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Abstract 
 

Maize is a major staple food crop in southern Africa and stress tolerant improved varieties 

have the potential to increase productivity, enhance livelihoods and reduce food insecurity. 

This study uses big data in refining the geospatial targeting of new drought-tolerant (DT) 

maize varieties in Malawi, Mozambique, Zambia, and Zimbabwe. Results indicate that more 

than 1.0 million hectares (Mha) of maize in the study countries is exposed to a seasonal 

drought frequency exceeding 20% while an additional 1.6 Mha experience a drought 

occurrence of 10–20%. Spatial modeling indicates that new DT varieties could give a yield 

advantage of 5–40% over the commercial check variety across drought environments while 

crop management and input costs are kept equal. Results indicate a huge potential for DT 

maize seed production and marketing in the study countries. The study demonstrates how big 

data and analytical tools enhance the targeting and uptake of new agricultural technologies 

for boosting rural livelihoods, agribusiness development and food security in developing 

countries. 

 

Keywords: big data, drought tolerance; geospatial analysis; maize; spatial crop modeling, 

targeting 



Corresponding author: Tel: +251.116.462324 

                                         Email: K. Tesfaye: K.tesfayefantaye@cgiar.org 

 This work is licensed under a Creative Commons Attribution 4.0 International License. 

http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/


 Tesfaye et al.                                                                                                                      Volume 19 Issue A, 2016 

         2016 International Food and Agribusiness Management Association (IFAMA). All rights reserved. 76 

Introduction 
 

Rain-fed agriculture produces much of the food consumed globally and provides for the 

livelihoods of rural communities across the developing world. It accounts for more than 95% 

of farmed land in sub-Saharan Africa (SSA) where the rural populace of predominantly 

resource-limited families still face poverty, hunger, food insecurity and malnutrition (Wani et 

al. 2009). Maize is the most important staple food crop in SSA where it is almost entirely 

grown under rain-fed systems which are dependent on increasingly erratic rainfall. In 

southern Africa, maize accounts for 77% of the cereal area and 84% of the production, and 

over 30% of the total calories and protein consumed (FAOSTAT  2015). 

  

However, current maize production in SSA is not sufficient to meet the growing demand in 

most countries and yields remain among the lowest in the world (Ray et al. 2012) because of 

an array of biophysical and socioeconomic constraints (Shiferaw et al. 2011). Drought is one 

of the major constraints under rain-fed systems with an estimated 40% of SSA’s maize area 

facing occasional drought stress causing a yield loss of 10–25%. Around 25% of the maize 

crop suffers frequent drought resulting in a loss of up to half the harvest (CIMMYT 2013a). 

In southern Africa, maize yields are typically low due largely to drought and low-N stress 

(Weber et al. 2012). 

 

Enhancing the productivity of rain-fed agriculture is an important avenue in reducing poverty 

and food insecurity in rain-fed systems (Rockström and Barron 2007; Wani et al. 2009). For 

example, adoption of improved maize varieties increases productivity and reduces chronic 

and transitory food insecurity under rain-fed systems (Kassie et al. 2014). Thus, increasing 

the use of improved technologies has the potential to enhance the welfare and food security 

of poor households (Bezu et al. 2014; Kassie et al. 2014). Improved maize technologies have 

been developed, disseminated and  made positive contributions to the livelihood of 

smallholder farmers in some African countries (e.g., Abate et al. 2015).  However, increasing 

adoption among smallholder farmers in Africa remains a challenge, including for DT maize 

varieties (Fisher et al. 2015). One of the challenges for wider adoption is the lack of data and 

tools for targeting new technologies at scale. Targeting is defined here as a process of 

identifying where a particular technology is the most likely to be successful–i.e. pinpointing 

the technology geo-spatially to the most likely niches of success. Targeting does not ensure 

the technology will be adopted there, but it does provide an indication of a potential fit 

between technology supply and demand in a geo-spatial context; and it is closely associated 

with recommendation domains (Notenbaert et al. 2013; Tesfaye et al. 2015c).  In the context 

of targeting, data generated from a few research stations and/or on-farm demonstration plots 

are often not representative enough to address spatial and socioeconomic heterogeneities 

across scales.  

 

Lately, climate, soil, elevation, and vegetation data sets are widely available at different 

spatial scales supporting analyses that were much more difficult in the recent past (Hyman et 

al. 2013). Big data and predictive analytics can make a difference in the agricultural industry 

(Sabarina and Priya 2015). Crop improvement and adoption research and development efforts 

have already benefitted from advances in big data, computing technology, and crop modeling 

for targeting genotypes to diverse environments (Löffler et al. 2005; Hyman et al. 2013). 

Targeting of crop varieties using a combination of big data and analysis tools has generated 

interest from public and private seed companies who wish to verify the area of adaptation and 

the agronomic value of new varieties for planning proper seed marketing and advisory 

schemes (Annicchiarico 2002). Therefore, the objective of this study is to assess the potential 
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of targeting new DT maize varieties in southern Africa based on adaptation and productivity 

gains of new DT maize varieties, and present policy implications for seed production 

planning, marketing, and/or adoption. The study employs geospatial analysis and crop 

modeling tools that handle high resolution gridded climate, soil and crop data. The study 

purely focuses on the prospective technology change of using seed of a new DT maize hybrid 

instead of the prevailing non-DT commercial hybrid seed in areas that already produce 

maize—keeping other inputs constant. The study, therefore, does not include other 

productivity enhancing or risk-reducing interventions (be it crop rotation, crop management, 

and/or input considerations) nor does it assess the general suitability for maize in the study 

regions or its comparative advantage. The study contributes to a growing field of targeting 

research to inform agricultural development opportunities–typically linked to specific 

technologies and agro-ecological characteristics (Homann-Kee Tui et al. 2013; Hyman et al. 

2013; Notenbaert et al. 2013; Tesfaye et al. 2015c) and/or socio-economic characteristics 

(Erenstein et al. 2010; Lang et al. 2013).   

 

Methodology 

 

Study Region  

 

The study was conducted in four major maize-growing countries (Malawi, Mozambique, 

Zambia and Zimbabwe) in southern Africa. In these countries, maize stands out as the 

primary crop in terms of area, absolute yield levels, and staple source of food (both calorie 

and protein) for millions of households (Kassie et al. 2013). Maize production in the region is 

constrained by several biophysical and socioeconomic factors. Amongst the biophysical 

factors, drought stands out as the major challenge across the region (Kassie et al. 2012; 

Weber et al. 2012). The study area is comprised of six Maize Mega–Environments (MME): 

dry lowland, wet lowland, dry mid-altitude, wet lower mid-altitude, wet upper mid-altitude 

and highland. MMEs are areas with broadly similar environmental characteristics for maize 

production delineated using environmental factors (maximum temperature, rainfall, and soil 

pH) as explanatory factors in capturing genotype by environment interactions (Hodson et al. 

2002). 

 

Dataset for Geospatial Drought-Frequency Analysis 

 

The frequency of drought occurrence in the maize-growing environments of the study 

countries during the main cropping season (October–April) was analyzed using a long-term 

(1960–1998) gridded (0.5 x 0.5 degrees) standardized precipitation index (SPI) calculated 

using the climate database of the University of East Angelia (UEA) (Mitchell and Jones 

2005). The SPI values were downloaded from the online database of the International 

Research Institute for Climate and Society (IRI 2015). The SPI simply refers to the number of 

standard deviations that an observed cumulative precipitation deviates from the 

climatological average (Mckee et al. 1993). The focus of our analysis was on seasonal 

drought and hence the six–month SPI values used for the study were for the period from 

November to April, which is the main rainy season in southern Africa.   

 

Geospatial Drought-Frequency Analysis  

 

The SPI values can be classified into three wet (SPI  1), three dry (SPI ≤ -1) and one normal 

(1>SPI>-1) classes (Sienz et al. 2012). For simplicity and ease of presentation, the study 

focused on the frequency of drought occurrence rather than comparing drought severity. 
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Therefore, pixels with values of ≤ -1 were classified as drought years while those with values 

of > -1 were classified as non-drought years. The frequency analysis was done using the 

‘equal to frequency’ tool in ArcGIS 10.2 software (http://www.esri.com). The tool evaluates 

the number of times a value in a set of rasters is equal to a reference value raster (drought or 

non-drought in this case) on a cell-by-cell basis. Therefore, for each cell location in the input 

reference value raster, the number of occurrences where a raster in the input list has an equal 

value is counted. This was then converted to percentage frequency that explains the 

probability of occurrence of a drought or non-drought year for each pixel. A geospatial 

analysis was used to map and calculate the areas under different drought frequencies (1–10%, 

10–20%, 20–30%, and >30%) across the six MMEs.  

 

Spatial Crop Modeling  

 

A spatial crop-modeling framework that integrates climate, soil, crop and crop management 

data was used to assess the performance of new DT maize varieties across environments in 

southern Africa. 

 

Model Description 

 

The Cropping System Model (CSM) used for simulating maize yields was Crop Estimation 

through Resource and Environment Synthesis, CERES–maize (Jones and Kiniry 1986), 

which is embedded in the Decision Support System for Agrotechnology Transfer (DSSAT), 

Version 4.5 (Hoogenboom et al. 2010). CERES–maize is a process-based, management-

oriented model that utilizes water, carbon, nitrogen and energy balance principles to simulate 

the growth and development of maize plants within an agricultural system. The model runs 

with a daily time step and simulates crop growth, development and yield of specific cultivars 

based on the effects of weather, soil characteristics and crop management practices (Jones et 

al. 2003). 

 

Genetic and Environmental Data for Model Calibration and Evaluation 

 

Five new DT maize hybrids (CZH0946, CZH0811, CZH0616, CZH0835, and CZH0837) 

which represent four different maturity groups (extra-early, early, medium and late maturing) 

and one commercial check hybrid (SC513) that is widely grown in the region were selected 

for the study. The new hybrids are developed for southern and eastern Africa through a 

rigorous breeding specifically for yield potential and yield stability in drought-prone 

environments (Cairns et al. 2013). The CERES-Maize model was calibrated and evaluated 

using long-term (2005–2011) field data collected from a network of DT maize experiments in 

southern Africa, particularly from Zimbabwe. Data on crop phenology, yield and crop 

management (including planting date, plant density, fertilization and irrigation) were obtained 

from the regional trials database of CIMMYT in Zimbabwe. The data from Chisumbanje 

(19.800 S, 32.867 E), Chiredzi (21.050 S, 31.667 E) and Harare (17.942 S, 31.090 E) stations 

were used for model calibration while the data from Kadoma (18.369 S, 30.042 E), Makoholi 

(19.783 S, 30.750 E), Matopos (20.565 S, 28.453 E) and Ratry Arnold Research Station 

(17.183 S, 31.103 E) were used for model evaluation. Soil profile data of experimental 

stations were taken from Nyamapfene (1991). Daily rainfall, maximum and minimum 

temperature and radiation data of the experimental stations were obtained from the respective 

research stations or nearby meteorological observatories. Estimated data was provided by 

National Aeronautics and Space Administration-Prediction of Worldwide Energy Resource 

http://www.esri.com/
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(NASA-POWER) (http://power.larc.nasa.gov/) were used whenever radiation data were 

missing or unavailable.  

 

Model Calibration and Evaluation  

 

The maize model used for the study requires six genetic coefficients which govern the life 

cycle and reproductive growth of maize cultivars (Table 1). A stepwise iterative calibration 

procedure was followed whereby genetic coefficients which determine anthesis and 

physiological maturity dates (P1, P2, and P5) were adjusted in the first stage of the process, 

followed by those coefficients which affect yield (G2 and G3) using 38 variety-site-year 

datasets. Rooting profile and soil fertility factors were adjusted with G2 and G3 whenever 

necessary. Model evaluation was made using an independent dataset (up to 98 variety-site-

years). The agreement between simulated and measured values during calibration and 

evaluation was assessed using root mean square error (RMSE) and index of agreement (d) 

(Willmott 1982). 

 

Data for Spatial Crop Modeling 

 

The calibrated and evaluated model was then used to simulate the yield of newly-released DT 

and the commercial check maize varieties in the respective countries at a pixel (≈ 10 km x 10 

km) level across the maize growing areas in the study countries (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The process followed in crop model calibration, evaluation and spatial  simulation.   

 

The spatial simulations were made in a High-Performance Computing cluster (HPC) using   

gridded climate, soil and crop management data obtained from different online sources. The 

Spatial Allocation Model (SPAM) raster map for maize (You and Wood 2006) was used to 

select maize-growing areas in the study countries using the Geographic Resources Analysis 
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Support System (GRASS) software (http://grass.osgeo.org/). For each grid cell, soil inputs to 

the model were obtained from a set of twenty–seven generic soil profiles (HC27) developed 

by blending and interpreting information from both the Harmonized World Soil Database 

(HWSD) and the World Inventory of Soil Emission (WISE) database  based on texture, 

rooting depth and organic carbon content (Batjes 2009). Simulations were run for all soils in 

each grid cell, and the cell-specific output was computed from the area-weighted average, 

based on the area share of each soil in the grid cell. Long-term climate data (1950-2000) for 

each simulation grid cell were obtained from the Worldclim gridded dataset (Hijmans et al. 

2005) which provided all the required climatic elements needed by the stochastic daily 

weather generator in DSSAT.  

 

A rule-based automatic planting was used to determine area-specific sowing date. The rule 

refers to a 70% soil moisture within 30-cm soil depth, monthly maximum temperature of <50 
o
C and minimum temperature of >7 

o
C within a 135-day planting window. The maize 

varieties were sown at a rate of 5.3 plants m
-2

 and an average of 1000 kg ha
-1

 crop residue 

was used as initial residue input to the model. All varieties were simulated with two equal 

split applications of 200 kg ha
-1

 nitrogen. Details on spatial simulation of maize can be found 

in Tesfaye et al. 2015a.  

 

Evaluation of Variety Performance and Seed Requirement Estimation 

 

The performance of the new DT varieties across the maize growing environments was 

measured by comparing their yield with the commercial check. Volume of seed required to 

cover an area of maize with a simulated yield advantage of at least 5% from any of the new 

DT varieties was determined by multiplying the area by the recent DT maize adoption rate 

reported for each country using an average seed rate of 25 kg ha
-1

 (CIMMYT 2013b). The 

seed rate of maize (kg ha
-1

) varies with the required plant population per hectare, seed weight, 

seed germination percentage and field loss (Macrobert et al. 2014). In Eastern and Southern 

Africa, 25 kg ha
-1

 is mostly used as a recommended seed rate for maize (Langyintuo et al. 

2008) for a target plant population of approximately 44,000–54,000 plants ha
-1

 depending on 

the seed weight of varieties (Macrobert et al. 2014). 

 

Results 

 
Drought Frequency 

 

Analysis of drought frequency indicates that all countries in southern Africa are prone to 

drought during the main cropping season (Figure 2). In the four study countries alone, more 

than 1.0 million hectares (Mha) of maize growing areas are exposed to seasonal drought 

events exceeding 20% while an additional 1.6 Mha experience a drought occurrence of 10–

20%.  

http://grass.osgeo.org/
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Figure 2. Prevalence of drought in the maize growing areas of southern Africa (1960-1998).  

 

Maize area coverage and frequency of drought vary across MMEs in the study countries. The 

spatial distribution of maize area and drought frequency across countries and MMEs is 

presented in Figure 3 while the maize area under different drought frequencies across MMEs 

is summarized in Figure 4. Most of the maize area is found in the wet upper and wet lower 

mid-altitude MMEs in Malawi and Zambia, whereas it is located in the dry lowland, wet 

lowland and wet lower mid-altitude MMEs in Mozambique (Figures 3 and 4). Among the 

four study countries, Zimbabwe is the only country that has considerable maize area in the 

dry mid-altitude MME but has no maize area at all in the wet lowland MME. Although the 

maize area under the highland MMEs is extremely small in all countries, Malawi grows more 

maize in the highland MME than other countries (Figures 3 and 4). In terms of drought 

prevalence, Zimbabwe and Zambia are prone to more frequent drought events than that of 

Malawi and Mozambique across all MMEs (Figure 3). In Zimbabwe, most (>10%) of the 

seasonal droughts occur in the dry lowland, dry mid-altitude, wet lower mid-altitude and wet 

upper mid-altitude MMEs comprising a total maize area of 1.2 Mha . In Zambia, most of the 

maize areas (0.50 Mha) that are exposed to drought occurrences of 20% and above are 

located in the wet lower mid-altitude and wet upper mid-altitude MMEs (Figure 4). Most of 

the less frequent seasonal droughts (<15%) occur in the wet lower and wet upper mid-altitude 

MMEs in Malawi, in the wet lowland and wet lower mid-altitude MMEs in Mozambique and 

in the wet upper mid-altitude MME in Zambia (Figures 3 and 4).  
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Figure 3. Prevalence of seasonal (November–April) drought (1960–1998) across six maize 

mega-environment in four southern Africa countries.  
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Figure 4. Seasonal drought frequencies across maize mega-environments in four southern 

Africa countries. 

 

Model Calibration and Evaluation 

 

A comparison of measured and simulated days to anthesis and maturity of the studied maize 
varieties showed good agreement between the measured and simulated values for both the 
calibration and evaluation datasets. The average RMSE of days to anthesis and maturity 
respectively was 4.2 and 7.7 days for the calibration dataset and 3.9 and 2.3 days for the 
evaluation dataset. The d-index values were 0.94 and 0.74 for days to anthesis and 0.67 and 
0.95 for days to physiological maturity in the calibration and evaluation datasets, respectively 
(see Figure 1 for a plot of measured and simulated values). For grain yield, the average 
RMSE was 1.6 and 1.0 t ha

-1 
for the calibration and evaluation datasets, respectively. The 

average simulated yield of the studied varieties across all site-years was closely related to 
measured grain yield with a d-index of >0.89 both in the calibration and evaluation datasets 
(see Figure 2 for a plot of measured and simulated grain yield). In general, the indices used 
for comparing the measured and simulated values of days to anthesis and physiological 
maturity and grain yield indicate that the CSM–CERES–maize model has captured the 
response of the DT maize varieties to different growing environments.  
 
Simulated Performance of DT Maize Varieties Across Environments 

 
The simulated relative yield performance of each of the new four DT varieties over that of the 
standard commercial check is shown in Figure 5. The simulated maize yield across different 
drought environments indicates that new DT varieties could give a yield advantage of 5% – 
40% over the check variety (Figure 6). Although the performance of the new DT varieties 
varied across environments, they could give an average yield advantage of 16% and 12% 
under highly (>30% frequency) and less (<10% frequency) drought-prone environments, 
respectively. Specifically, new DT varieties give 11.4%, 12.9%, 13.6% and 14.7% higher 
yield than the check across environments with different drought frequencies in Malawi, 
Mozambique, Zambia and Zimbabwe, respectively. Average yield advantage among new DT 
varieties ranges from 5%-11% (CZH0946, CZH0811, and CZH0835), 15%-20% (CZH0616) 
and 28–40% (CZH0837). However, the new DT varieties do not beat the check universally 
(Figure 5). The coefficient of variation (CV) of yield showed that the new DT varieties could 
reduce annual yield variability by 3–7% as compared to the commercial check.   
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Figure 6. Simulated relative yield advantage and variance of five new drought-tolerant 
varieties over a commercial check (SC513) across different drought frequency environments  
in southern Africa. Vertical bars indicate standard deviations. 
 

Figure 5. Spatial distribution of simulated relative yields of four new drought- 
tolerant varieties (a. extra early, b. early, c. medium and d. late maturity) compared to a 
commercial check (SC513) in four southern Africa countries. 
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Potential DT Maize Area and DT Seed Demand 

 

The potential DT maize area and DT seed demand were derived based on the simulated yield 

advantage (>5%) of the new DT varieties over the commercial check (Table 1). The results 

show DT maize to have substantial promise in terms of market opportunity for seed 

companies in the study countries. The level of adoption of new maize varieties varies among 

countries and so does the potential annual seed requirement: from 5,276 metric tons in 

Mozambique to 22,302 metric tons in Zimbabwe (Table 1).  

 

Table 1. Potential DT maize area and DT seed demand 

Country Potential DT  

maize area  

(ha pa)* 

Current DT 

maize adoption 

rate (%)** 

Potential DT  

seed demand  

(metric tons pa) 

Current DT  

seed supply  

(metric tons pa)*** 

Malawi 1,387,790 47.3 16,411       4,416 

Mozambique 1,366,799 15.4 5,276          855 

Zambia 537,092 72.6 9,748       3,422 

Zimbabwe 1,251,157 71.3 22,302       7,618 
* Based on crop simulation, including all current maize area with a simulated yield advantage of >5% from new 

DT varieties over commercial check.  

** Source. CIMMYT (2013b)  

*** Source. Abate (2013).  

 
Discussion 
 
The highly variable yield of rain-fed crops is the most important downside risk that farmers 
face in SSA essentially due to the uncertainty surrounding the frequency, intensity, and 
temporal and spatial distribution of drought (Kassie et al. 2012; Shiferaw et al. 2014). 
Understanding the nature of drought in a given area is the first step towards managing the 
risks associated with it (Kassie et al. 2012). Therefore, using long-term gridded data, this 
study identified the frequency and spatial distribution of seasonal drought during the main 
cropping season in the major maize growing countries in southern Africa. The results 
indicated that all the study countries are prone to drought despite variations in drought 
frequencies. Maize-growing areas in Zambia and Zimbabwe experience more frequent 
drought events than those in Malawi and Mozambique. The dry lowland and dry mid-altitude 
MMEs are generally prone to higher drought frequency than the rest of the MMEs, but the 
size of maize area affected by frequent drought within each MME varies among the study 
countries. Although all MMEs in Zimbabwe are prone to frequent droughts, the largest 
drought prone (20% frequency) maize area is found in the dry lowland and dry mid-altitude 
MMEs. In Zambia, however, the largest drought prone maize area is found in the wet lower 
mid-altitude MME. Therefore, the spatially explicit drought frequency maps generated in this 
study could be used to design appropriate drought risk management strategies in the 
respective countries such as targeting DT maize varieties.  
 
Crop models have emerged as potential tools in agricultural research and development and in 
the exploration of management and policy decisions (Boote et al. 1996), and they have been 
used to assess spatial and temporal yield variability over different environmental conditions 
(Batchelor et al. 2002). However, the credibility of outputs of crop models depends on their 
calibration and evaluation within target environments (Timsina and Humphreys 2006; Xiong 
et al. 2008). In this study, the CERES–Maize model was calibrated and evaluated for selected 
DT maize varieties using measured data from a network of maize experiment stations in 
Zimbabwe. The evaluation results indicate that the model performed well in simulating the 
phenology and yield of maize after it is calibrated, and results agreed with previous studies 
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that utilized field trial data from different environments to estimate maize genetic coefficients 
(Gungula et al. 2003; Yang et al. 2009).  
 

This study provided a framework for evaluating the performance of new DT varieties across 

environments in southern Africa using geospatial analysis and spatial crop modeling tools 

that allow for an integrated analysis of big datasets (climate, soil, crop and management). 

Geospatial analysis tools play a valuable role in genotype targeting and can unravel 

genotype-by-environment interactions by providing high-resolution spatial and temporal data. 

Spatial analysis is key to identifying environmental frequencies and mapping out target 

environments that ultimately lead to a more effective deployment of germplasm (Hyman et 

al. 2013). As shown in this study and previous ones (Hyman et al. 2013; Tesfaye et al. 

2015b), spatially explicit crop modeling takes into account changes in year-to-year 

environmental conditions across environments and could facilitate delivery of the right 

genotypes to farmers. Since crop varieties or genotypes could perform differently in different 

environments, a combination of crop simulation models and geographic information systems 

(GIS) are useful to understand the spatial and temporal aspects of genotype-by-environment 

interactions (Löffler et al. 2005). In this study, for example, the new DT varieties 

outperformed the commercial check variety across several environments, but they did not 

perform better than the check in all environments. Similarly, all new DT varieties did not 

perform the same way in the same environment, indicating the need for proper targeting of 

each variety.  

 

Like other modeling studies (e.g., Challinor et al. 2009; Ruane et al. 2013), our study 

involved some important assumptions. Firstly, except for the varietal change—all other 

things were assume constant. Given the change of one hybrid seed for another at basically the 

same seed cost is a common practice in the study region; this appears to be a reasonable 

assumption. The seed change would not also initially trigger a different crop management 

practices given the stochastic nature of drought. Over time, however, one would expect 

farmers to realize the reduced risk inherent in DT maize and possibly adapt maize 

management practices that potentially increase DT maize benefits further. Secondly, our 

study focused only on sole maize cultivation and does not simulate other cropping systems 

such as crop rotation, intercropping or double cropping. Thirdly, the study assumed that plant 

nutrients other than nitrogen are applied or available in enough quantity so that they do not 

limit maize growth and development. Our interest in this study is on drought which is more 

difficult to manage than other crop management practices under rain-fed systems, and hence, 

our assumptions avoid confounding effects of other factors with drought. This indicates scope 

for future studies in addressing the assumptions made in this study. 

 

The maps generated in this study show how the new DT varieties perform relative to the 

commercial check in different environments where maize is currently grown. The results 

reported in this simulation study are in agreement with previous studies that compared the 

performance of new DT varieties with commercial checks using field experiments. For 

example, in less drought prone environments (environments with a yield of 3 t/ha), the best 

DT hybrids yielded 15–25% more than SC513 under on-farm trials in Southern Africa 

(Setimela et al. 2013). Under severe drought stress environments, DT hybrids gave up to 40% 

yield advantage compared to commercially available hybrids in the farmers’ fields (Setimela 

et al. 2012; Setimela et al. 2013). Moreover, the field experiments indicated that the best new 

DT hybrids out-yielded the farmers’ own varieties by an average of 35% and 25% under high 

and low drought conditions in southern Africa, respectively (Setimela et al. 2013). In general, 

the yield gap between the commercial and the new DT varieties is higher under stressful 
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conditions than non-stressed ones  (Bänziger et al. 2006; Edmeades 2013; Setimela et al. 

2013) indicating that more progress has been made in developing varieties for drought 

conditions compared to optimum environmental conditions. 

 

The results of this study also do shed light on the location and volume of potential demand 

for DT seed and, therefore, could help boost the dissemination of varieties to the farmers that 

need them. Targeting of new genotypes is not only important to farmers, but it is also critical 

for public and private seed companies for planning proper marketing and advisory schemes 

for their varieties (Annicchiarico 2002). The results from this study indicate that the potential 

annual DT seed volumes in areas where the new DT varieties outperform provide a 

substantial market opportunity in the four study countries. This helps identify market 

opportunities for seed companies in southern Africa where varietal replacement is still very 

slow. However, the potential annual seed volume varies among the countries due to 

differences in adoption rate; for example, Mozambique has a very large maize area where the 

new DT varieties could perform well but with relatively low seed requirement. This reiterates 

that technology adoption is not only dependent on the biophysical suitability of the 

technology itself but also on socio-economic, political, cultural and institutional factors that 

may be of equal or greater importance (Notenbaert et al. 2013). Therefore, this type of 

analysis not only helps seed companies to determine potential annual seed demand in high 

adoption areas but also to identify areas where adoption is low so that they will be able to 

plan for addressing the low adoption problems. The relevance of geospatial crop modeling in 

agribusiness can be further strengthened by integrating socioeconomic factors into the 

modeling framework (e.g. Tesfaye et al. 2015b).  

 

Conclusion 

 
The availability of big data—soil, climate, elevation and crop distribution—keeps improving 

over time and there is a growing interest in analytical tools that enable users to handle such 

data for agricultural applications. This study used geospatial and crop-modeling tools to 

processes and analyze big datasets for the characterization of drought prevalence and 

evaluation of the performance of new DT varieties across environments in southern Africa. 

This type of analysis helps target new DT varieties where they perform well and benefit most 

and identifies market opportunities. Big data and analytical tools thus can improve the 

effectiveness of targeting and enhance the uptake of new agricultural technologies that are 

required in boosting rural livelihoods, agribusiness development and food security in 

developing countries.  
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