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Abstract: Remote sensing-based evapotranspiration (ET) models with various levels of sophistication
have emerged recently with the possibilities of user-defined model calibrations. Their applica-
tion for water resources management and climate studies from regional to global scale has been
rapidly increasing, which makes it important to validate field scale ET in a complex crop assem-
blage before operational use. Based on in situ flux-tower measurements by the eddy-covariance
(EC) system, this study tested three single-source energy balance models for estimating daily ET
from fennel/maize/ryegrass-clover cropland rotations in a Mediterranean context in southern Italy.
The sensitivity of three user-friendly ET models (SEBS, QWaterModel, and METRIC-EEFlux) with
reference to the EC system over a center pivot irrigated cropland is discussed in detail. Results in
terms of statistical indicators revealed that SEBS and METRIC-EEFlux showed reasonable agreements
with measured ET (r2 = 0.59SEBS, RMSE = 0.71 mm day−1; r2 = 0.65METRIC, RMSE = 1.13 mm day−1)
in terms of trends and magnitudes. At 30 m spatial resolution, both models were able to capture the
in-field variations only during the maize development stage. The presence of spurious scan lines
due to sensor defects in Landsat L7 ETM+ can contribute to the qualities of the METRIC-Efflux’s
ET product. In our observation, the QWaterModel did not perform well and showed the weakest
congruency (r2 = 0.08QWaterModel) with ground-based ET estimates. In a nutshell, the study eval-
uated these automated remote sensing-based ET estimations and suggested improvements in the
context of a generic approach used in their underlying algorithm for robust ET retrievals in rotational
cropland ecosystems.

Keywords: actual evapotranspiration; Mediterranean; summer-Maize rotation; EEFlux; SEBS;
QWaterModel; eddy covariance

1. Introduction

Evapotranspiration (ET) is a most important component flux in the annual water
balance of semi-arid and arid regions [1]. Since the early eighties, ET estimation through
modeling and remote sensing techniques has gained much attention in the context of
enhancing water productivity in agriculture, also in the context of enhanced water scarcity
and climate change [2]. Global climate projections postulate that not just the arid and
semi-arid regions, but even irrigated agroecosystems in the Mediterranean regions are
highly vulnerable to water scarcity [3]. For climate change preparedness, accurate water
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accounting from irrigated fields is important for sustainable water use and enhanced
water productivity, especially in semi-arid regions where water availability is limited and
irregular. ET, as a versatile biophysical indicator, can be considered as a proxy for crop water
demand and helps in estimating the optimal water need for crops at the right time and also
helps in the pre-determination of rotations in the crop field under stress conditions [4].

Being a complex eco-hydrological process that is governed by the biophysics operat-
ing in the soil–plant–atmosphere [5,6], ET estimation depends on various soil hydrologi-
cal, plant-physiological, and meteorological variables that also bring uncertainties in the
measurements and estimations [7–9]. It has been observed in various ET estimation ap-
proaches such as hydrological (e.g., soil water balance depletion method, weighing lysime-
ters) [10], micrometeorological (energy balance and Bowen ratio, aerodynamic method,
eddy covariance) [11,12], and plant physiological (sap flow method, Chambers system or
Penman–Monteith model) or empirical (methods based on crop coefficient) [13,14], soil
water balance modeling) that various complexities operate and scale issues are inherently
rampant [15–17]. There are also methods of field-based modeling approaches (i.e., ETo
calculator [18], CROPWAT8.0, or MY-SIRR [19,20]). Mostly, these are point-based methods,
tedious and data demanding, and spatially insufficient for large-scale needs. In contrast,
remote sensing-based ET estimates are a cost-effective option that can estimate ET at larger
scales with various degrees of granularities. As the satellite sensors are not capable of
measuring near-surface vapor content, ET fluxes are generally determined by the energy
balance approach on pixels in the spatial domain [21–23].

In the energy balance technique, models such as SEBS, TS-SEBS, SSEBop, METRIC,
SEBAL, etc. use auxiliary surface parameters (albedo, emissivity, elevation, vegetation,
and leaf area index, etc.) to predict turbulent fluxes on the Earth’s surface. These models
differ in terms of computing sensible heat flux (H) and estimating fraction of reference ET
(ETrF) [24–32]. Some models use land surface temperature (LST) and vegetation index (VI)
relations to derive actual ET (ETa) and crop coefficients (Kc) or either deploy the normalized
difference vegetation index (NDVI) and basal crop coefficient (Kcb) to estimate crop water
and transpiration [26]. This spatial ET estimation has great importance in hydrology, water
management, and agriculture. Based on these concepts, real-time ET products have been
developed at multiple temporal and spatial resolutions in recent years using cloud-based
computing opportunities by adopting user-friendly Graphical User Interface (GUI). Some
examples are WAPOR (developed by the Food and Agriculture Organization (FAO) to
monitor water productivity), EEFlux (Google Earth Engine Evaporation flux developed
by a consortium of the University of Nebraska-Lincoln, Desert Research Institute (Desert
Research Institute) and University of Idaho), SSEBop (the operational simplified surface
energy balance model, provided by USGS Famine Early Warning Systems Network),
designed for agri-water-food assessment from local to continental scales [27,28].

In the literature, various single-source models (SEBS, METRIC and SEBAL) exist
with low model complexity and simple parameterization scheme which can simulate
turbulent heat fluxes. To improve the accuracy of turbulent heat fluxes, the more advanced
dual-source energy balance models (TSEB and ALEXI) was developed with complex
calibration and parameterization scheme which also require large number of input datasets
which thereby compromise the computational efficiency of those models [29–31]. In
order to increase the computational efficiency in dual-source energy balance models as
well as simulate regional to global fluxes with higher accuracy, an advanced and a more
robust dual-source energy balance model (TS-SEBS) has been recently developed which
require fewer number of input datasets [32] to yield fluxes from regional to global scale.
Although all of the above-mentioned models can simulate energy balance components
with acceptable accuracies based on the manual calibration, complex parameterization,
field-level and programming-based expertise. However, due to the unavailability of a
user-friendly GUI, those models are difficult to handle by non-technical water managers.
Nevertheless, in the recent era, the complex calibrations and parameterizations of energy
balance model-based calculations are being substituted with ET applications consuming
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simple user-friendly GUI. These models require limited climate and surface information
for flux calculations that can even detect ET dynamics in response to ground energy fluxes.
Despite the landscape heterogeneity and water attenuations, these simple models can
even predict crop water stress. This study was particularly designed to evaluate the
predictive ability of open-source ET estimation tools developed in three different platforms,
like METRIC-EEFlux on Google Earth Engine, SEBS model on PCRaster (programming
software for environmental modeling), and QWaterModel as the QGIS plugin. These
models are comparable due to their single-source energy balance scheme that uses lumped
resistance and assume plant and soil as one surface layer, which detects the flux turbulence
via calculating aerodynamic and surface resistance at the top of the canopy [33–35].

This study particularly tested the existing models’ robustness in capturing the field-
level ET estimates for a rotational Mediterranean maize cropping system that was irrigated
by central pivot system. It is important to mention that the study site had irrigation
impairments in 2009, which were taken into consideration. In this context, the study aimed
to: (1) assess the predictive ability of freely available single-source energy balance models in
estimating actual ET in comparison to ground-based flux tower measurements and (2) the
EC system’s ability to sense field-based variations in a rotational maize agroecosystem. For
comparison purposes, three energy balance applications (METRIC-EEFLUX, SEBS, and
QWaterModel) were tested to investigate how well these models performed in a rotational
irrigated field (maize, fennel, ryegrass-clover), which was also an experimental site of a
managed agroecosystem under ten years of close surveillance (2004–2014).

2. Site Features

The Borgo Cioffi Farm, (40.52◦ N, 14.95◦ E, 15 m a.s.l.) is located in the Sele Plain,
Southern Italy at a 5 km distance from the Tyrrhenian Sea (Figure 1). This 15-hectare
Buffalo Farm is an experimental field for an agroecosystem where maize and forage crops
are grown. It is watered by a central pivot system while neighboring fields are on the
mobile irrigated system. It has sandy-clay soil (clay: 52%; silt: 28%; sand: 20%), mostly
alluvial due to the nearby Sele River. The higher clay content in the soil means a larger
soil water-retaining capacity. Its field capacity and wilting points are 30.9 ± 3.8% and
17.2 ± 1.7%, respectively, with 2.5 ± 0.3% organic matter content.
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The mean annual air temperature is 18 ◦C, with a mean maximum up to 30 ◦C in the
summer, and the mean annual precipitation is 600 mm. The main cultivated species are
maize and alfalfa, along with some winter grass crops (i.e., fennel, ryegrass, and clover).
The same crop rotations were in place before the field was administered as a flux site.
However, maize was only grown until 2010, later, replaced by alfalfa until 2015. The
terrain is mostly flat with an approximately 2% gentle slope toward the south. The eddy
covariance and the met station lie approximately in the center of the field. This tower
monitors carbon, water, and energy fluxes between the agroecosystem and atmosphere. Its
footprint is 182 m along the prevalent wind direction (NE–SW) [36]. Further details on the
installed instruments are summarized in Table 1.

Table 1. Specific characteristics of the instruments installed at the Borgo Cioffi farm in Italy.

Instrument Field Measurements

Eppley Laboratory Inc., Newport, RI, USA Incident and reflected global radiation (4 m)
Rebs Q7.1, Seattle, WA, USA Net radiation (4 m)
LI-190SA, LI-COR Inc., Lincoln, NE, USA, Rotronic MP,
Campbell Sci. Ltd., Shepshed, UK

Incident and reflected photo-synthetically active
radiation, air temperature and relative humidity (4 m)

Sonic anemometer R3 (Gill Instruments Ltd., Lymington, UK) Wind speed and direction (4 m)
Rain Collector II, Davis Instruments, Hayward, CA, USA Precipitation and irrigation (ground level)
TCAV thermocouple probes Soil temperature (0.3 m depth)
CS water content reflectometer (Campbell Scientific, Ltd., Shepshed, UK) Volumetric soil water content (SWC)—(0.3 m depth)

3. Materials and Methods
3.1. Ground-Based Actual Evapotranspiration (ETa) Estimates

Level 3 daily observations of the IT_BCi EC flux site were downloaded from the
ICOS-Carbon portal, a network of flux sites measuring. The eddy covariance data were
used to derive ETa by following the Bowen ratio method, applied as [37,38];

ETa_Bowen =
1

λρw

 Rn − G

1 +
(

γ ∆T
∆e

)
 (1)

where ‘Rn’ is the net radiation; ‘G’ is the ground heat flux; ‘γ’ is the psychometric constant;
‘∆T’ and ‘∆e’ are the temperature and humidity difference between surface and height; ‘ρw’
is the water density; and ‘λ’ is the latent heat of vaporization.

3.2. Ground-Based Reference ET (ETO_FAO56)

ETO was computed from daily observations using the standard FAO56 Penman–
Monteith model that refers to the water consumed by a well-watered grass reference crop;
the model is fully described in [39].

ETO_FAO56 =
0.408∆(Rn − G) + γ

[ 900
T+273

]
u2(es− ea)

∆ + γ(1 + 0.34u2)
(2)

where ‘ETO’ is the reference ET (mm day−1); ‘Rn’ is the net radiation at the crop surface
(MJ m−2 day−1); ‘G’ is the soil heat flux density (MJ m−2 day−1); ‘T’ is the mean daily air
temperature (◦C) at a height of 4 m; ‘u2

′ is the wind speed(ms−1) at a height of 4 m; ‘es’ is
the saturation vapor pressure (kPa); ‘ea’ is the actual vapor pressure (kPa), ‘∆’ is the slope
of the vapor pressure curve (kPa ◦C−1); and ‘γ’ is the psychometric constant (kPa ◦C−1).
The soil heat flux is ignored (G = 0) in daily applications.

These methods were applied on EC data to determine weekly ET trends of ETa and
ETo across a ten-years span (2004–2014), since some data on net radiation were missing
for January–April 2004 and September 2011–April 2013. Therefore, a temporal subset of
2008–2009, related to the rotational pattern was used in study because later, the crop pattern
was replaced with alfalfa only, with no maize rotations.
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3.3. Remote Sensing Data and Retrievals

The study used 36 near cloud-free Landsat 5 Thematic Mapper and 7 Enhanced
Thematic Mapper Plus (ETM+) images (path 189/row 32) retrieved through Google Earth
Engine (GEE) for the selected time range (2008–2009) covering maize–fennel–ryegrass–
clover crops (Table S1). Landsat was chosen due to its medium spatial resolution and
reasonable seasonal coverage for historical analysis (2008–2009). Image pre-processing and
variable retrievals were also done on the GEE Platform. Processing involved steps like
cloud masking, at-sensor digital number to radiance conversion, and conversion to Top of
Atmosphere (TOA) or at-sensor reflectance [40] by applying algorithms, such as:

1. ee. Algorithms.Landsat. simpleCloudScore
2. ee. Algorithms.Landsat. calibratedRadiance
3. ee. Algorithms.Landsat.TOA

Furthermore, gap-filling of Landsat ETM+ images was done through the USGS L7
Phase-2 Gap filling protocol using the single kernel method [41,42]. Additionally, SEBS
dependent variables (albedo, NDVI, emissivity, and surface temperature) were derived
using the equations given in Table 2.

Table 2. List of equations used for deriving input variables from Landsat data for the Surface Energy
Balance System (SEBS) model processing.

Variables Equations

Albedo αA +βB + γC + δD + εE − θ)
µ

NDVI NIR − Red
NIR + Red

Fractional Cover fc =
(NDVI − NDVImin)

2

NDVImax − NDVImin
Emissivity fc × (a + b)

where A is Blue, B is Red, C is NIR, and D as SWIR1 and E as SWIR2 are the top-of-the canopy reflectances of the
Landsat bands, respectively, and the respective coefficients are α = 0.356; β = 0.13; γ = 0.37; δ = 0.085, ε = 0.072,
θ = 0.018, and µ = 1.016 [43,44]. For emissivity, fractional vegetation cover was computed first from the minimum
and maximum NDVI values and coefficients a = 0.004 and b = 0.986 [45].

Six environmental variables (NDVI, emissivity, and 30 m-SRTM DEM [46], LST, frac-
tional cover, and albedo) were incorporated in the SEBS model. The same variables were
used in the automated METRIC-EEFlux application, except for the National Land Cover
Database (NLCD) because SEBS uses fractional vegetation cover derived from LAI for the
surface roughness and aerodynamic stability estimations. The study did not modify the
model scheme to test their applicability for the site in the present state.

After flux estimations, ETa was computed from images by solving the energy balance
equation for each pixel. ETa average was extracted from daily ETa maps (36 images)
within the 182 m circular footprint. Later, the averaged modeled ETa was compared with
ground-based ETa for assessment.

3.4. Crop Field Related Measurements

In field, daily soil water content (SWC) was measured at a depth of about 0.03 m via
two soil moisture sensors (Theta Probe, Delta-T devices Ltd., Cambridge, UK) while gross
primary production (GPP) was calculated with The Eddymeas and Eddysoft packages through
the partitioning of net ecosystem exchange (NEE) into ecosystem respiration (Reco), and
gross primary production (GPP) on the CarboEuropeIP database [47]. Leaf area index (LAI)
was estimated using an empirical relation between LAI and the weighted difference of
vegetation index (WDVI) derived from the SPOT image. Crop yield was determined as
the product of GPP accumulated over the growing season of the respective crop and a
crop-specific harvest index, and processing detail was also mentioned in [35]. In this study,
agrometeorological variables were submitted for descriptive statistical analysis: range,
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maximum, average for maize and fennel crop cycle (i.e., GPP, above ground biomass (AGB),
LAI, canopy height, yield (Tables 3 and 4)). Moreover, crop productivity data was used to
calculate water use efficiency (WUE) as follows [48]:

WUE =
Yield
ETa

(3)

where ‘Yield’ means the yield of maize or fennel (kg·ha−1) in each year and ‘ETa’ is the
total measured ETa (mm) in the corresponding year throughout the respective crop cycle.

Table 3. Sum of rain, irrigation and ETa for the period 2008–2009.

Crop ETa
(mm)

Irrigation
(mm)

Rain
(mm)

Rainy
Days Duration

Maize 2008 305.41 34.21 68.59 18.00 1 May–22 August 2008
Fennel 2008–2009 179.61 0.00 924.67 88.00 15 September 2008–5 February 2009

Maize 2009 275.90 291.60 24.90 17.00 11 June–8 September 2009
All crops 1336.88 399.58 2966.35 309.00 1 January 2008–31 December 2009

Table 4. Yield and crop productivity of maize and fennel.

Crop GPP
(g cm−2)

AGB
(m2m−2)

Max Yield
(kg m−2)

WUE
(kgha−1mm−1)

Canopy Height
(m)

Max LAI
(m2m−2)

Maize 2008 9.55 2.44 1171.30 5.20–30.00 0.31–2.95 4.98
Fennel 2008–2009 2.41 0.87 406.39 6.80–36.40 0.10–0.80 3.00

Maize 2009 8.20 1.92 923.50 3.60–34.00 0.26–2.64 4.80

3.5. Energy Balance Models

Energy balance models require spatially distributed visible, near-infrared, and thermal
infrared inputs from satellite imageries to use their spectral information for deriving surface
fluxes. Some of these models are available in the public domain.

With simple parameterization of land cover micrometeorology, these models calculate
energy balance through net radiation (Rn), soil heat flux (G), and sensible heat flux (H) at
each remote sensing pixel and estimate the latent heat (λE) as the residual term as follows:

λE = Rn −G−H (4)

3.5.1. Mapping Evapotranspiration at High Resolution with Internalized Calibration-
(METRIC)-EEFlux

The Earth engine evapotranspiration flux (EEFlux) model operates on the Google
Earth Engine platform to derive RS-based ET estimates using the METRIC algorithm [49].
The application deploys Landsat’s thermal and shortwave bands to derive actual ET (ETa)
from albedo, vegetation, and other surface parameters [50,51]. Images in METRIC-EEFlux
were internally calibrated from the alfalfa reference ET (ETo) using gridded weather data
to retrieve the fraction of ETo (EToF). This fraction was used to extrapolate instantaneous
ET (ETins) according to the given equations.

The first term, ETins belongs to ET at each pixel at the time of satellite overpass,
derived from latent heat flux as;

ETins = 3600× LE
λ× ρw

(5)

where ‘ETins’ is instantaneous ET (mmh−1), ‘λ’ is latent heat of vaporization (Jkg−1), and
‘ρw’ is density of water (kgm−3).
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The fraction of reference ET is computed as;

ETOF =
ETinst

ETO
(6)

In the end, the ETa at each pixel is derived as;

ETa = ETOF× ETO (7)

The EEFlux approach is practically congruent with the traditional FAO method for
actual ET (reference ETO × Kc), where ETOF is similar to crop coefficient (Kc). In this
automated process, hot and cold pixels estimated from ETO are used in modeling sensible
heat flux (H). This automation has reduced the intermediate estimation errors and biases
inherent to Rn, G, and subcomponents of H.

In this study, the Google EEFlux application (version 0.20.2) was used. The EEFlux
portal also provides ready-to-use intermediate products (i.e., NDVI, LST, DEM, albedo,
land cover). The temporal analysis of ETa maps showed that some image pixels had
null ETa values at the field location due to a scan line issue in ETM+. Therefore, cloud
masking and de-stripping of the ETM+ images were done in data processing for SEBS,
model explained below. About six out of 36 images had the scan lines issue over the farm
location, which were then improved and are shown in the final SEBS-ET product.

3.5.2. Surface Energy Balance System (SEBS)

The SEBS model [52] implemented in PCRaster Python Library [53] can be down-
loaded from GitHub repository. Previously, it was tested on Advanced Spaceborne Thermal
Emission and Reflectance (ASTER) images for homogenous and heterogeneous land cover,
the details of which are in [54]. In summary, the model contains three submodules: (1) for
energy balance terms derivation; (2) roughness length derivation for heat transfer; and
(3) for stability parameters [52]. Consequently, it gives the energy balance terms (LE, G,
and H), relative evaporation, evaporative fraction (EF), and evapotranspiration. Rn and G
computations are almost similar in most SEB models and they do not require hot and cold
pixel selection, like in METRIC. Instead, it determines sensible heat flux (H) by solving the
similarity relationships for the wind speed profile (u; ms−1) and the difference between
potential temperature (K) at the surface and a reference height. While in METRIC, the
near-surface temperature difference (dT) is approximated from surface temperature (Ts)
using a simple linear relationship dT = a + bTs (where a and b are correlation coefficients).

3.5.3. QWaterModel

QWaterModel is the QGIS plugin for calculating ETa from LST maps developed on
the energy balance model DATTUTDUT (deriving atmosphere turbulent transport useful
to dummies using temperature). This model uses LST as a key parameter while assuming
that ET is low as a result of hot pixels and ET is high for cold pixels [55]. In the LST map,
the maximum temperature (Tmax [K]) is taken as the hottest pixel, whereas the minimum
temperature (Tmin [K]) is taken as the 0.5% lowest temperature in the image to avoid
extreme conditions (open water). Previously, the QWaterModel was applied in a tropical
environment using high resolution drone-based thermal images for predicting ETa in an
Indonesian oil palm plantation against eddy covariance measurements. Landsat images
were not tested in the study due to high cloud cover in their specific time span [56], how-
ever, they were used in the original DATTUTDUT model study for its comparison with
other conventional energy balance models (SEBAL, SEBS) [55]. The original DATTUTDUT
model estimates the radiation budget from a set of parameters and Sun–Earth geometrics,
applicable to cloud-free images only. In this study, model parameters were configured
according to in situ field measurements, and the application was tested for clear sky condi-
tions to explore its usability and generality for Mediterranean crops. The performance was
tested against other open-source applications (i.e., SEBS and METRIC). In the application,
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ETa was derived from latent heat fluxes by calculating the latent heat of vaporization using
in situ air temperature and the lowest pixel temperatures from the LST maps for the plugin
estimates following the methodology explained in [56].

3.6. Validation of Model-Based ETa

Modeled ETa estimates were validated against EC-based measured ETa. Validation
was done only for one EC site located at the Borgo Cioffi Farm. Considering the height of
the tower and the direction of prevailing winds, a circular footprint of 182 m was used.
For statistical comparison, the determination of coefficients (r2), root mean square error
(RMSE), mean bias error (MBE), and mean percentage error (MPE) were calculated to
understand the agreement between the model-based estimates and EC measurements. The
detailed mathematical formulations are as follows.

r2 =
∑N

i=1
(
ETestimated,i − ETmeasured

)2

∑N
i=1
(
ETmeasured,i − ETmeasured

)2 (8)

RMSE =

√√√√ 1
N

N

∑
i=1

⌊
ETestimated,i − ETmeasured,i

⌋2 (9)

MBE =
1
N ∑N

i=1(ETestimated,i − ETmeasured,i) (10)

MPE =
1
N

N

∑
i=1

(

⌊
ETestimated,i − ETmeasured,i

⌋2

ETmeasured,i
)× 100 (11)

where ‘N’ is the number of data (days); ‘ETmeasured,i’ is the EC-based ETa each day at the ith
position; and ‘ETestimated,i’ is the ETa of the corresponding day at ith computed by one of
the models considered herein.

4. Results and Discussion
4.1. Averaged Ground Based Evapotranspiration (ET) Trend and Temporal Selection

The time series analysis as presented in Figure 2, demonstrated the weekly averaged
ET calculated for ten years (2004–2014), later, used as climate normal. The applied method
is explained in Sections 3.1 and 3.2. According to the magnitude, ETo was higher than
ETa every year except 2012. Unparalleled ETo trends in the 2012 and 2013 series were due
to the absence of measured net radiation (Rn) during January–April 2004 and September
2011–April 2013, which is a principal energy input in the ET estimation. To assess the
accuracy of the energy balance models specifically, those unparalleled times series were
excluded from the analysis, and only a subset of 2008–2009 was chosen wherein ETo was
temporally aligned with ETa.
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Figure 2. Weekly averaged reference evapotranspiration (ETO) and actual ET (ETa,) obtained from
eddy covariance measurements for the IT_BCi buffalo farm covering the entire site-surveillance
period (January 2004 to December 2014). The gap exists in ET estimation due to the unavailability of
net radiation (Rn) in January–April 2004 and September 2011–April 2013 in the eddy covariance data.
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4.2. Irrigated Water Management and Crop Performance

Regarding weather conditions in the selected period, the field showed average maxi-
mum temperature during summer between 25–30 ◦C and a minimum temperature between
10–15 ◦C.

Average relative humidity (RH) was comparatively higher in winter, ranging between
60 and 80% (Figure 3a). Rainfall frequency was also higher in winter with a maximum
weekly sum equivalent to 140 mm, the field experienced higher rainfall at the end of 2008
with a significant precipitation decline in the next summers, whereas soil water was also
reduced during the no-crop season and subsequent ryegrass-clover coverage in winter 2009.
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The graph also explained crop management practice, when soil water content dropped
to 5% in 2009, it was irrigated for maize crops during the dry period, as being irrigated in
2008 too. It was observed that soil water content significantly dropped in 2009 compared
to 2008, possibly due to fennel cultivation, which consumed sufficient soil water. Through
2008 irrigation routine, it was observed that four rounds of irrigation were not enough for
soil, as obvious from high seasonal ETa, this moisture decline get stabilized after 11 rounds
of irrigation in 2009, at a maximum of 60 mm and a minimum 20 mm (Figure 3b). This
field behavior was further examined through measured and estimated ETa comparisons
during the crop cycles.

Field behavior was further examined by descriptive statistics on field productivity
and water consumption (Tables 3 and 4) including all crops and fennel–maize rotation, as
illustrated in Section 3.4. Overall, plant density was lower in 2009 than in 2008 due to a
fault in the irrigation system that occurred at the early vegetative stages of maize in 2009,
by which seed establishment and seedling survival were impaired; this aspect justifies
the low biomass productivity in 2009, equivalent to 1.92 m2, AGB (Figure 4b,d), whereas
the total water influx [precipitation and irrigation] was lower in 2008, compared to ETa,
indicating water stress conditions in 2008. The higher ETa in 2008 means that significant
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water was consumed in maize senescence period and evaporated during the dry period;
in contrast, ETa was relatively lower in 2009 during maize growth, with slightly lower
gross primary productivity (GPP = 8.2) and its estimated WUE was higher than last year,
though with lower canopy height. In comparison to maize, the fennel showed greater WUE
under Mediterranean conditions. Nevertheless, due to lower yield and biomass by fennel
(Figure 4c), maize is still important for the field productivity (Figure 4b,d). Whether this
crop arrangement was optimum or not for the site, it was difficult to answer with two years
of agronomic data. However, it can be explored by long-term assessment of WUE and water
productivity of this experimental site. This study, however, focused more on the energy
balance models’ capacity to address farm-level complexities at a 30 meters’ resolution.
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To retrieve model estimations about ETa, Landsat 5 and 7 images were processed for
2008–2009. Their temporal correspondence with ETa is shown in Figure 5, along with a
comparison of the study year’s ETa with the ETa climate normal (2004–2014). The analysis
showed high evaporative demand during summers, which was also the maize growing
season in both years. This temporal behavior is in agreement with the ETa climate normal
in the field, indicating that ETa is more sensitive to seasonal variations than crop type,
because of the fact that this field grew maize up to 2010. Later, it was replaced with alfalfa
up to 2014, but no significant signature regarding change in crop rotation was found in the
average trend of climate normal.

This aspect also needs further research as to which crop, in particular, can deviate
seasonal ETa from the ETa climate normal conditions, which can be analyzed with different
crop ETa comparisons. The present trend, however, justifies the use of general energy
balance models that estimate ET, regardless of crop type.
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4.3. Evaluation of Model-Based Evapotranspiration

To confidently use ET tools in hydro-meteorological studies, it is important to assess
their independent accuracies. Therefore, we analyzed, assessed, and applied three models
(METRIC-EEFlux, SEBS, and QWaterModel) against EC-based ETa measurements. The
results of our scatterplots and temporal analysis are shown in Figures 6 and 7. According
to the results, both SEBS and METRIC-EEFlux captured seasonal ETa estimations in corre-
spondence with flux tower ETa, except for the QWaterModel. This model overestimated
the ETa magnitude during the maize period in 2009. Among all three models, METRIC-
EEFlux performed better as indicated by the error matrix (r2 = 0.65, RMSE = 1.13 mm day−1,
MPE = 10.7%, MBE = 0.34) in Figure 7. This showed correspondence with measured ETa
trends throughout crop cycles and was deemed reasonable in the case of short crops (fen-
nel, rye-grass, clover). The performance of the SEBS was better than METRIC-EEFlux in
terms of RMSE (r2 = 0.58, RMSE = 0.71 mm day−1, MBE = −0.05), however, was similar
in MPE = 10.3% with the lowest MBE (−0.05). Though SEBS and METRIC-EEFlux had a
comparable statistical evaluation, the results showed that METRIC-EEFlux overestimated
ETa in summer 2008, whereas SEBS slightly underestimated, as illustrated in Figure 6. The
1:1 line in Figure 7 also indicated that METRIC-EEFlux overestimated the daily ETa of
rotational crops for ETa values higher than 1.13 mm day−1, however, this was lower by
SEBS in comparison (RMSE = 0.71 mm day−1).
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Figure 7. One-to-one comparison of modeled ETa on y-axis and measured ETa on x-axis for the
study period using the results of three single-source energy balance models: (a) METRIC-EEFLUX,
(b) SEBS, and (c) QWaterModel with (d) camera image of the eddy covariance system installed on the
IT_BCi site, whose measurements used for validation. In comparison, SEBS showed the lowest error
and METRIC-EEFlux showed highest congruence with EC based estimation while QWaterModel
showed scattered behavior with the validation data.

In contrast, the QWaterModel showed significant dissimilarity with the measured
ETa (r2 = 0.09 with a difference of RMSE = 2.65 mm day−1 and highest MPE = 14%,
indicating the least fitting model for crop arrangements under study. While same mete-
orological parameters were used for simulations in both SEBS and QWaterModel, while
METRIC-EEFlux used the automated input of gridded weather data. QWaterModel showed
tremendous difference with 0.4–0.8 mm day−1 values in June, lower than the expected
range (3–4 mm day−1), whereas neither it could give satisfactory results during the maize
growing season. The reason could be its sensitivity to the in situ measurements of net
radiation and shortwave irradiance, as mentioned in [55,56] and also observed during
analysis. This application is perhaps more effective to thermal camera images, as tested
previously on oil palm plantations since no good results were obtained for the Landsat
images in this study. QWaterModel developers also suggested excluding other artifacts
from the thermal image as a necessary step and manually defining minimal and maximal
temperatures for further estimations, since the model solely depends on the LST image.
It is also recommended to first calibrate satellite images from ET by planes, drones, and
handheld or fixed thermal cameras (e.g., using QWaterModel) to be used for temporal
and spatial analysis [56]. This research also confirms that the use of Landsat images in the
QWaterModel with ET calibration is essential.

Overall, the lumped results suggest that METRIC-EEFLUX and SEBS-ET products can
be equally used considering their better performance and correspondence in trend with the
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ground measurements. However, it would be an advantage if SEBS could also be available
on a GEE platform like METRIC-EEFlux.

Figure 8 showed only those images where scanlines were observed over the flux site
with the METRIC-EEFlux and QWaterModel based ET product. It illustrates that the use
of intermediary products of METRIC-EEFlux also has no advantage if the scan line issue
persists. Thus, gap-filling of METRIC-EEFlux end products is equally important to get a
better ETa output over the rotational crop field to avoid different spatial ETa ranges by
each model. The map also highlights the indifferent response by the QWaterModel-based
ETa in the L7 SLC-off based product.

Figure 8. Cont.
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Figure 8. Maps present the Landsat 7 images showing no-data over the field location due to scan line
corrector (SLC) failure, except for the SEBS, where gap-filled protocol was applied before simulations
in SEBS. Different panels also highlight the spatial differences among ETa estimates by (a) SEBS,
(b) METRIC-EEFlux, and (c) QWaterModel in the spatial ET maps.

At a 30 m resolution, SEBS and METRIC-EEFlux could show the in-field ETa variations
during the maize development period only, as obvious in the cases of May 2008 and July
2008, while QWaterModel could not retrieve them. However, variations were not visible
in September 2008 and November 2008 during the fennel growth period, where field
ETa was very low, ranging between 0.8–1.8 mm day−1. This indicates that the spatial ET
estimations for short crops could be particularly challenging for these applications at a 30 m
resolution. It also implies the use of high resolution ETa for short crops water assessment in
agrometeorological studies. Moreover, current applications showed reasonable agreement
for tall crops like maize; the same was observed in the maize crop study conducted in
Brazil using the METRIC-EEFlux tool [28] and tested on MODIS images for the Nile
Delta River in Egypt [57]. Since it was the first ET based study conducted over the Borgo
Cioffi experimental site, which also contained short crops, further work on crop WUE
and productivity is needed to better understand irrigated field performance in water
productivity and for the selection of the optimum crop pattern considering water stress
conditions in the summer.

Overall, the newly built Google Earth Engine and other open-source applications made
ETa estimations convenient, though poor product quality was observed in the generalized
energy balance schemes. Such minor differences in ETa magnitude may cast a significant
impact on large-scale crop water need assessments as realized in [58]. Improvements in
online energy balance applications can make ETa assessment more precise and accessible
globally, however, cross-validations with in situ data at the farm scale are still imperative
for better crop management.
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5. Conclusions

In this study, we assessed the performance of three single-source energy balance
models available on public domains that require minimum calibrations (i.e., SEBS, QWa-
terModel, and METRIC-EEFlux). They were tested on an irrigated maize rotational field,
which was a registered EC site on ICOS and FLUXNET platform (the global network of
micrometeorological tower sites). Results revealed that the installed micro-meteorological
and soil sensors adequately sensed the field variations that occurred during crop cycles
(i.e., irregularities in irrigation and resultant low biomass production), though water use
efficiency varied significantly per crop, like fennel showed higher efficiency under rain-
fed conditions than maize. Moreover, easy-to-use models can also estimate in-field ETa
variabilities in the case of tall crops like maize, which was not visible for short crops (i.e.,
fennel or rye-grass in ETa maps).

Overall, SEBS and METRIC-EEFlux showed almost the same ETa trend with varying
magnitudes, except for the QWaterModel. It showed the lowest fitness r2 = 0.09 and
highest ETa difference with RMSE = 2.62 mm day−1, suggesting that this application
needs the manual calibration of Landsat images before processing through the model.
Though METRIC-EEFlux provided reasonable ETa estimates with medium uncertainty
(RMSE = 1.2 mm day−1), the execution code seriously needs an L7 gap-filling protocol
because its absence affects product quality over the site. On the other hand, as SEBS
developed on PCRaster gave better results with the lowest RMSE = 0.71 mm day−1, it
would be an advantage if it gets a graphical user interface like METRIC-EEFlux. The study
endorses the idea of automated model calibrations and user-friendly ETa estimation tools,
however, their product validation is also important for various agricultural sites to gain
confidence for precise crop water estimations at the global or the regional scale.
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