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Abstract
Quantitative Real-Time PCR (qPCR) is a preferred and reliable method for accurate quanti-

fication of gene expression to understand precise gene functions. A total of 25 candidate

reference genes including traditional and new generation reference genes were selected

and evaluated in a diverse set of chickpea samples. The samples used in this study

included nine chickpea genotypes (Cicer spp.) comprising of cultivated and wild species,

six abiotic stress treatments (drought, salinity, high vapor pressure deficit, abscisic acid,

cold and heat shock), and five diverse tissues (leaf, root, flower, seedlings and seed). The

geNorm, NormFinder and RefFinder algorithms used to identify stably expressed genes in

four sample sets revealed stable expression of UCP andG6PD genes across genotypes,

while TIP41 and CAC were highly stable under abiotic stress conditions. While PP2A and

ABCT genes were ranked as best for different tissues, ABCT, UCP and CAC were most sta-

ble across all samples. This study demonstrated the usefulness of new generation refer-

ence genes for more accurate qPCR based gene expression quantification in cultivated as

well as wild chickpea species. Validation of the best reference genes was carried out by

studying their impact on normalization of aquaporin genes PIP1;4 and TIP3;1, in three con-

trasting chickpea genotypes under high vapor pressure deficit (VPD) treatment. The chick-

pea TIP3;1 gene got significantly up regulated under high VPD conditions with higher

relative expression in the drought susceptible genotype, confirming the suitability of the

selected reference genes for expression analysis. This is the first comprehensive study on

the stability of the new generation reference genes for qPCR studies in chickpea across

species, different tissues and abiotic stresses.
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Introduction
Gene expression studies have become extremely important to obtain insights into gene func-
tion and to understand the molecular mechanisms. Among various techniques used for gene
expression studies, quantitative Real-Time PCR (qPCR) has become the most important and
reliable method owing to its accuracy and high-throughput analysis [1]. While appropriate
applications of qPCR requires robust reference genes for accurate normalization, non-availabil-
ity can result in experimental deviations or errors that inevitably occur during sample prepara-
tion leading to unreliable quantification of gene transcripts. Ideally, the endogenous genes
selected as reference genes for qPCR for normalization of gene expression data should be
expressed stably in all plant tissues under various experimental conditions [2]. Various house-
keeping genes such as, glyceraldehydes-3-phosphate dehydrogenase (GAPDH), actin (ACT)
tubulin (TUB) cyclophilin (CYP), elongation factor (EF1) and ribosomal RNA (18S and 28S
rRNA) have been widely used as reference genes in normalization of qPCR data. However, sev-
eral studies have revealed that the expression levels of many commonly used housekeeping
genes vary across tissues, treatments and species [1, 3–5]. Hence, emphasis has been on the
identification of new generation reference genes that are stable under different experimental
conditions [3, 6]. Since several studies have shown that no single universal gene has consistent
expression under all experimental conditions, the evaluation of reference gene(s) under specific
experimental conditions is essential for reliability of qPCR analysis [7, 8]. Moreover, several
algorithms such as geNorm [9], NormFinder [10], BestKeeper [11] and comparative ΔCt
method [12] have been developed to evaluate the most stable reference gene(s) from set of can-
didate genes.

Studies on the evaluation of reference genes have been carried out in several plant species
such as Arabidopsis [13], Brassica juncea [14], Brassica napus [15, 16], Coffea species [17], Gos-
sypium hirsutum [18], Oryza sativa [19], Solanum tuberosum [20], Solanum lycopersicum [6],
Triticum aestivum [21], Vitis vinifera [22], and Zea mays [23]. More recently reference gene
validations have also been reported in a number of plants such as Atropa belladonna [24], Car-
agana korshinskii [25], Panicum virgatum [26], Pennisetum glaucum [27] Phalaenopsis [28]
Populus euphratica [29] and Saccharum officinarum [30]. Among the leguminous crops, except
for Glycine max [31] and Arachis hypogaea [1], very few reports are available on the evaluation
of reference genes for qPCR studies in Vicia faba [32], in Pisum sativum [33] in Lens culinaris
[34] and in Cicer arietinum [35]. Since, there has been a major emphasis on using biotechno-
logical interventions including functional genomics and trans-genomics for various biotic and
abiotic constraints in legumes, there is a need to evaluate species-specific reference genes under
diverse environmental conditions.

Chickpea is an important food legume of the semi-arid tropical (SAT) regions of the world,
known to be a nutraceutical (or health benefiting food) because of its high nutritional value
[36]. Despite growing demand and high yield potential, chickpea yield is unstable and produc-
tivity is stagnant at unacceptably low levels due to constraints such as abiotic stresses (drought,
heat, cold and high-salinity) and biotic stresses (Ascochyta blight, Fusarium wilt and pod
borer). With chickpea genome sequencing allowing high-powered functional genomics studies
to proceed [37], these can significantly accelerate molecular breeding efforts for the discovery
and introgression of stress tolerance genes into cultivated germplasm. Nevertheless, for crop
improvement in the post genomic era, there is a need to understand the function of genes in
response to various stresses and during stages of growth and developmental, thereby necessitat-
ing gene expression profiling to identify the candidate genes.

Keeping this in view, we have evaluated a set of reference genes including traditional (com-
monly used) and new generation reference genes in a diverse set of biological samples of
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chickpea, including nine genotypes representing cultivated and wild species across primary,
secondary and tertiary gene pools, plant tissues from various developmental stages, and six abi-
otic stress treatments (drought, salt, high vapor pressure deficit, abscisic acid, cold and heat
shock). To identify the most stable reference gene(s) for normalization of qPCR data, this
study evaluated 25 reference genes, including ATP-binding cassette transporter (ABCT), alco-
hol dehydrogenase class-3 (ADH3), calcium-dependent protein kinase 4 (CDPK4), clathrin
adaptor complexes medium (CAC), cyclophilin (CYP), eukaryotic elongation factor 1-alpha
(ELF1a), eukaryotic elongation factor 1-beta (ELF1b), galactose oxidase/kelch repeat superfam-
ily protein (FBOX), glucose-6-phosphate dehydrogenase (G6PD), glyceraldehyde3-phosphate
dehydrogenase (GAPDH), heat shock cognate protein 80 (HSP80), translation initiation factor
IF-3 (IF3), eukaryotic initiation factor 4A-15 (IF4a), peroxin4 (PEX4), protein phosphatase2A
subunit A3 (PP2A), pentatrico peptide repeat superfamily protein (PPR), s-adenosyl methio-
nine decarboxylase (SAMDM), SAND-family protein (SAND), F-box protein SKIP16-like
(SKIP16), TIP41-like protein (TIP41), un-characterized conserved protein UCP022280 (UCP),
unknown protein (UNK), ubiquitin-protein ligase 7 (UPL7), vacuolar protein sorting-associ-
ated protein 53 homolog (VPS) and yellow leaf specific protein 8 (YLS8). The expression stabil-
ity of these genes was evaluated across gene pools, different tissues and stress treatments using
geNorm, NormFinder and RefFinder algorithms. Further, we have selected the best and least
stable reference genes from the all samples set and validated by normalizing the expression lev-
els of two aquaporin genes PIP1;4 (Plasma membrane intrinsic protein) and TIP3;1 (Tonoplast
intrinsic protein) of chickpea. These two aquaporin genes express differentially in susceptible
and tolerant genotypes of chickpea under different abiotic stress conditions (Unpublished
data). The expression levels of the selected aquaporin genes under vapor pressure deficit
(VPD) stress were tested in three chickpea genotypes with different tolerance levels.

Materials and Methods

Plant materials and stress treatments
Seeds of the chickpea cultivars and wild species were obtained from the mini core collection of
the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad,
India. Chickpea plants were grown in 8-inch pots containing 4.5 kg of black clay soil (Vertisol,
20% water holding capacity) under glasshouse conditions with 28/20°C day/night temperature.
Nine chickpea genotype representations from cultivated genotypes and wild species across pri-
mary, secondary and tertiary gene pools (Table 1) were used for leaf tissue sample collection
under normal growth conditions after 28 d from sowing. Besides, different tissue samples from
seedlings of var. JG11 including leaf, flower, seed and roots were collected at different growth

Table 1. Details of the chickpea genotypes used for evaluation of candidate reference genes.

S. No. Genotypes Accession number Remarks

1 Cicer arietinum ICCV 93954 Cultivated desi type- JG11

2 Cicer arietinum CDC Frontier Cultivated Kabuli type

3 Cicer reticulatum ICC 17121 Primary gene pool

4 Cicer echinospermum ICC 17159 Secondary gene pool

5 Cicer judaicum ICC 17192 Tertiary gene pool

6 Cicer yamashitae ICC 17117 Tertiary gene pool

7 Cicer pinnatifidum ICC 17126 Tertiary gene pool

8 Cicer cuneatum Ec 600098 Tertiary gene pool

9 Cicer bijugum ICC 17157 Tertiary gene pool

doi:10.1371/journal.pone.0148451.t001
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stages under normal growth conditions. For various abiotic stress treatments, 28-day-old vege-
tative stage plants of var. JG11 were used. Drought stress was imposed progressively and at the
end of the dry-down cycle where normalized transpiration ratio (NTR) reached at 0.1 (10% of
soil moisture remaining in the pot) [38], leaf samples were collected. Salinity stress imposition
was done by completely saturating the potted plants with 150 mMNaCl, following collection
of leaf samples after 24 h of treatment. For vapor pressure deficit (VPD) treatments, plants
were shifted to growth chamber (31°C and 60% RH) one day before the VPD treatment for
acclimatization, and subjected to a progressive VPD regime (0.67 kPa to 4.2 kPa) for 8 h [39]
followed by the collection of leaf samples. Abscisic acid (ABA) stress was imposed on plants
under glasshouse conditions by spraying the plants with 100 μMABA solution and collection
of leaf samples after 4 h. For cold (low temperature) and heat shock treatments, the plants were
kept at 4°C and 40°C, respectively, and leaf samples collected after 4 h of treatment. For each
sample, biological replicates were collected from three plants under the same experimental
condition. The samples from both control and treated tissues of chickpea were immediately
frozen in liquid nitrogen and stored at -80°C until RNA extraction.

Selection of candidate reference genes and primer design
The candidate genes were selected based on a review of studies in model plant Arabidopsis and
other grain legumes such as soybean, chickpea and peanut followed by an in silico analysis
using BLAST tools of the NCBI database. A total of 28 candidate reference genes that showed
highly stable expression in previous studies including CAC, FBOX, GAPC2, PEX4, PP2A, PPR,
PTB1, SAMDM, SAND, TIP41, UCP, UNK, UPL7 and YLS8 in Arabidopsis [3]; ABCT, CDPK4,
IF3 and SKIP16 in soybean [40]; ELF1a, GAPDH, HSP80 and IF4a in chickpea [35]; ACT,
ADH3, CYP, ELF1b and G6PD in peanut [1] and the VPS gene from chickpea (unpublished)
were selected for evaluation. To retrieve the orthologous mRNA and their corresponding DNA
sequences in chickpea, mRNA sequences of the Arabidopsis genes, EST sequences of the chick-
pea, soybean and peanut were used to query databases of the National Center for Biotechnol-
ogy Information (NCBI) using BLASTX. The retrieved mRNA sequences of the chickpea
sequences were used to design PCR primers using Primer3 software [41] with GC content
between 45 and 50%, primer length of 20–22 nucleotides, and an expected product size of 100–
150 base pairs. Most of the primer pairs were designed from two adjacent exons, which were
separated by an intron (Table 2).

Genomic DNA isolation and PCR
The genomic DNA from leaves of chickpea variety JG11 was isolated using NucleoSpin Plant II
DNA isolation kit (Macherey-Nagel, Duren, Germany). PCR reactions for all the candidate
genes were performed using genomic DNA as template and gene-specific primers designed for
qPCR. The PCR was performed in a total volume of 25 μl using 100 ng of genomic DNA,
200 nM of each primer, 1.5 mMMgCl2, 200 μM dNTP and 1 U Taq polymerase (Invitrogen,
life technologies, NY, USA). PCR samples were amplified in an Eppendorf Thermal Cycler
with an initial denaturation at 95°C for 5 min followed by 35 cycles of 95°C for 1 min, 62–64°C
for 1 min and 72°C for 3 min, followed by a final extension at 72°C for 10 min, and PCR prod-
ucts tested by using 1% agarose gel electrophoresis.

RNA extraction and cDNA synthesis
Total RNA was extracted from 100 mg tissue by using NucleoSpin RNA plant kit (Macherey-
Nagel, Duren, Germany) including in-column DNAse1 treatment. The concentration and
purity of all RNA samples was tested using NanoVue plus spectrophotometer (GE health care,
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Table 2. Details of the chickpea candidate reference genes and primer sequences used for qPCR analysis.

S. No. Gene Accession no
*

Gene description Homologue
Accession no #

E-
value

Primer sequence 5'-3' F/R Amplicon
length (bp)

Primers
location@

PCR
Efficiency

1 ABCT XM_004505589 ATP-binding cassette
transporter

XM_006591799 1e-
161

TCACAGGTTGTGATGGAGTCTG 135 D 1.09

CCTCAAATCTTGTTGGGGTGTC

2 ADH3 XM_004493784 Alcohol
dehydrogenase class-
3-like

EG529529 6e-
129

CGGATTATTGGCATAGACATCG 115 D 1.03

CACTTATGACCTGCTGAATTGG

3 CDPK4 XM_004496559 Calcium-dependent
protein kinase 4-like

XR_136899 3e-
125

GAACCTTCTCAAAGGCTCACTG 121 D 1.00

CAAGATGCCACTCTCCACAACT

4 CAC XM_004511726 Clathrin adaptor
complexes medium
subunit family protein

AT5G46630 0.0 CATGGACTAGACCACCAATTCA 110 D 1.02

AACAGTGTTGTACCCGCTCTTT

5 CYP XM_004500685 Cyclophilin -peptidyl-
prolyl cis-trans
isomerase-like

EE127717 7e-
105

GGATGTTGTGAAGGAGATCGAG 133 S 0.93

GAAGACTCAACGTCGCACAATC

6 ELF1a XM_004489495 Elongation factor
1-alpha

AJ004960 0.0 GTGGTTTTGAGGCTGGTATCTC 134 D 1.06

GGCCTTTGAGTACTTGGGTGTA

7 ELF1b XM_004491150 Elongation factor
1-beta

EE126175 1e-40 GGTGATGAAACAGAGGAGGAGA 131 D 1.07

ATGTCTGTCTCGTCATCCCAAG

8 FBOX XM_004491898 Galactose oxidase/
kelch repeat
superfamily protein

AT5G15710 0.0 CACCACTCGGTTTGATGATG 148 S 1.02

GTGCTGTAAAGTCCGATCCTTC

9 G6PD XM_004489522 Glucose-6-phosphate
1-dehydrogenase

EG030635 1e-
108

ACAACGATACCAGGGTGTTACC 116 D 0.90

TCTCCCATGATGCCTTTAACTC

10 GAPDH XM_004515773 Glyceraldehyde-
3-phosphate
dehydrogenase,
cytosolic-like

AJ010224 0.0 GGCATTCTCGGATACACTGAAG 146 D 0.93

TAGCCCAACTCGTTGTCATACC

11 HSP80 XM_004491473 Heat shock cognate
protein 80-like

GR406804 0.0 GGACTGAGCATTGATGAGGATG 148 S 0.94

GTTCCTCGATCTCACACCTTTC

12 IF3 XM_004507697 Translation initiation
factor IF-3-like

NM_001255722 5e-93 CAGAAGAAGAAAAGGGATCAGC 119 D 0.94

CGTGCAGCTTTCAAACGTACT

13 IF4a XM_004513380 Eukaryotic initiation
factor 4A-15-like

FL512356 0.0 AGTCACTTCGGCCAGATTACAT 137 D 0.96

AGCAGAGAAAACTCCCACTTGA

14 PEX4 XM_004501123 Peroxin4 AT5G25760 5e-
111

AGTATCCTCTGCAACCACCTCA 137 D 0.99

ACAGACAGACTGCAGAGTCCAA

15 PP2A XM_004497052. Protein phosphatase
2A subunit A3

AT1G13320 0.0 GCAGCATCAAAAGACAGAGTGC 117 D 0.98

AACCAGACATGGTCGGATAGTC

16 PPR XM_004487860 Pentatrico peptide
repeat (PPR)
superfamily protein

AT5G55840 0.0 CTAAGGCATTGGAGTTGAGGAG 102 S 1.01

TATCACCATCGGCACATAGACC

17 SAMDM XM_004502018 S-adenosyl-L-
methionine-dependent
methyl transferases
superfamily protein

AT2G32170 0.0 GTGACCAACTTCGTCCTGTTTC 115 D 0.95

TGGCTCGGATCACTGTAGACTT

18 SAND XM_004505939 SAND family protein AT2G28390 0.0 CATGATAAAGGAATCGGACCAC 148 D 1.00

CACGGTTGCATGTCTTTATTGC

19 SKIP16 XM_004507288 F-box protein
SKIP16-like

NM_001254106 0.0 GTCAGGTTCCATTGAAGGTTCC 149 D 1.03

GGATAGCTGAGTCCCATAACGA

20 TIP41 XM_004496854 Tonoplast intrinsic
proteins -like protein

AT4G34270 2e-
146

GTTGTACTTCGGGAGAGTTGCT 115 D 0.97

GGAGCTTCTGGCTTATGATGCT

21 UCP XM_004505295 Uncharacterized
conserved protein

AT4G26410 3e-82 TGGAGCCCAATTACAAAAGC 138 D 1.02

TTTGAAGCCAAAGAGGCAAC

22 UNK XM_004499013 Unknown protein AT4G33380 2e-
118

CCTGATGGCATAGAGGATTCAG 139 D 0.93

CAGCTGCACTATCTTTGTGGTG

23 UPL7 XM_004494061 Ubiquitin-protein ligase
7

AT3G53090 0.0 GTCACAAGTTGTTCTCGTGCTC 147 D 0.92

GTAGCAGGTTGAAGCTGATGGA

(Continued)
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USA) at 260/280 nm absorbance, selecting the ones that ranged from 1.8 to 2.0. Integrity of the
RNA was tested by using 1.4% agarose gel electrophoresis with SYBR safe DNA gel stain (Invi-
trogen-life technologies, USA). The total RNA sample (2.5 μg) was reverse transcribed to
cDNA using SuperScript1 III first strand cDNA synthesis kit (Invitrogen, Life Technologies,
NY, USA) and oligodT primer in 25 μL reaction, according to manufacturer’s protocol. The
cDNA preparations were diluted 12-times with nuclease-free water (Qiagen, Valencia, CA,
USA) to use as template in qPCR analysis. To confirm the total absence of genomic DNA,
cDNA was used as a template for PCR amplification using ADH3 and G6PD primer pairs span-
ning an intron and PCR was performed as mentioned above.

Quantitative real-time PCR analysis
All qPCRs were carried out in Realplex (Eppendorf, Germany) Real-Time PCR system using
SYBR Green in 96 well optical reaction plates (Axygen, Union City, CA, USA) sealed with
ultra-clear sealing film (Platemax). The PCR reaction was performed in a total volume of 10 μL
containing 5 μl of 2X SensiFASTTM SYBR No-ROX (Bioline, UK) mix, 400 nM of each primer,
1.0 μL of diluted cDNA and nuclease-free water to make up the final volume. The reaction con-
ditions were set as 2 min at 95°C (polymerase activation); 40 cycles of 15 s at 95°C, 30 s at 62°C
with fluorescent signal recording. At the end, a final step of 15 s at 95°C, 30 s at 58°C and fluo-
rescence measurement at each 0.5°C variation from 58°C to 95°C in 20 min was included to
obtain the melting curve. No-template controls were included for each primer combinations.
Pooled and diluted cDNA sample was used in qPCR to check the specificity of all the primer
pairs and verified by using 2% agarose gel electrophoresis with SYBR safe DNA gel stain (Invi-
trogen-life technologies, NY, USA) prior to sequencing the amplified products. The sequences
of the PCR amplified products of each primer combination were compared with GenBank
sequences using the BLASTN algorithm to check the PCR product specificity. For expression
profiling, all the cDNA samples were tested in qPCR with each primer pair and three technical
replicates performed for each cDNA sample of each biological replicate. The quantitative cycle
(Cq) values were recorded using default settings of Real time PCR system where baseline was
corrected automatically and threshold value was estimated by setting to noise band mode. Sta-
tistical analysis (Mean and CV) of the Cq values was carried out using Microsoft Excel spread-
sheet 2010. The PCR efficiency of each primer pair was evaluated by the dilution series method

Table 2. (Continued)

S. No. Gene Accession no
*

Gene description Homologue
Accession no #

E-
value

Primer sequence 5'-3' F/R Amplicon
length (bp)

Primers
location@

PCR
Efficiency

24 VPS XM_004486353 Vacuolar protein
sorting-associated
protein 53 homolog

— 0.0 GGAATTTCAGCGGATATTGGAG 123 D 0.97

GGCGCAATTGTAGGTGTAATCT

25 YLS8 XM_004497725 mRNA splicing factor,
thioredoxin-like U5
snRNP

AT5G08290 4e-
103

GTCTTGTTGTCATCCGTTTTGG 139 D 1.01

TTAAAGTCAGGCACCTCTGTGA

26 PIP1;4^ XM_004490905 Plasma membrane
intrinsic proteins

— — TCATTGGATCTTCTGGGTGGGA 92 S —

TGGACTTAAAGGGAATGGCTCTG

27 TIP3;1^ XM_004495430 Tonoplast intrinsic
proteins

— — CCCGTTTGATGGAGCATGCA 95 S —

GGACCGACCCATAGATCCAA

* GenBank accession numbers of the chickpea mRNA sequences used for primer designing

# GenBank accession numbers of the mRNA/EST used to search homologues in chickpea

@ Primers location on two exons (D), or on single exon (S)

^Aquaporin genes used for validation

doi:10.1371/journal.pone.0148451.t002
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using a pooled cDNA sample of the chickpea variety JG11. The 12-times diluted pooled cDNA
sample was taken and 2-fold serial dilutions were carried out. Five serially diluted cDNA sam-
ples were used as templates to construct the standard curves of each primer pair, where PCR
composition and conditions were same as above. Standard curves were constructed using the
RealPlex (Eppendorf, Germany) real time PCR instrument software by using linear regression
based on the quantitative cycle (Cq) values for all dilution points in a series. The correlation
coefficients (R2) and slope values were obtained from the standard curve, and corresponding
PCR amplification efficiencies (E) were calculated using the slope of the calibration curve
according to the following equation: E = (10−1/slope-1).

Data analysis
All experimental samples were divided into different sets based on their nature. The tissue set
comprised of leaf, flower, root, seedling and seed of chickpea variety JG11 grown under normal
growth conditions (five samples). The abiotic stress treatment set comprised of eight leaf sam-
ples of chickpea variety JG11 grown under drought, salt, high VPD, ABA, cold, heat shock,
drought control and control. The genotypes sample set comprised of leaf sample of four culti-
vars and five wild species (total nine genotypes listed in Table 1). All the 20 samples (JG11 was
a common control in all sample sets) were analyzed together as ‘all samples set’. The geNorm
and NormFinder algorithms of genEX Professional software (MultiD Analyses AB, Sweden)
were used to identify stably expressed gene(s) in a set of sample analyzed. The raw Cq values of
each gene were corrected according to their respective PCR efficiencies before converting them
into relative quantities, and the mean values of the biological replicates were taken as the input
data for the geNorm and NormFinder analysis. The pair-wise variation analysis was carried
out to identify the optimal number of genes required for normalization in each sample set by
using geNorm of qBase plus software (ver: 2.4; Biogazelle, Belgium) [42]. RefFinder, a web-
based (http://www.leonxie.com/referencegene.php) tool that integrates the currently available
four major computational programs {geNorm [9], NormFinder [10], BestKeeper [11] and
comparative ΔCt method [12]} and calculates the geometric mean for the comprehensive rank-
ing was used to calculate the comprehensive ranks.

Reference gene validation by aquaporin gene expression studies under
drought
Two aquaporin genes PIP1;4 (Plasma membrane intrinsic protein) and TIP3;1 (Tonoplast intrin-
sic protein) of chickpea were selected as target genes for quantification of gene expression levels
under high vapor pressure deficit (VPD) treatment. Three chickpea varieties with contrasting
drought tolerance viz. a susceptible variety ICC1882 and two tolerant varieties ICC4958 and
JG11 were selected for reference gene validations. Experimental conditions and sample collection
followed were same as mentioned above. Gene expression levels of PIP1;4 and TIP3;1 were nor-
malized using the two most stable reference genes (ABCT andUCP) and two least stable genes
(CYP and SKIP16) individually and in combination. Relative expressions of these two aquaporin
genes in drought stressed leaf samples were estimated by comparing with expression levels of leaf
sample collected from GH grown control plants of same variety using the REST [43] software.

Results

Primer specificity and PCR efficiencies
The candidate reference genes selected in this study represent different functional classes and
gene families, including traditional and new generation reference genes based on reports in
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Arabidopsis, soybean, peanut and chickpea. Primers designed for 28 candidate reference genes
were tested with cDNA of chickpea variety JG11. Since the primer pairs of ACT, GAPC2 and
PTB1 genes yielded more than one band with cDNA as template, these genes were eliminated
from further analysis. All the remaining 25 primer pairs except for PP2A (The PP2A forward
primer was designed from the exon-exon junction region) yielded single PCR product of
expected size with the genomic DNA (S1A Fig). The selected 25 candidate reference genes pro-
duced single band on agarose gel (S1B Fig) and a single peak in melting curve using the cDNA
template (S2 Fig). The amplification products of cDNA of 25 primer pairs when sequenced
and searched in GenBank (NCBI) using the BLASTN algorithm, showed matches with the
retrieved mRNA sequences of the chickpea, thereby demonstrating the gene specificity of the
primer pairs used for qPCR. The amplification efficiencies (E) of the candidate reference genes
ranged from 0.90 to 1.09 (Table 2).

Expression profiling of the reference genes
A qPCR assay based on SYBR Green was used for transcript profiling of the 25 candidate reference
genes across all 20 samples of chickpea including those from six abiotic stress conditions (drought,
salt, high VPD, ABA, cold and heat shock), five different tissues (leaf, root, flower, seedlings and
seed) and nine genotypes representing cultivated and wild species across the chickpea gene pools.
To minimize the variability associated with qPCR analysis, all RNA samples were taken in equal
concentration and quality for conversion to cDNA. The expression levels of the all candidate refer-
ence genes were individually determined in each of the samples as the quantification cycle value
(Cq). A relatively wide range of Cq values across all 20 samples of chickpea was observed for the
25 reference genes, suggesting various levels of transcript abundance of the genes analyzed (Fig 1).
The Cq values of all genes were in the range of 16.30–31.80 with a majority lying between 19 and
28 across all tested samples, with GAPDH exhibiting the lowest mean value (19.18) and CDPK the
highest (27.55). Amongst all the tested genes, the GAPDH,HSP80 and ELF1b showed higher
expression where mean Cq values were below 22. The expression levels of CDPK, PPR, SKIP16,
UNK, and FBOX were lower (mean Cq above 26), while the rest of the genes showed intermediate
expression levels (mean Cq 22 to 26). The coefficient of variation (CV) values calculated for each
reference gene indicated lower gene expression variation in PPR and FBOX (CV: 4.58 and 5.38,
respectively) and the high variation in the expression of ELF1a (CV: 14.17) (Fig 1).

Expression stability of the candidate reference genes
Since the stability value of the best reference gene or the best combination of genes may vary
from one experimental set to another, the stability ranks of candidate genes in four sample sets
was determined separately to identify the most suitable reference genes using geNorm and
NormFinder algorithms. The geNorm program defines a stability measure (M) as the average
pairwise variation between a gene and reference genes in a set of samples where genes with the
lowest M values have the most stable expression. The lowest M value was observed for the pair
CAC/ABCT (M = 0.46) corresponding to the most stable expression in all sample set, whereas
the M values for SKIP16 and CYP was considerably higher than the rest of the candidate genes.
In tissue sample set, VPS and ABCT were most stable (M values 0.28) and PPR, CDPK were
least stable (M values 1.20 and 1.12, respectively). Under abiotic stress conditions, while TIP41
and G6PD were most stably expressed than all other candidate reference genes tested, ELF1a
and PPR were unstable. The genes YLS8 and PEX4 were most stable in the tested genotypes
across various gene pools while CYP and SKIP16 were found to be least stable (Fig 2A–2D).
Similarly, the stability ranks of candidate reference genes determined with NormFinder
(Table 3) showed UCP as the most stable gene followed by ABCT and G6PD in the all sample
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set, whereas CYP, SKIP16 and ELF1a genes were least stable among the all candidate reference
genes tested. The TIP41 expressed most stably under abiotic stress conditions followed by CAC
and PEX4, whereas ELF1a and PPR remained least stable. Across genotypes and species, UCP,
G6PD and VPS genes were identified as the most stable, whereas the CYP gene was identified
as least stable followed by SKIP16 and ELF1a genes. In the tissue sample set, PP2A, CAC,
ABCT were identified as highly stable genes, whereas PPR, CDPK, CYP were among the least
stable ones, according to NormFinder analysis.

RefFinder analysis
The rankings of candidate reference genes in all four-sample sets as re-determined using the
RefFinder were highly consistent with the ones obtained by using geNorm and NormFinder.
The RefFinder analysis revealed that while UCP, G6PD, CAC and YLS8 reliably expressed in
chickpea genotypes across species, ABCT, UCP, CAC and G6PD were most stable in all samples
set. Similarly, while PP2A, ABCT, VPS and CAC genes were ranked as top four in differential
tissue sample set, TIP41, CAC, G6PD and PEX4 were observed to be highly stable under abiotic
stress conditions. The comprehensive ranking revealed that the CYP gene was most unstable
gene in all the sample sets, except under abiotic stresses. Various other genes such as ELF1a
and GAPDH in abiotic stress, CDPK in differential tissues, SKIP16 in genotypes across species
and all samples were also found unreliable in this analysis (Table 4).

Optimal number of reference genes for normalization
The optimal number of reference genes required for accurate normalization was estimated
using pairwise variation analysis of geNorm algorithm. Since pairwise variation analysis

Fig 1. Expression levels of candidate reference genes across all samples. Lines across the boxes depict the medians. Boxes indicate the interquartile
range. Whiskers represent 95% confidence intervals, black dot indicate the presence of outliers. Coefficient of variance (CV) of each gene among all samples
is given in percentage.

doi:10.1371/journal.pone.0148451.g001
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showed that V2/3 value (0.159) was higher than 0.15, an ideal normalization will require to
include CAC, ABCT and TIP41 as reference genes to normalize gene expression data in all
samples set. Nevertheless, in the abiotic stressed sample set, genotype samples set and different
tissue sample set, only two genes would be sufficient since the V2/3 values in these three
sample sets was inferior to the 0.15 cut-off level. However, different experimental sets clearly
required a different set of reference genes for normalization of gene expression, based on pair
wise variation analysis viz. G6PD and TIP41 genes for abiotic stresses sample set, and YLS8
and PEX4 genes for genotype sample set. The genes, ABCT and VPSP were required for nor-
malization of gene expression data in different tissue sample set, where the V2/3 value was
0.125 (Fig 2E–2H).

Fig 2. geNorm analysis. (A-D) Average expression stability and ranking of all 25 candidate reference genes: A lower value of average expression stability
(M) indicates more stable expression. (E-H) Determination of the optimal number of reference genes for normalization by pairwise variation: The pairwise
variation (Vn/Vn+1) was analyzed between normalization factors NFn and NFn+1 by geNorm algorithm to determine (V<0.15) the optimal number of
reference genes. Error bars show standard deviation of relative expression of target genes in three biological replicates.

doi:10.1371/journal.pone.0148451.g002
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Validation of the selected reference genes
To validate the selected reference genes in qPCR, the relative expression level of two aquaporin
genes PIP1;4 and TIP3;1 were investigated in three chickpea varieties, ICC1882, ICC4958 and
JG11 under VPD stress. For normalization of the relative expression level of two aquaporin
genes, two most stable and two least stable reference genes as evaluated by RefFinder in all sam-
ple set were used (Table 4). This analysis revealed that the expression level of PIP1;4 did not
shown significant difference between drought susceptible and tolerant varieties, whereas
TIP3;1 shown difference, when normalized with ABCT and UCP reference genes individually
or in combination. The relative expression levels of the two aquaporin genes were did not fol-
lowed the above pattern, when normalized using CYP and SKIP16 as the two most unstable ref-
erence genes, compared to the expression levels obtained after normalization with TIP41 and
CAC genes. Moreover, both genes PIP1;4 TIP3;1 did not shown significant up regulation in sus-
ceptible variety ICC1882, when relative expression levels were normalized with CYP and
SKIP16 genes individually or in combination (Fig 3).

Discussion
Microarray and next generation RNA sequencing technology-based studies has indicated that
transcription levels vary between species, between ploidy levels and between tissue types [44].

Table 3. Gene expression stability ranks of all 25 candidate reference genes in four sample sets of chickpea calculated using geNorm (GN) and
NormFinder (NF) algorithms.

Rank Genotypes Abiotic Stress Different Tissue All Samples

GN NF GN NF GN NF GN NF

1 PEX4 UCP G6PD TIP41 ABCT PP2A ABCT UCP

2 YLS8 G6PD TIP41 CAC VPS CAC CAC ABCT

3 ELF1b VPS CAC PEX4 TIP41 ABCT TIP41 G6PD

4 HSP80 SAMDM SKIP16 ADH3 SAND SKIP16 UCP VPS

5 CAC ABCT UNK UNK UCP TIP41 G6PD SAMDM

6 GAPDH CAC UCP SKIP16 PP2A PEX4 PEX4 CAC

7 IF3 GAPDH PEX4 UCP CAC VPS HSP80 YLS8

8 TIP41 HSP80 UPL7 G6PD HSP80 YLS8 GAPDH HSP80

9 UCP UPL7 SAND UPL7 GAPDH G6PD YLS8 TIP41

10 ABCT YLS8 VPS ELF1b PEX4 UCP ELF1b GAPDH

11 SAMDM ELF1b ABCT PP2A G6PD SAND PP2A PEX4

12 G6PD PEX4 ADH3 ABCT YLS8 GAPDH VPS SAND

13 CDPK CDPK PP2A SAMDM SKIP16 HSP80 SAMDM ELF1b

14 VPS TIP41 FBOX SAND ELF1b SAMDM FBOX FBOX

15 PP2A SAND ELF1b CDPK ADH3 ELF1b SAND PP2A

16 UPL7 IF3 CDPK IF3 FBOX ADH3 ADH3 UPL7

17 ADH3 PPR SAMDM VPS IF4a IF4a UPL7 CDPK

18 FBOX PP2A YLS8 FBOX SAMDM FBOX CDPK ADH3

19 PPR FBOX IF4a IF4a ELF1a IF3 IF3 IF4a

20 SAND ADH3 IF3 YLS8 IF3 ELF1a IF4a PPR

21 IF4a IF4a CYP HSP80 UNK UNK PPR IF3

22 UNK UNK HSP80 CYP UPL7 UPL7 UNK UNK

23 ELF1a ELF1a GAPDH GAPDH CYP CYP ELF1a ELF1a

24 SKIP16 SKIP16 PPR PPR CDPK CDPK SKIP16 SKIP16

25 CYP CYP ELF1a ELF1a PPR PPR CYP CYP

doi:10.1371/journal.pone.0148451.t003
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The qPCR has become the first choice for accurate quantification of gene expression profiles of
selected genes in diverse biological samples due to its sensitivity, accuracy and high throughput
[45]. Nevertheless, stably expressing internal reference gene(s) are required for accurate gene
expression. However, based on the previous reports, no single gene expresses stably across the
experimental conditions [7, 8]. Hence making it, critical to identify a set of stable reference
genes that show stable expression in distinct biological samples: across different genotypes, tis-
sue, growth stages and under varied experimental conditions.

Genome sequence for both desi and Kabuli type chickpea is now available to researchers
and functional genomics will be the major focus area in chickpea crop improvement programs
[46, 37]. Since, qPCR will be a very useful tool in the identification of candidate genes that con-
trols major traits by studying their expression profiles, it is critical to develop a reference gene
tool-kit with stably expressing internal genes for transcript normalization under specific exper-
imental conditions. While, a previous report has evaluated 12 commonly used reference genes
in a desi type chickpea var. ICC 4958 [35], the present study evaluated the expression stability
of 25 candidate reference genes including new generation candidate reference genes. Moreover,
assessing these genes in diverse tissue samples including, genotypes of chickpea representing
both cultivated and wild species across gene pools, different tissues/developmental stages and
abiotic stress conditions, ensures the robustness of our results owing to a wide range of variabil-
ity covered in our samples.

Table 4. Gene expression stability ranks of all 25 candidate reference genes in four sample sets of chickpea calculated using RefFinder.

Rank Genotypes Abiotic stress Different tissue All samples

Genes Geomean of ranking
values

Genes Geomean of ranking
values

Genes Geomean of ranking
values

Genes Geomean of ranking
values

1 UCP 3 TIP41 1.82 PP2A 2.85 ABCT 1.93

2 G6PD 5.26 CAC 3.03 ABCT 2.91 UCP 2.91

3 CAC 5.57 G6PD 4.6 VPS 4.28 CAC 3.46

4 YLS8 5.69 PEX4 5.54 CAC 4.53 G6PD 4.68

5 PEX4 5.7 SKIP16 5.57 TIP41 5.01 VPS 5.83

6 VPS 5.96 SAND 6.24 UCP 6.06 TIP41 5.9

7 ABCT 6.65 UNK 6.47 SAND 6.92 HSP80 8.43

8 HSP80 6.7 UCP 8.13 PEX4 8.22 SAND 8.57

9 SAMDM 6.85 ADH3 8.36 SKIP16 8.45 FBOX 9.53

10 ELF1b 8.44 UPL7 8.74 YLS8 9.5 PEX4 9.55

11 FBOX 8.73 VPS 9.35 FBOX 10.09 PPR 9.69

12 UPL7 8.97 ABCT 9.62 GAPDH 10.89 SAMDM 9.82

13 GAPDH 9.32 PP2A 9.62 HSP80 11.06 YLS8 9.89

14 TIP41 9.48 FBOX 11.76 PPR 11.18 GAPDH 10.47

15 SAND 10.47 PPR 12.89 G6PD 11.49 UPL7 12.15

16 PPR 12.52 ELF1b 13.31 ELF1b 12.75 PP2A 12.15

17 CDPK 12.74 SAMDM 15.36 ADH3 13.77 ELF1b 13.02

18 IF3 13.14 CDPK 15.74 IF3 13.78 CDPK 17.96

19 PP2A 17.14 IF3 18.38 SAMDM 17.06 ADH3 18.16

20 ADH3 18.93 CYP 18.69 IF4a 18.33 IF3 18.66

21 UNK 20.63 IF4a 18.99 ELF1a 20.22 UNK 19.65

22 IF4a 21.25 YLS8 19.95 UPL7 20.92 IF4a 20.22

23 ELF1a 23 HSP80 21.73 UNK 21.71 ELF1a 23.48

24 SKIP16 24.25 GAPDH 23.25 CYP 22.21 SKIP16 23.75

25 CYP 24.75 ELF1a 25 CDPK 24.25 CYP 24.75

doi:10.1371/journal.pone.0148451.t004
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The expression profiling showed that all the 25 candidate reference genes varied signifi-
cantly across the 20 samples tested. These results indicated that the most stable gene(s) among
all the tested genes must be determined statistically. The stability value of the most suitable ref-
erence gene or the best combination of genes may vary from one experimental set to another,
and for that reason the choice for reference genes for optimal normalization was made from a
set of candidate genes for each experiment and for all of them together. To identify most stable
reference gene under different experimental conditions, we grouped the diverse chickpea tissue
samples into four sample sets and validated the 25 candidate reference genes using geNorm
and NormFinder, two distinct statistical algorithms. Although, several studies have reported
differences between the outputs of geNorm and NormFinder [8, 47, 48], we observed a high
correlation between these rankings. In the present study, geNorm or NormFinder analysis in
all four sample sets revealed a high degree of similarity. From the top 10 stable genes identified,
6 to 8 genes were almost same, with slight changes in their ranking orders. Interestingly, three
most unstable genes remained same in all sample sets with both the algorithms (Table 3). To
determine the comprehensive ranking of candidate reference genes in a sample set, we also
used RefFinder that considered together the results of the four algorithms (geNorm, NormFin-
der, bestkeeper and deltCt method). Based on the stability rankings, different candidate refer-
ence genes have been proposed for their best suitability as reference genes depending on the
experimental conditions. This being an important consideration would imply that the refer-
ence genes used for biotic or abiotic stress studies in chickpea might not be suitable for gene
expression studies across genotypes and species.

Interestingly, new generation candidate reference genes selected for the current study per-
formed better than the traditionally employed reference genes. In particular, CAC (Arabidopsis
homologue: AT5G46630) was identified among the top four reference genes in all four-sample
sets, indicating that CAC transcript levels were stable in chickpea under different experimental
conditions tested. In this study, the CAC gene was selected as a candidate reference gene based

Fig 3. Relative quantification of aquaporin genes PIP1;4 and TIP3;1 to validate selected reference genes under drought stress conditions.
Expression of PIP1;4 and TIP3;1 genes in high VPD treated chickpea leaf sample of three genotypes were relatively quantified by comparing with their
control counterparts, with expression levels normalized with two most stable (ABCT andUCP) and least stable (CYP and SKIP16) reference genes.

doi:10.1371/journal.pone.0148451.g003
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on its highly stable expression in the Arabidopsis [3]. Besides, CAC has been reported to be the
best reference gene for normalization in tomato [6], drought stressed roots and genotypes of
coffee spp. [8, 17], during fruit development in cotton [18], across total developmental stages
and cultivars in mustard [14], and at various developmental stages in bamboo [49]. Based on
the present and previous studies, it can be concluded that the CAC gene is stably expressed in
different experimental conditions.

The uncharacterized conserved protein UCP022280 (UCP, Arabidopsis homologue:
AT4G26410) was most stably expressed in different genotypes of chickpea and ranked second
in all sample set. Previously, UCP gene was identified as stably expressed gene in Arabidopsis
microarray analysis [3], and different experimental conditions [50]. Interestingly, UCP gene
expression has reportedly been moderately stable in Arabidopsis under metal stress [4] and
buckwheat [51]. In contrast, the expression of UCP gene was most unstable in vegetative tissues
and maturing embryos of rapeseed [52]. An ATP-binding cassette transporter (ABCT) gene
known to play a variety of cellular roles such as auxin transport was also selected for validation
in the present study based on the microarray and qPCR validation in soybean, where ABCT
has been reported as most suitable for gene expression normalization [40]. In the present
study, ABCT gene was most stable when all samples were analyzed together and second most
stable gene in differential tissue sample set, which is in agreement with the study in soybean
where the ABCT gene was expressed stably under various abiotic stress conditions [53]. Besides
soybean, this study is the first to report ABCT as the stable reference gene in crop species. Simi-
larly, the TIP41-like family protein (TIP41; Tonoplast Intrinsic Proteins like protein;
At4g34270) coding gene that was selected based on the Arabidopsismicroarray data [3]
emerged as most stable gene under abiotic stress conditions, whereas ranked fifth in different
tissues and sixth in all sample set. These observations are in accordance with previous studies
where TIP41 gene stably expressed under different abiotic conditions in desert shrub [54] and
Chinese celery [55]. TIP41 gene also showed stable and similar expression regulation across
Brassica species regardless of experimental conditions [14, 16, 52] and has been reported to be
one of the most stable reference gene in many other plant species including soybean [56],
tomato [6], buckwheat [51], peanut [57], common hop [58], cucumber [59], bamboo [49], Chi-
nese pear [60] and olive tree [61].

Since our previous studies indicated stable expression of glucose-6-phosphate dehydroge-
nase (G6PD) gene under different experimental conditions in peanut [1], this was selected as
one of the candidate in the present study. Similar to peanut, G6PD gene ranked in top four
most stably expressed genes across different chickpea genotypes under abiotic stress conditions
and all samples set. However, these results are in contrast to the findings in soybean where
G6PD gene expression was least stable under developmental stages and different photoperiodic
treatments [56], under cadmium stress [62], and also varied most in all tested experimental
conditions [63]. The vacuolar protein sorting-associated protein 53 homolog (VPS) gene
selected as candidate reference gene in the present study has not been previously explored as
reference gene for qPCR analysis, it was identified as low copy gene in the legumes (unpub-
lished data) and subsequently cloned. Interestingly, VPS gene expressed stably in different tis-
sues and showed moderate stability across all samples and genotypes, ranking 5th and 6th

respectively, indicating its potential for inclusion as reference gene in expression studies in
other crop species.

The expression of CYP, ELF1a and IF4a genes were highly variable among the genes evalu-
ated under different experimental conditions. The CYP gene was least stable in all samples set,
across genotypes and different tissues, and showed high variability under abiotic stress. These
observations were intriguing since this was in contrast to our previous studies in peanut, where
CYP gene expressed most stably in vegetative stages and under abiotic stress conditions [1],
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and various tissues of soybean [56] and common bean [32]. Similarly, in this study ELF1a gene
was found least stable under abiotic stress conditions and showed highly variable expression in
other three sample sets, whereas IF4a genes was highly variable in all the four sample sets.
These observations are in contrast with the previous study in chickpea [35] where ELF1a and
IF4a genes were reported among the top three stably expressed genes in all three experimental
conditions. Besides, the other two genes GAPDH and HSP80 that were previously reported to
have stable expression [35], showed high variability under abiotic stress, but were moderately
stable in other three sample sets. These differences justify the evaluation of this new set of refer-
ence genes indicating that, these new generation reference genes performed better than the
conventional reference genes.

According to Vandesompele et al. [9] and as per the MIQE (Minimum Information for
Publication of Quantitative Real-Time PCR Experiments) guidelines [45], two or more refer-
ence genes were required for accurate normalization of gene expression data. Several other
reports also suggested that the application of more than one reference gene could lead to more
reliable data in qPCR assays [18, 64]. The geNorm proposed 0.15 as the threshold of pairwise
variation values, below which the inclusion of an additional reference gene is not required. In
this study, three out of four sample sets (genotypes, different tissue and abiotic stress sample
sets) showed pairwise variation V2/3 values below 0.15, thereby indicating that the two refer-
ence genes were enough for normalization under these experimental conditions, whereas for
all sample set three reference genes were required for normalization. These high pairwise varia-
tion values in all sample set may have resulted due to a highly diverse sample set, i.e., highly
diverse samples might have significant differences in gene transcription including those of the
candidate reference genes and were likely related to the developmental and metabolic proper-
ties of each distinct tissue.

To validate the selected candidate reference genes based on RefFinder ranking, expression
of two chickpea aquaporin genes (PIP1;4 and TIP3;1) that belong to two different aquaporin
sub-families (unpublished data) were assessed. Plant aquaporin proteins play major role in
water transport through cell membranes and these genes are expressed differentially in differ-
ent tissues that are also altered under different abiotic stresses in higher plants. The chickpea
TIP3;1 gene was significantly up regulated under high VPD conditions in leaf tissues of three
chickpea genotypes with relatively higher expression in susceptible genotype ICC1882, when
normalized with ABCT and UCP reference genes. These results were in accordance with our
previous study in sorghum [65] and in chickpea (unpublished data), where up-regulation of
TIP genes in leaf tissues was reported under different abiotic stress conditions, but the normali-
zation was obscured when the least stable reference gene(s) (CYP and SKIP16) were used. The
validation results clearly indicated the demerits of using unstable reference gene(s) for normali-
zation and confirmed the reference gene stability of the selected candidate genes.

Conclusions
The new generation candidate reference genes (CAC, UCP, ABCT, G6PD, VPS and TIP41)
selected for the present study performed significantly better than the traditionally employed
reference genes that were stably expressed across different experimental conditions. However,
the CYP and ELF1a genes that were most unstable should be avoided for use as reference genes
in gene expression studies in chickpea. Pairwise variation analysis indicated that two genes are
enough for normalization of gene expression data in different sample sets except when all sam-
ples were analyzed together, where three genes are required. The validation of selected refer-
ence gene by normalizing aquaporin gene expression data further confirmed the stability of the
ABCT and UCP as reference genes under high VPD conditions. These results provide
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information that can ensure more accurate qPCR based gene expression quantification towards
chickpea functional genomics.

Supporting Information
S1 Fig. Amplification of specific PCR products: with genomic DNA (A) and cDNA (B) as
templates using gene-specific primers for each candidate reference gene tested in the study.
1 to 25 indicates the loading order of the candidate reference genes as mentioned in Table 2,
M- DNA size marker. All primer pairs except CYP, FBOX,HSP80 and PPR amplified a larger
size PCR product with DNA template as compared to cDNA template, indicating the position
of primer pairs spanning at least one intron.
(TIF)

S2 Fig. Melt curves of all 25 candidate reference genes evaluated in this study.
(TIF)
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