattle supplemented in 2014 by purpose

G-Groundnut based diet; PL-Poultry litter based diet

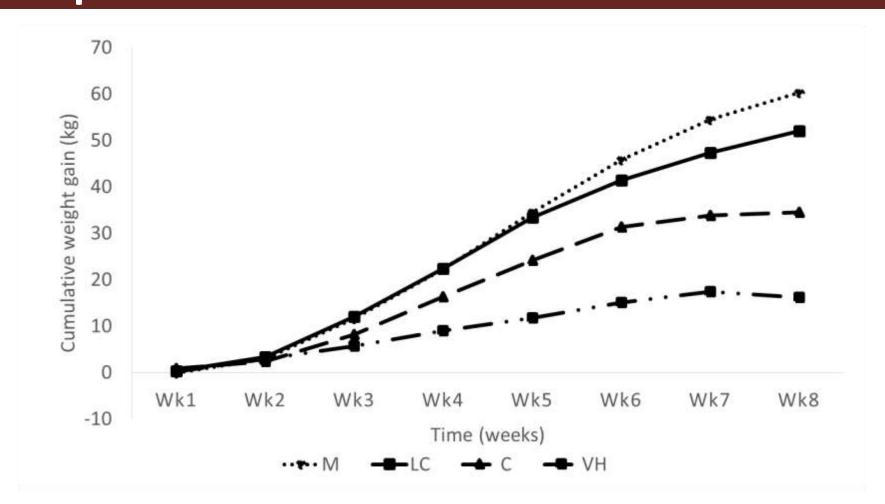
Treatments and composition of mixed ration (%)


	Experiment 1 Treatments – 2013			Experiment 2 Treatments - 2014				
Raw Materials	M	LC	С	M	L	G	PL	С
Crushed maize	41	45	43	40	40	40	40	79
Soya bean meal	-	-	-	-	14	16	-	-
Soya bean residue	10	4	36	-	-	-	-	-
Mucuna hay	25	-	-	35	-	-	-	-
Mucuna seed	10	-	-	24	-	-	-	-
Lablab hay	-	16	-	-	45	-	-	-
Cowpea shells	-	17	-	-	-	-	-	-
Groundnut residue	-	-	-	-	-	43	-	-
Maize stover	-	-	-	-	-	-	14	-
Poultry litter	-	-	-	-	-	-	45	-
Beef Concentrate	13	17	20	-	-	-	-	20
Mineral + Vitamin mix	1	1	1	1	1	1	1	1

Treatments: **M** -Mucuna based diet; **LC**-Lablab-cowpea based diet; **C**-Commercial diet; **L**-Lablab based diet; **G**-Groundnut based diet; **PL**-Poultry litter based diet

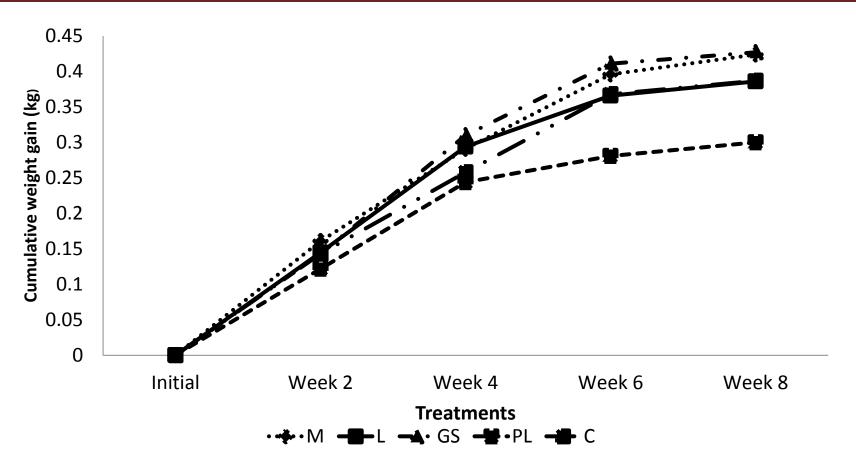
Practices

- Participatory approach
- Feed formulation
- iso-nitrogenous (14 % CP)
- iso-calorific (12 MJME kg⁻¹)
- Feed offered at 1.5 % of body weight
- Feeding period 56 days
- Maize stover offered ad libitum



Results

Experim	Experiment 2 - 2014			
Treatment	Initial BCS	Final BCS	Initial BCS	Final BCS
Mucuna	2.0	3.5	2.5	3.4
Lablab			2.8	3.4
Lablab/cowpea	2.0	4.0		
Groundnut stover	2.0	3.0	2.5	3.0
Veld grazing	2.0	2.5		
Poultry litter			2.4	3.0
Commercial	2.0	3.0	2.7	3.2


Cumulative weekly weight gains (kg) – Experiment 1

Treatment: M - Mucuna based diet; LC - Lablab-cowpea based diet; C - Commercial beef concentrate based diet; VH- Veld grazing

Cumulative fortnightly weight gains (kg) – Experiment 2

Treatment: M - Mucuna based ration; L - Lablab based ration; GS—Groundnut stover based ration; PL — Poultry litter based ration; C—Beef concentrate based ration

Results

- Body weight significantly (p<0.05) high for animals on mucuna (60.3 kg) and groundnut stover (42.7 kg) in experiments 1 and 2 respectively over 56 days
- Males had significantly (p<0.001) higher body weight gain than females on the same diet

Gross Margin analysis – Experiment 1

	Treatments					
	M	LC	С	VH		
INCOME (US\$)	1,663.89	1,604.08	1,586.79	1,323.25		
COSTS (US\$)						
Initial Livestock Costs	878.10	871.90	808.70	887.96		
Feed Costs	192.38	178.29	183.40	3.72		
Other Expenses: -Labour Costs	39.99	39.99	39.99	60.00		
-Vet. Costs	6.00	6.06	6.72	7.36		
Transport Costs	25.00	25.00	37.50	25.00		
Slaughter Fee	50.00	50.00	75.00	50.00		
Regulatory Expenses	12.00	12.00	18.00	12.00		
Total Costs	1,203.47	1,183.24	1,169.31	1,046.04		
Gross Margin (US\$).animal ⁻¹	230.21	210.43	208.74	138.61		
Feed cost (\$.kg ⁻¹)	0.29	0.27	0.26	-		

Gross Margin analysis – Experiment 2

	Treatments						
	M	L	GS	PL	C		
INCOME (US\$)	651.76	653.60	627.82	442.48	656.54		
EXPENDITURE (US\$)							
Initial livestock cost	343.10	342.47	325.22	256.29	325.47		
Feed costs	75.29	89.16	74.05	23.32	100.68		
Other expenses: - Labour costs	40.00	40.00	40.00	40.00	40.00		
- Veterinary cost	4.00	4.00	4.00	4.00	4.00		
Transport	25.00	25.00	25.00	25.00	30.00		
Slaughter fee	25.00	25.00	25.00	25.00	25.00		
Regulatory expenses	17.50	17.50	17.50	17.50	17.50		
Total costs	529.89	543.13	510.77	391.11	542.65		
Gross Margin (US\$)	121.87	110.47	117.05	51.37	113.89		
Feed cost (\$.kg ⁻¹)	0.27	0.33	0.31	0.19	0.37		

Gross Margin analysis

- Feed costs were highest on mucuna (\$0.29.kg⁻¹) and commercial diet (\$0.37.kg⁻¹) in experiments 1 and 2 respectively.
- Poultry litter had lowest cost (\$0.19.kg⁻¹)
- Mucuna diet achieved the highest gross margin per animal (\$230.21 and \$121.87) in experiments 1 and 2 respectively.

Discussion and conclusion

- Mucuna and groundnut based diets are produce viable returns
- Technologies are easily adopted by smallholder farmers
- Supplementing beef cattle using alternative protein sources is a viable option in smallholder systems

Thank you

better lives through livestock

ilri.org

Strategy materials: www.ilri.org/mission

