

Multi-temporal and multi-scale assessment of landscape pattern dynamics in Tunisia using MODIS and Landsat data

Final Workshop "Sustainable Land Management to Achieve Land Degradation Neutrality: Options-by-Context Approach and Tools"

Badabate Diwediga (iMMAP) Quang Bao Le (ICARDA)

24 October 2017 Tunis, Tunisia

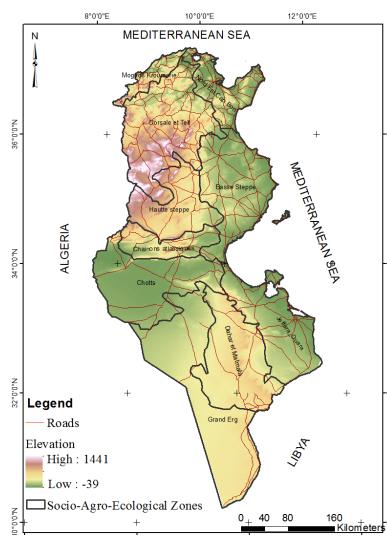
- 1. Background
- 2. Methodology
- 3. Results
- 4. Conclusions & Perspectives
- 5. Key references

Monitoring land cover change is very crucial for assessing land performance, especially in the context of land degradation neutrality achievement (Symeonakis et al, 2015; Salvati et al, 2014)

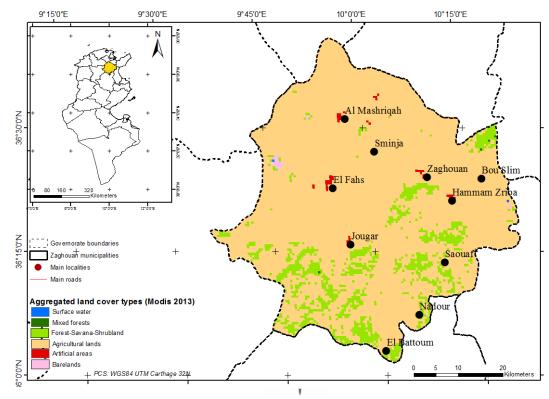
Landscape pattern analysis based on spatial land cover data need continuous updates at various spatio-temporal scales (Senf et al. ,2015; Pilloni et al, 2010) for better monitoring and guided decision making

Research Questions:

- How has land change at the country and governorate levels been distributed between 2002 and 2013?
- What are the patterns of land improvement/degradation in Zaghouan governorate?



METHODOLOGY


Study area:

1. National level: Tunisia

Area: 163 610 km2 Admin units: 24 governorates Population: ~ 12 Million (INS, 2016) Land degradation: > 70 % of the national lands Landscapes: deserts, savanna, forest, croplands Climate: Semi-arid to Mediterranean

2. Sub-national level: Governorate of Zaghouan

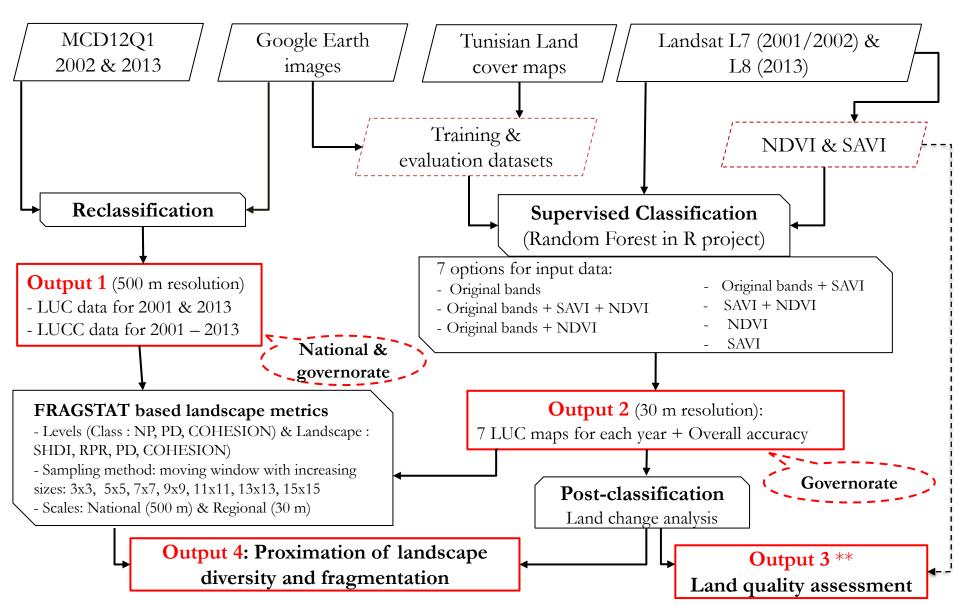
Main data and sources:

Data	Date	Sources	Scale of interest	Bands of interest
MODIS (MCD12Q1)	Yearly, 2001 & 2013	USGS	National + Governorate	Yearly composites
Landsat ETM+	Jun & Sept 2001 Feb & Jun 2002	USGS	Governorate	6 Bands (1 – 5 + 7) + vegetation indices
Landsat OLI	March & Sept 2013	USGS	Governorate	Bands 1 – 7 + vegetation indices
Google Earth images	2001/2002 and 2013	Google Earth engine	National & Governorate	High resolution images
LUCC maps	2005, 2010	LADA report & DGACTA (2005)	National & Governorate	

General approaches:

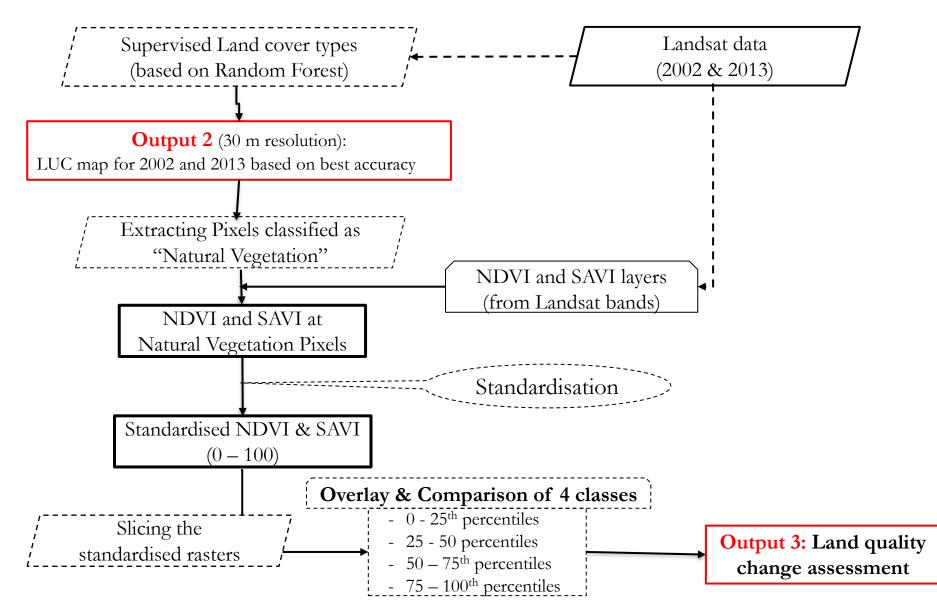
- Supervised classification (Random Forest Classifier) of Landsat OLI & ETM+
- Reclassification of MODIS MCD12Q1
- Post-classification change detection
- Land quality change analysis
- Landscape metrics calculation and comparison

METHODOLOGY (CONT'D)

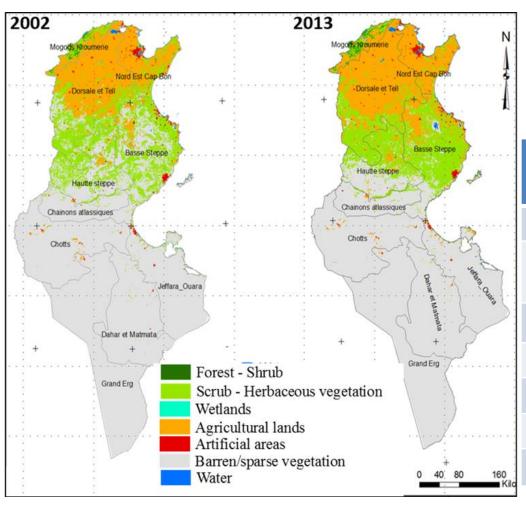

Definition of aggregated land use/cover types used in this study (adapted from LADA-Tunisia, 2010)

Land use/cover types	Definitions
Forests – Shrublands	Natural or semi-natural terrestrial vegetation, including closed trees, shrublands of any category. This includes reforested areas
Scrubs & Herbaceous vegetation	Natural or semi-natural herbaceous vegetation, including scrublands of all types (closed to open), and all herbaceous vegetation with sparse shrubs, on temporarily or permanently flooded lands
Tree crops	Mostly cultivated areas, including tree crops of large to small sized fields, and shrub crops, rainfed or irrigated.
Cereals crops	Herbaceous crops dominantly, including cereal crops of large to small sized fields, rainfed or irrigated crops.
Artificial areas	Mainly urban areas, roads, quarries, and other artificial areas (industrial areas, etc.)
Bare areas	Exposed bare surfaces, including rocks, unconsolidated surface materials, sands of all types
Water bodies	All types of surface water, including artificial and natural waterbodies, inland water, fresh and perennial water.

METHODOLOGY (CONT'D)


Summarised Analysis Flowchart (Source: Authors)

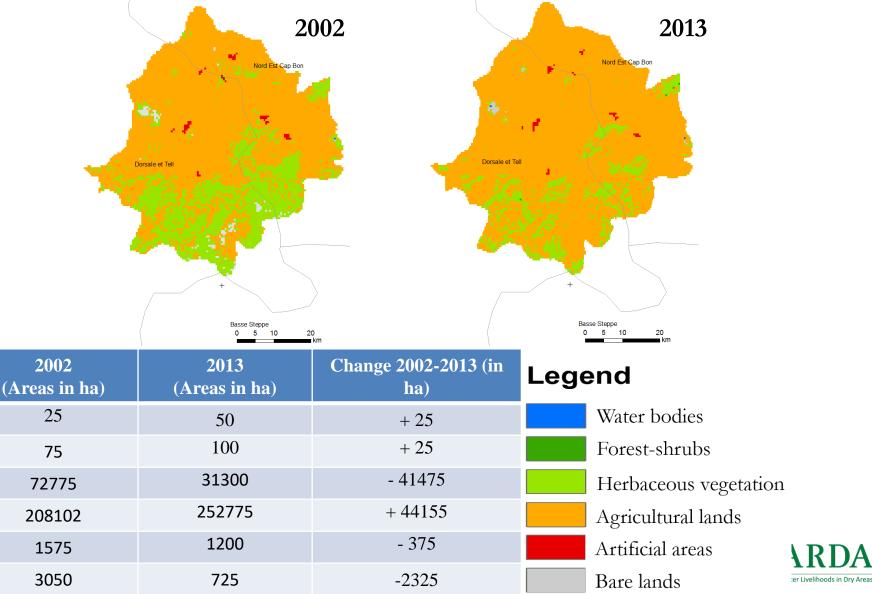
METHODOLOGY (CONT'D)


Summarised Flowchart for analysing land quality change (Source: Authors)

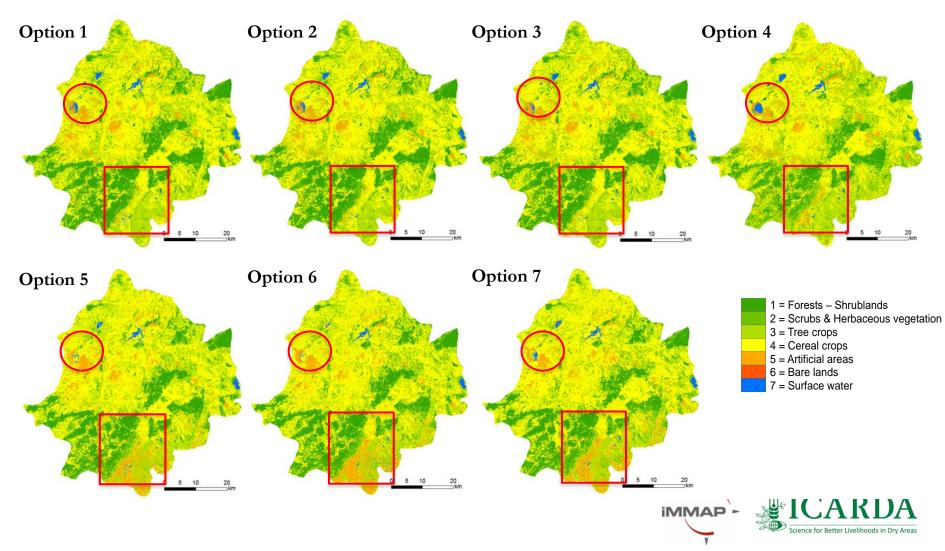
MAIN RESULTS

Output 1. MODIS based Land cover maps for Tunisia (National level)

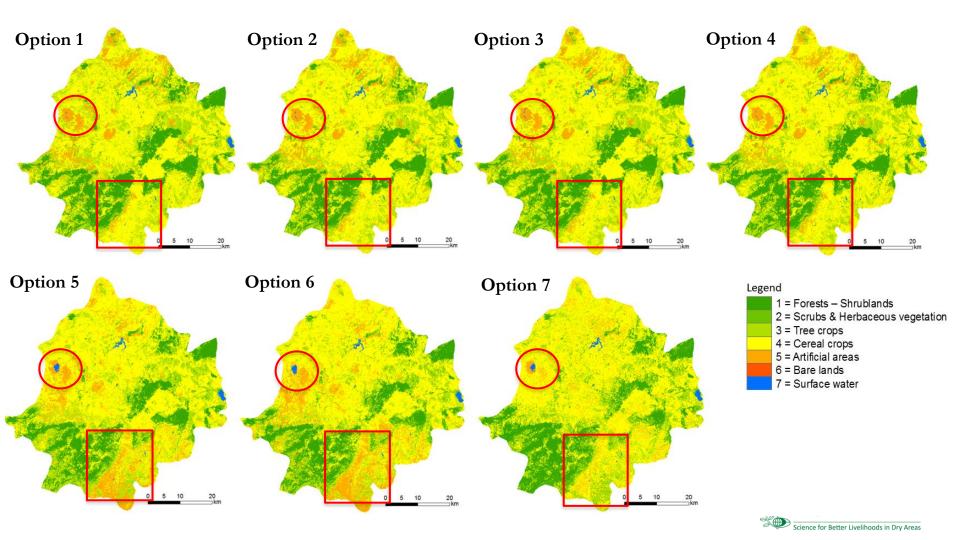
LUC	2002 (Areas in ha)	2013 (Areas in ha)	Change (in ha)
Forest-Shrub	41094.96	88999.49	47904.53
Scrubland- grassland	2464316.49	2625209.54	160893.05
Wetlands	1115.15	6069.97	4954.83
Agric. lands	2279722.04	2938599.54	658877.50
Artificial areas	122087.67	121377.73	-709.94
Barren	10554889.26	9681449.17	-873440.09
Water	43777.37	45528.52	1751.15



MAIN RESULTS

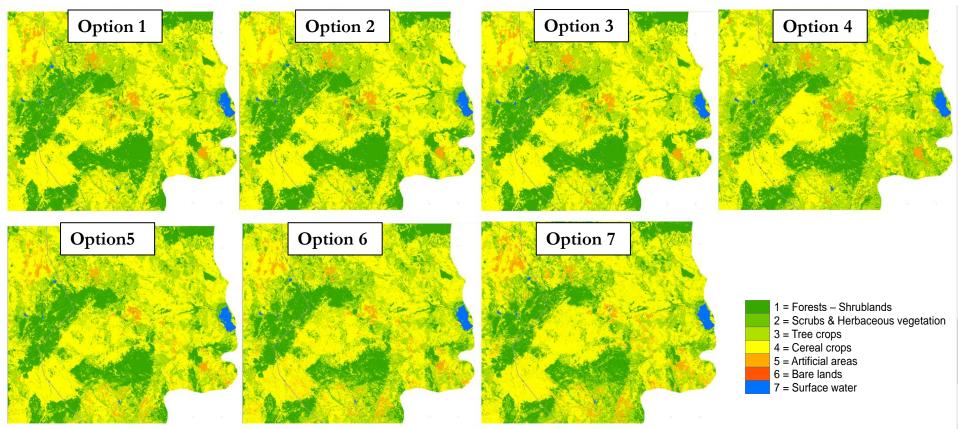

Output 1: MODIS based Land cover maps for Zaghouan (Governorate level)

Output 2. Landsat based Land cover maps from the 7 options


Composite 2013

Output 2. Landsat based Land cover maps from the 7 scenarios

Composite 2002



MAIN RESULTS

Output 2. Landsat based land cover maps: zoom for screening differences

Composite 2013

MAIN RESULTS

Overall Accuracy and Kappa Index of Agreement

	20)02	2013			
Options	Accuracy	Kappa	Accuracy	Kappa		
1	0.74	0.62	0.77	0.69		
2	0.71	0.67	0.76	0.67		
3	0.68	0.61	0.76	0.67		
4	0.7	0.6	0.73	0.63		
5	0.66	0.53	0.71	0.61		
6	0.67	0.55	0.69	0.57		
7	0.65	0.53	0.71	0.6		

Note: Reported values of accuracy at 95 % CI

Options	Composite 2002	Composite 2013
Option 1: all original bands	24 bands	14 bands
Option 2: All original bands + NDVI	28 bands	16 bands
Option 3: All original bands + SAVI	28 bands	16 bands
Option 4: All original bands + SAVI + NDVI	32 bands	18 bands
Option 5: Vegetation indices (SAVI + NDVI)	08 bands	04 bands
Option 6: Only NDVI	04 bands	02 bands
Option 7: Only SAVI	04 bands	02 bands

2002					Refei	rence			
		1	2	3	4	5	6	7	Class error
	1	89.87	5.32	9.32	2.63	0.19	0.00	0.00	0.09
	2	3.03	85.11	2.32	2.95	0.29	0.00	0.00	0.66
\leq	3	4.93	3.99	75.40	10.42	2.78	0.00	0.00	0.26
Mapped	4	2.15	4.52	12.22	82.56	3.84	0.00	0.65	0.10
ed	5	0.00	0.00	0.31	0.98	89.84	0.00	0.00	0.10
	6	0.01	0.00	0.25	0.33	2.78	0.00	0.00	1.00
	7	0.00	1.06	0.19	0.13	0.29	0.00	99.35	0.05
2	2013								
	1	93.95	1.16	4.80	1.66	0.09	0.00	0.00	0.05
	2	2.29	95.93	2.34	1.65	0.09	0.00	0.00	0.47
Š	3	2.01	1.36	86.87	4.58	2.49	0.00	0.00	0.11
Mapped	4	1.66	1.36	5.31	91.83	0.28	0.00	0.81	0.05
ed	5	0.00	0.00	0.17	0.07	94.56	0.00	0.00	0.01
	6	0.04	0.00	0.41	0.11	2.12	100	0.00	0.78
	7	0.05	0.19	0.11	0.11	0.37	0.00	99.19	0.04

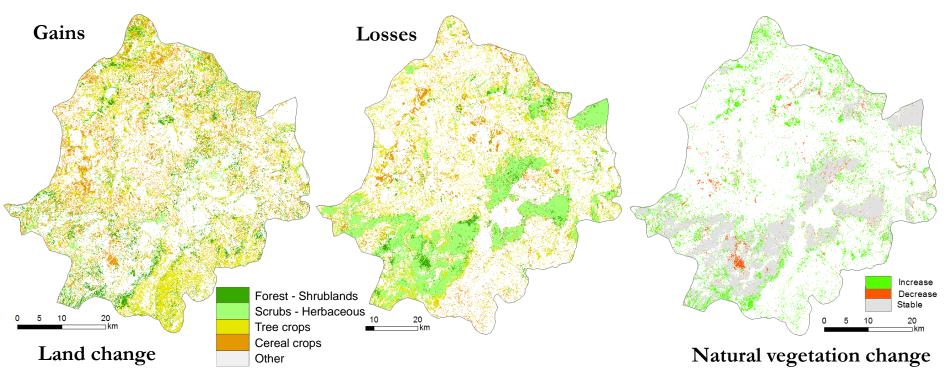
Legend for LUC types:

- 1 = Forests Shrublands
 2 = Scrubs & Herbaceous vegetation
 3 = Tree crops
 4 = Cereal crops
 5 = Artificial areas
- 5 = Artificial areas
- 6 = Bare lands

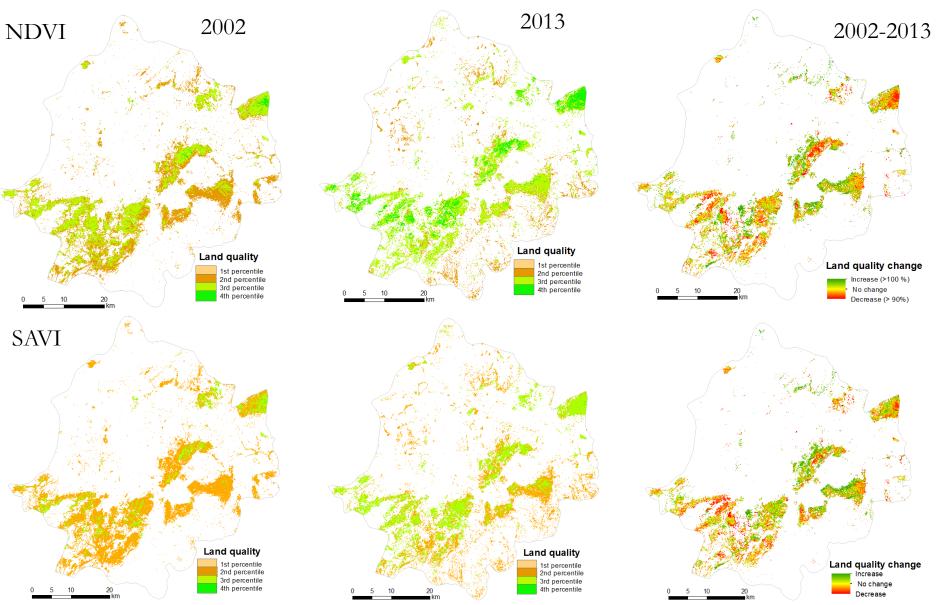
iMMA

7 = Surface water

Accuracy levels:


Very high accuracy (> 95 %) High accuracy (85 – 95 %) Adequate accuracy (75 – 85%) Low accuracy (< 75%)

RESULTS


Output 3. Landsat based Land cover changes between 2002 and 2013

Land types	Gains	Losses	Net
Forest - Shrublands	18476.19	8191.26	10284.93
Scrubs - herbaceous	6365.7	45068.85	-38703.15
Tree crops	41650.47	32950.44	8700.03
Cereal crops	27736.11	14239.26	13496.85

Output 3. Land quality change based on Landsat NDVI and SAVI

In conclusion

GeOC

- When comparing the landscape pattern on different levels and scales, area and diversity metrics showed similar trends.

- At different scales and resolutions, satellite imagery (MODIS & Landsat) based landscape analysis showed an overall increase in agricultural lands and decrease in natural vegetation

- Combined approach of land cover classification with land quality change detection provided good understanding in the natural vegetation change in the Zaghouan governorate

In perspectives

GeOC

- Extend the assessment in the semi-arid environment (e.g. Medenine governorate)
- Explore the influence of the integration of other variables (e.g. elevation, soil types) on landscape patterns analysis
- Explore the connections between land cover changes, SLM practices and changes in ecosystem services

Global Geo-informatics Options by Contexts

A tool for better investment decisions in agriculture and rural development

RESEARCH PROGRAM ON Dryland Systems

Water, Land and Ecosystems

Federal Ministry for Economic Cooperation and Development

Thank You!

Key References

- Chander, et al (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM and EO-1 ALI sensors. *Remote Sensing of Environment* 113, 893–903.
- Puissant et al (2014). Object-oriented mapping of urban trees using Random Forest classifiers. International Journal of Applied Earth Observation and Geoinformation. 26 : 235–245.
- Eisavi et al, (2012). Land cover mapping based on random forest classification of multitemporal spectral and thermal images. *Environ Monit Assess* 187:291
- Chuan et al (2008). Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. *Remote Sensing of Environment* 112: 2999–3011.
- Ministry of foreign affairs-Instituto Agronomico Fer L'Oltremare (2004). Land Evaluation in the Oued Rmel Catchment - Tunisia. 24th Course professional Master. Geomatics and Natural Resources Evaluation. Florence 2004".
- LADA (2010). Land degradation Assessment in Dry Areas. report in Tunisia. 2010.
- Pilloni et al. (2010). "Analysis and validation of a methodology to evaluate land cover change in the Mediterranean Basin using multi-temporal MODIS data." *European Journal of Remote Sensing* 4.
- Salvati et al. (2014). Unveiling soil degradation and desertification risk in the Mediterranean basin: a data mining analysis of the relationships between biophysical and socioeconomic factors in agro-forest landscapes. *Journal of Environmental Planning and Management* 58(10): 1789-1803.
- Senf et al. (2015). "Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery." *Remote Sensing of Environment* 156: 527–536.
- Symeonakis et al. (2015). "Multi-temporal Forest Cover Change and Forest Density Trend Detection in a Mediterranean Environment." *Land Degradation & Development* 28(4): 1188-1198.

- □ Software and Packages used for the classification and mapping:
- ArcGIS 10.4.1 Desktop
- QGIS 2.18.1
- Google Earth Pro
- R project & packages (Rgdal, Raster, Snow, Caret, ggplot2, sp)

☐ Formula for radiance calculation

Radiance = (Gain * DN) + Bias

□ Formula used for calculating reflectance from radiance

Reflectance = $(3.14 * \text{Radiance} * d^2)/(E * \sin((SA * 3.14)/180))$

□ Code for correcting reflectance image, i.e., reclassify the negative value to 0

Corrected_reflectance = CON([Reflectance] < 0.0, 0.0, [Reflectance])

Gain = Band specific gain (see Chander et al, 2009) Bias = Band specific offset (see Chander et al, 2009) DN = Digital Number (ranges 0 - 255) d = distance Earth- Sun (see Table in next slide) E = Band specific radiance emitted by sun (Chander et al, 2009) (see Table in next slide)

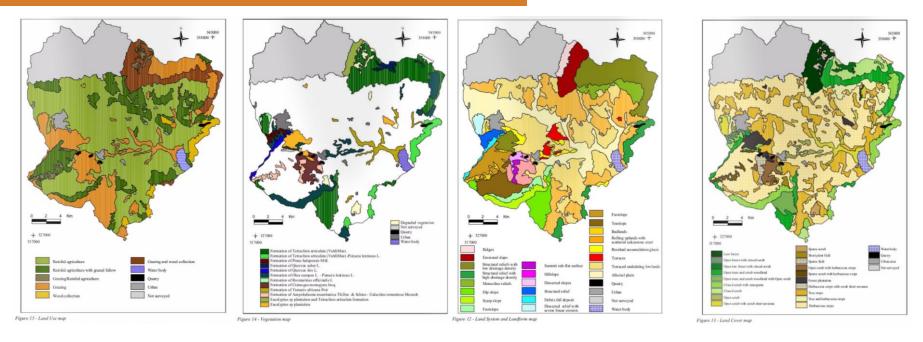


Table SI1. Input parameters for radiance and reflectance computation of Landsat ETM+ (Sources: USGS Landsat Metadata of the scenes, Chander et al, 2009)

Ban d	Gain	Bias	Band specific radianc e emitted by the	06/2001		angle d (distance	02/2002		06/2002			
			su: (W (m	sun (Watts/ (m ² * µm)	d (distance earth- sun)	Solar angle	d (distance earth- sun)	Solar angle	d (distance earth- sun)	Solar angle	d (distance earth- sun)	Solar angle
1	0.778740	-6.98	1997	1.01589392	65.88644586	1.00841406	53.89595078	0.9903779	38.90608791	1.0161154	65.62710913	
2	0.798819	-7.20	1812	1.01589392	65.88644586	1.00841406	53.89595078	0.9903779	38.90608791	1.0161154	65.62710913	
3	0.621654	-5.62	1533	1.01589392	65.88644586	1.00841406	53.89595078	0.9903779	38.90608791	1.0161154	65.62710913	
4	0.639764	-5.74	1039	1.01589392	65.88644586	1.00841406	53.89595078	0.9903779	38.90608791	1.0161154	65.62710913	
5	0.126220	-1.13	230.8	1.01589392	65.88644586	1.00841406	53.89595078	0.9903779	38.90608791	1.0161154	65.62710913	
7	0.043898	-0.39	84.9	1.01589392	65.88644586	1.00841406	53.89595078	0.9903779	38.90608791	1.0161154	65.62710913	

Supplementary information

The four maps are here derived from the following document:

"Ministry of foreign affairs-Instituto Agronomico Fer L'Oltremare (2004). Land Evaluation in the Oued Rmel Catchment - Tunisia. 24th Course profefessional Master. Geomatics and Natural Resources Evaluation. Florence 2004".

