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Abstract: A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field
for resistance to the pathogen Puccinia hordei, the causal agent of barley leaf rust. Multi-pathotype
tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene Rph3, followed
by Rph2 (4.4%), Rph1 (1.7%), Rph12 (1.7%) or Rph19 (1.7%). Five lines (4.4%) were postulated to
carry the gene combinations Rph2+9.am, Rph2+19 and Rph8+19. Three lines (2.6%) were postulated
to carry Rph15 based on seedling rust tests and genotyping with a marker linked closely to this
gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were
identified as carrying APR, and genotyping with molecular markers linked closely to three known
APR genes (Rph20, Rph23 and Rph24) revealed that 48 of the 84 genotypes (57.1%) likely carry novel
(uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations
(Rph20+Rph23, Rph23+Rph24 and Rph20+Rph24), and these lines had higher levels of field resistance
compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs;
strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL
on chromosome 7H had the largest effect on resistance response to P. hordei. Overall, these studies
detected several potentially novel genomic regions associated with resistance. The findings provide
useful information for breeders to support the utilization of these sources of resistance to diversify
resistance to leaf rust in barley and increase resistance durability.

Keywords: adult-plant resistance; barley; genome-wide association studies; Hordeum vulgare;
Puccinia hordei; leaf rust; Rph

1. Introduction

Cultivated barley is an important cereal crop that is ranked fourth in terms of global
food production after wheat, maize and rice [1,2]. In Australia, it is the second most
important food crop after wheat [3], adding billions of dollars to the national economy.
Barley is used primarily for feed and malting purposes, and its production can be severely
hampered by various diseases, including four that are caused by rust pathogens (crown
rust, leaf/brown rust, stem rust and stripe/yellow rust). Among these diseases, leaf rust
(BLR) caused by the fungal pathogen Puccinia hordei Oth. is the most common and widely
distributed, occurring throughout the barley-growing regions of Africa, Asia, Australia,
Europe, New Zealand, North America and South America [4,5]. Early infections of BLR
can cause up to 32% yield losses in susceptible varieties in Australia and North America [6],
with losses as high as 60% in very susceptible varieties [7,8].
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In Australia, BLR has emerged as a significant national limitation to the production
of superior-quality barley in all important barley-growing areas due to inadequate resis-
tance; continued barley production in disease-prone, high-rainfall areas; and/or mutational
changes that have rendered genetic resistance ineffective [9]. Approaches to controlling leaf
rust include cultural practices, chemicals and the use of resistant varieties. Among these,
genetic resistance is the the most economical, eco-friendly and sustainable strategy [10].
Nevertheless, the poor durability of single-gene resistance in many modern barley varieties
in Australia [9] and worldwide necessitates further searches for and the introgression of
new sources of resistance, especially those sources considered to provide durable resistance.
Pyramiding multiple, diverse sources of resistance in new varieties to counter the continu-
ous evolution of new virulent pathotypes within the pathogen population is considered
the best approach to achieving durable resistance [11].

Based on plant growth stage, resistance is categorized broadly into two classes, i.e.,
‘Seedling’ or ‘All-Stage Resistance’ (ASR) and ‘Adult-Plant Resistance’ (APR). ASR genes
are easier to phenotype in the greenhouse and incorporate into breeding programs but
are less durable because they are usually controlled by single major genes that are race-
specific [12]. To date, 25 ASR genes conferring resistance to P. hordei (Rph1-Rph19, Rph21,
Rph22 and Rph25-Rph28) have been mapped and catalogued [13]; however, most of these
have been rendered ineffective by the evolution of new pathotypes of P. hordei. APR is
expressed at adult growth stages only and is often race-non-specific and durable [14]. To
date, three APR genes—Rph20 [15], Rph23 [11] and Rph24 [16]—conferring resistance to P.
hordei have been reported and proven to provide durable resistance to BLR.

The ineffectiveness of most ASR genes and the limited diversity of APR to P. hordei
emphasizes the importance of searching for and characterizing new sources of resistance
to diversify the resistance available for use in controlling the disease. Multi-pathotype
testing is the starting point in the genetic evaluation of rust resistance [17,18], allowing the
characterization of germplasm for known rust resistance genes. The information generated
through these tests can assist in identifying/developing gene combinations to enhance
the durability of leaf rust resistance in new barley varieties. Molecular markers linked to
rust resistance genes, where available, can further assist in the identification of resistance
and the determination of whether they are different from those described previously. Very
closely linked codominant markers are now available for all three APR genes [19], the ASR
genes Rph7 [20] and Rph13 [21], and gene-based predictive markers have been developed
for Rph3 [22] and Rph15 [23]. These markers are very useful for marker-assisted selection
and validating new resistances.

Genome-wide association mapping (GWAS) has become a common approach to char-
acterizing the genetic architecture of a range of traits in animals and plants, especially when
analysing large germplasm collections with historical data sets [14,24,25]. GWAS is a rapid
approach that avoids the need to develop specific mapping populations (e.g., biparental
crosses). GWAS identifies genomic regions associated with a trait, relying on historic link-
age disequilibrium between observed characteristics and single-nucleotide polymorphisms
(SNPs), which can be further refined through fine mapping approaches [14,24]. Several
studies have applied GWAS in barley to identify genomic regions associated with resistance
to leaf rust [14,16], stem rust [26] and stripe rust [27].

The International Center for Agriculture Research in Dry Areas (ICARDA) has the
CGIAR global mandate to breed barley varieties for the developing world. As such, more
than 250 spring and winter two-row, six-row and naked barley varieties of ICARDA origin
have been released in 46 countries, 51 of them in the last 10 years. Besides direct releases, the
impact of ICARDA germplasm in both the developed and the developing worlds’ breeding
programs is widely recognized as parental material providing genetic diversity and new
germplasm sources for traits of interest. The center holds in trust one of the largest barley
collections in the world with the highest number of landraces and wild relative species.
These resources are utilized by breeders within ICARDA and internationally to develop
high-performing barley varieties in terms of yield, nutrition and resistance to various



Plants 2023, 12, 862 3 of 16

diseases and pests. To further utilize the barley genetic resources conserved and developed
by ICARDA, a collaborative initiative called the CAIGE (CIMMYT Australia ICARDA
Germplasm Evaluation) project (www.caigeproject.org.au; accessed on 25 February 2020)
was launched. Under the CAIGE initiative, Australia receives new barley germplasm from
ICARDA that is screened for yield potential, agronomic performance and resistance to
a range of foliar diseases (including BLR). The germplasm and phenotypic information
are made available to Australian breeders and researchers for the purposes of identifying
novel traits and the introgression of desirable genomic regions into agronomically relevant
material for release to growers.

In this study, we evaluated and characterized a panel of 114 barley genotypes imported
through the CAIGE program in 2018 for resistance to leaf rust. The aim of the study was to
provide detailed information on BLR resistance to enhance and accelerate the utilization of
the ICARDA germplasm to develop new barley varieties with durable resistance to leaf rust.
An integrated strategy using multi-pathotype testing in the greenhouse, field screening
with defined pathotypes, molecular-marker screening for known genes, and GWAS was
applied to characterize this panel and identify putatively novel genomic regions associated
with resistance to leaf rust.

2. Results
2.1. Greenhouse Seedling Tests

A range of infection-type (IT) responses was observed in the 114 lines screened with
nine pathotypes of P. hordei in the greenhouse. The IT patterns shown by the test genotypes
and differential genotypes were compared to postulate known seedling gene(s) and to iden-
tify any uncharacterized resistance gene(s) present (Figure 1; Table S1). Of the 114 test lines,
63 displayed a high IT response (33+ to 3+) to all pathotypes and were therefore concluded
to lack seedling resistance genes that were effective against at least one of the pathotypes
used in this study (viz., Rph1, Rph2, Rph3, Rph4, Rph5, Rph7, Rph8, Rph9, Rph10, Rph11,
Rph12, Rph13, Rph14, Rph15, Rph17, Rph18, Rph19, Rph21, Rph22, Rph25, Rph27 and Rph28).
Seven lines showed low IT responses against all pathotypes used; the resistance carried by
these lines could be conferred by either Rph7 or Rph15, a combination of both, unknown
ASR gene(s), or known gene combinations for which virulence was not present among the
pathotypes used. Marker analysis revealed the absence of Rph7 in all lines and the presence
of Rph15 in three of the seven lines. Nine genotypes displayed IT patterns that did not match
any of the differential genotypes or any effective gene combination expected with these
pathotypes; therefore, it was not possible to characterize the seedling resistance in these
lines. Thirty-five lines carried Rph1, Rph2, Rph3, Rph8, Rph9.am, Rph12 and Rph19 either
singly or in combination. The remaining nine lines were resistant to at least one pathotype,
and the resistance present could not be identified with the set of pathotypes used.
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2.2. Variation in Field Disease Response

Variation in adult-plant leaf rust response was observed across the 114 lines (Table S1).
In 2019, leaf rust infection was established well in the field, and there was an obvious
progression in disease from the first reading (when the disease levels in the susceptible
Gus check reached 80–90%; R1_2019) to the second reading (when the disease levels in
the susceptible Gus check reached 100%; R2_2019); the two data sets showed correlation
(r2 = 0.64). The 2021 reading (taken when the disease levels in the susceptible Gus check
reached 100%) showed correlations of 0.63 with R1_2019 and 0.97 with R2_2019. Landraces
(LAN and FIG) and high-input breeding lines (ZBS and ZIC) showed correlations between
2019 readings (r2 = 0.58 and 0.72, respectively); the 2021 landrace reading showed a
correlation of 0.58 with R1_2019 and a correlation of 0.96 with R2_2019. The 2021 high-
input breeding lines showed correlations of 0.79 with R1_2019 and 0.99 with R2_2019.
Low-input breeding lines (ZBT) showed a correlation (r2 = 0.85) between 2019 readings,
and the 2021 reading showed correlations of 0.81 with R1_2019 and 0.99 with R2_2019. The
correlations indicated that R2_2019 and 2021 were highly correlated and that the low-input
breeding lines were stable across assessments.

2.3. Assessment of APR in the Field and Marker Analysis

One hundred and seven lines were susceptible to pathotype 5457 P+ at the seedling
stage in the greenhouse. Of these, 23 lines were susceptible (CI > 75) and 84 were resistant
(CI < 75) at adult-plant growth stages in the field (R2_2019) with the same pathotype. The
level of APR in the 84 lines identified as field-resistant ranged from low to high. Screening
of these 84 lines with molecular markers linked to Rph20, Rph23 and Rph24 revealed the
presence of Rph20 in five, Rph23 in eight and Rph24 in 16 lines. Seven lines with high
levels of APR carried the combinations Rph20+Rph23 (two lines), Rph23+Rph24 (two lines)
and Rph20+Rph24 (three lines). The remaining 48 lines with APR lacked all three markers,
indicating that the APR in these lines is distinct from Rph20, Rph23 and Rph24, and therefore
likely novel. The resistance of these lines ranged from TR to 70S (Table S1). Seven genotypes
that were seedling-resistant to all pathotypes in the greenhouse (including 5457 P+) also
showed high levels of resistance in the field. Based on marker genotyping, three of these
lines carried Rph24 and one line carried the combination of Rph23 and Rph24 in addition to
RphUASR (uncharacterized all-stage resistance) or Rph15. The resistance in the remaining
three lines was either due to uncharacterized ASR alone or uncharacterized ASR and
uncharacterized APR.

2.4. GWAS of Leaf Rust Resistance at Adult Growth Stages

No clear genetic clustering of nursery type was observed (13.59% and 8.08% variance
for PC1 and PC2, and 5.45% for PC3). Based on field data analysis, 12 putative QTLs were
detected using the 9236 DArT-seq markers, with an average density of 2.16 markers/Mbp.
Seven putative QTLs were co-located near the genomic positions of Rph15/16/8/14, Rph7/5/6,
Rph20 and Rph3/19 (Table 1; Figure 2). Putative QTLs were detected on chromosomes 1H
(MTA1, MTA2), 2H (MTA3, MTA4, MTA5), 3H (MTA6), 5H (MTA7, MTA8, MTA9, MTA10)
and 7H (MTA11, MTA12). Of the putative QTLs identified, five (viz., MTA1, MTA3, MTA5,
MTA7 and MTA8) were significant at the 0.1% level at R1_2019 (when susceptible Gus
reached a disease severity of 90-100S), seven (viz., MTA2, MTA4, MTA6, MTA9, MTA10,
MTA11 and MTA12) were significant at the 0.1% level at R2_2019 (seven days after the
susceptible check reached DS 90-100S) and four (MTA6, MTA10, MTA11 and MTA12)
were significant at the 0.1% level at 2021 and R2_2019. The significance of makers across
assessments is indicated in Table 1.
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Table 1. Summary of the marker–trait associations (MTAs) detected at three time points (R1_2019,
R2_2019 and 2021) at adult-plant stage in field.

MTA
Name

Marker
ID

Chr
1

Position
(Mbp) 2

Co-Located
Rph Gene 3

R1_2019
4

R2_2019
4 2021 4

SNP
Position in
Marker
Sequence

Allele
Resistant

Allele
Susceptible

MTA_1 3258774 1H 331.01 34.16 *** 33.57 ** 31.92 ** 8 G A
MTA_2 3262665 1H 482.85 NS 5 37.12 *** 34.01 ** 7 G A
MTA_3 3929195 2H 21.47 Rph15/16/8/14 29.41 *** 28.37 ** 25.18 * 33 C T
MTA_4 3256022 2H 26.34 Rph15/16/8/14 NS 5 31.70 *** 30.10 ** 8 T C
MTA_5 3261067 2H 668.5 32.93 *** 29.26 ** 26.47 ** 67 A G
MTA_6 3266799 3H 17.35 Rph7/5/6 19.86 ** 28.74 *** 28.02 *** 9 G C
MTA_7 3434139 5H 4.05 Rph20 32.05 *** NS 5 NS 5 61 C T
MTA_8 5249701 5H 11.35 Rph20 31.10 *** NS 5 NS 5 49 T C
MTA_9 3396786 5H 436.05 21.49 ** 28.48 *** 27.61 ** 55 T G
MTA_10 3256468 5H 573.69 NS 5 39.35 *** 37.17 *** 67 C G
MTA_11 3260244 7H 600.48 Rph3 29.31 ** 38.98 *** 43.01 **** 61 A G
MTA_12 4792921 7H 620.61 Rph3/19 28.24 * 49.06 *** 43.47 *** 15 A C

1 Chromosome; 2 Morex_rev2_2019; 3 MTA within 20 Mbp of known Rph gene considered co-located; 4 Effect
of allele on phenotype; 5 NS—No significant association, * Significant at 5.0% level, ** Significant at 1.0% level,
*** Significant at 0.1% level, **** Significant at 0.01% level—p-values derived from the genome-wide association
model with four principal components.
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Figure 2. Visualization of known Rph genes in red (position based on BLAST search of published
linked markers). QTLs identified at reading 1, 2019 represented in green, QTLs identified at reading 2,
2019 represented in blue and QTLs identified at the 2021 reading represented in orange, visualized on
Morex v2 2019. QTLs were based on a single marker significantly associated at the 0.1% (−log10p > 3)
level; a confidence interval of 2.5 Mbp was used for visualization purposes. Marker–trait associations
(MTAs) represent genomic regions identified using genome-wide association mapping of breeding
lines (high- and low-input) and landraces imported as part of the CAIGE program in 2018 and
assessed in the field (Cobbitty NSW) at adult-plant stage in 2019 and 2021.

Of all the detected putative QTLs, MTA12, located on the long arm chromosome 7H,
had the largest effect in controlling leaf rust. Marker 4792921 was the peak marker to this
putative QTL at 620.61 Mbp, where the presence of the marker allele “A” at position 15 in
the marker sequence was associated with resistance (Table 1). There was low LD observed
across the QTLs (Figure 3). The strongest LD observed was between MTA3 and MTA4; the
putative QTLs are located on the same chromosome (2H) within 5 Mbp (Table 1). LD was
also observed between MTA_1 and MTA8, as well as MTA2 and MTA7, indicating a link
between Rph20 and genomic regions at the bottom of chromosome 1H. Five putative QTLs
appear to be novel.



Plants 2023, 12, 862 6 of 16

Plants 2023, 12, x FOR PEER REVIEW 6 of 16 
 

 

MTA_7 3434139 5H 4.05 Rph20 32.05 *** NS 5 NS 5 61 C T 
MTA_8 5249701 5H 11.35 Rph20 31.10 *** NS 5 NS 5 49 T C 
MTA_9 3396786 5H 436.05  21.49 ** 28.48 *** 27.61 ** 55 T G 
MTA_10 3256468 5H 573.69  NS 5 39.35 *** 37.17 *** 67 C G 
MTA_11 3260244 7H 600.48 Rph3 29.31 ** 38.98 *** 43.01 **** 61 A G 
MTA_12 4792921 7H 620.61 Rph3/19 28.24 * 49.06 *** 43.47 *** 15 A C 

1 Chromosome; 2 Morex_rev2_2019; 3 MTA within 20 Mbp of known Rph gene considered co-located; 
4 Effect of allele on phenotype; 5 NS—No significant association, * Significant at 5.0% level, ** Signif-
icant at 1.0% level, *** Significant at 0.1% level, **** Significant at 0.01% level—p-values derived from 
the genome-wide association model with four principal components. 

Of all the detected putative QTLs, MTA12, located on the long arm chromosome 7H, 
had the largest effect in controlling leaf rust. Marker 4792921 was the peak marker to this 
putative QTL at 620.61 Mbp, where the presence of the marker allele “A” at position 15 in 
the marker sequence was associated with resistance (Table 1). There was low LD observed 
across the QTLs (Figure 3). The strongest LD observed was between MTA3 and MTA4; 
the putative QTLs are located on the same chromosome (2H) within 5 Mbp (Table 1). LD 
was also observed between MTA_1 and MTA8, as well as MTA2 and MTA7, indicating a 
link between Rph20 and genomic regions at the bottom of chromosome 1H. Five putative 
QTLs appear to be novel. 

 
Figure 3. Linkage disequilibrium (LD) analysis of the 12 QTLs detected via GWAS performed on 
CAIGE lines. Heat maps represent pairwise LD as R2 between pairs of markers. 

3. Discussion 
For sustainable gene-based disease control, deployed resistance must be durable and 

diverse [5]. Therefore, it is extremely important to have a sound understanding of the 
resistance genes available in germplasm before it is exploited intensively in breeding pro-
grams [14]. To date, 25 ASR genes conferring resistance to P. hordei in barley have been 
catalogued [13], most of which have been overcome by adaptation of the pathogen [5]. 
Most ASR genes that remain effective are derived from wild relatives of barley (i.e., 
Hordeum spontaneum or H. bulbosum), and linkage drag can make them less attractive in 

Figure 3. Linkage disequilibrium (LD) analysis of the 12 QTLs detected via GWAS performed on
CAIGE lines. Heat maps represent pairwise LD as R2 between pairs of markers.

3. Discussion

For sustainable gene-based disease control, deployed resistance must be durable
and diverse [5]. Therefore, it is extremely important to have a sound understanding of
the resistance genes available in germplasm before it is exploited intensively in breeding
programs [14]. To date, 25 ASR genes conferring resistance to P. hordei in barley have been
catalogued [13], most of which have been overcome by adaptation of the pathogen [5]. Most
ASR genes that remain effective are derived from wild relatives of barley (i.e., Hordeum
spontaneum or H. bulbosum), and linkage drag can make them less attractive in barley
breeding. Three APR genes, Rph20 [15], Rph23 [11] and Rph24 [16], are considered to
be pathotype-non-specific and provide low-to-moderate levels of protection individually
and moderate-to-high levels in combination [5,11,16]. Robust, closely linked markers are
available for these three genes [19], and consequently they are being targeted more as
sources of leaf rust resistance by barley breeders. Although these three APR genes have
been shown to be race-non-specific thus far, it should not be presumed that this will always
be the case, as APR can be race-specific [28]. This emphasizes the need to characterize
additional APR and ASR genes to enable the diversification of exploited resistance regions
and the development of barley cultivars with durable leaf rust resistance. In this study, we
targeted 114 diverse barley genotypes to identify and characterize known and new sources
of resistance to P. hordei in barley for use in resistance breeding.

Although multi-pathotype tests in this study detected several known ASR genes singly
or in combination, more than 55% of the lines were susceptible to all the pathotypes tested.
Out of the known seedling resistance genes detected, the most common was Rph3 (in
19 lines; 16.6%), followed by Rph2 (4.3%), Rph1 (1.75%), Rph12 (1.75%) and Rph19 (1.75%).
Five lines (4.4%) were postulated to carry the gene combinations Rph2+9.am, Rph2+19 and
Rph8+19 (Table S1). Virulence to all these ASR genes has been reported in Australia [5], and
therefore they have limited value.

Three lines (34, 49 and 81; Table S1) were postulated to carry Rph15 based on geno-
typing with a marker linked closely to Rph15 [23]. Virulence for Rph15 has not yet been
detected in Australia and is extremely rare worldwide; only one isolate, 90-3, from Israel,
has been reported to carry virulence for Rph15 [29]. The rare occurrence of virulence for
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Rph15 is most likely due to its limited use in agriculture [5], possibly because it originates
from H. spontaneum and hence may have associated linkage drag. Although Rph15 could
possibly also be overcome if deployed singly in cultivars [30], it may play a valuable role
if deployed in combination with other effective resistance genes. This gene was recently
cloned and shown to encode a coiled-coil, nucleotide-binding, leucine-rich repeat (NLR)
protein with an integrated Zinc-finger BED (ZF-BED) domain [29]. Based on sequence
analysis, race specificity and the presence of a single-knockout mutant, the authors con-
cluded that Rph15 and Rph16 are the same gene and not allelic, as previously suggested
in several studies [31]. Of particular interest are four lines (23, 93, 99 and 114; Table S1)
identified in our studies as carrying ASR effective against all pathotypes. These lines com-
prise one ICARDA elite breeding line (23; Soufara-02/3/RM1508/Por//WI2269/4/Hml-
02/ArabiAbiad//ER/Apm/5/Arda/Moroc9-75), two landraces (93 and 99) collected near
Herat (Afghanistan), and one landrace (114) collected near Krasnodar (Russia). These
accessions lacked marker alleles associated with the Rph7 or Rph15 resistances, implying
that the ASR (whether singly or in combination) in them is new and distinct from both Rph7
and Rph15 and therefore potentially very useful as a new source of resistance to P. hordei. It
is probable that genotypes 93 and 99 carry the same gene because they were genetically
similar in the GWAS analysis, and they were collected from the same area in Afghanistan.
Genetic and allelic studies have been initiated to further characterize resistance in these
four lines.

Unlike ASR genes with major effects, APR genes with minor or partial effects are
considered less prone to being overcome by pathogen adaptation and hence durable [5].
Expression of APR relies on growth stage, environment and disease pressure [11,32], and
the genes underlying APR are often additive, providing higher levels of resistance against
P.hordei when combined [14]. Based on field testing, 84 genotypes were resistant at adult
growth stages, and partitioning of these lines based on linked molecular markers revealed
that 48 (57.1%) lacked any of the three known APR genes and hence are likely to be sources
of novel, uncharacterized APR. Of these 48 lines, 36 were landraces or wild relatives. Up
to 16 of these lines carrying unknown APR were from Ethiopia and the rest were from
12 other countries. This geographic diversity emphasizes the potential for novel sources of
APR genes among the germplasm explored in this study.

These lines also showed APR that ranged from low to high, indicating that there is
likely more than one gene conferring the APR resistance observed. Genetic analysis is
needed to further characterize, isolate and facilitate the use of the resistance discovered in
these lines.

Seven lines in this study carried known APR gene combinations (Rph20+Rph23, two
lines; Rph23+Rph24, two lines; and Rph20+Rph24, three lines), all of which showed high
levels of APR, in contrast to the lines carrying any of these three APR genes singly. These
studies once again demonstrated that the APR genes Rph20, Rph23 and Rph24 are highly
additive, as was established by Singh et al. [11,14]. Such interaction/additivity can play a
pivotal role in achieving durable resistance to P. hordei in barley.

Genome-wide association studies conducted on a panel of 98 lines found 12 putative
QTLs across the panel, of which 5 were detected at reading 1, 2019 (R1_2019), 7 were
detected at reading 2, 2019 (2019_R2) and 4 were detected at the 2021 reading (2021), that
co-located with QTLs detected at 2019_R2, while 5 appear to be novel. MTA1 and MTA2
were detected at positions 331.01 and 482.85 Mbp on chromosome 1H and shown to be in
linkage disequilibrium with Rph20-linked MTA. Several previous studies have also reported
markers linked to QTLs in the area between 388.13 and 505.86 Mbp [15,25,33,34]. The
putative QTLs MTA3 and MTA4 are located in the same region as Rph8/14/15/16 and are in
linkage disequilibrium, which indicates that they are inherited together. Two QTLs (MTA3
and MTA4) were detected in the same region as that of Rph8/14 and Rph15/Rph16 [29,30]. As
Rph8/14 and Rph15/16 are effective against the pathotype used in this study, the detection
of these MTAs may be due to the contribution of resistance by these loci, considering that
three lines in this study were found to carry Rph15 based on linked markers [29]. Rph15 is a
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major seedling resistance gene of strong effect; of three Rph15/Rph16-carrying lines, only
two were included in the GWAS, and both were positive for alleles for resistance associated
with MTA3 and MTA4.

MTA5 was identified on chromosome 2H at the position of 668.5 Mbp, in the vicin-
ity of a QTL, Rphq2 (663.76 to 663.91 Mbp), reported by Qi et al. [35]. Several other
studies [14,36–38] have also reported marker–trait associations in the same area between
631.51 and 667.72 Mbp. The relationships of the MTAs detected in our study to those
reported previously require further validation.

MTA7 and MTA8 are located in the same genomic region as Rph20 [15], and likely
correspond to this gene. Putative APR QTLs were detected at R1_2019 only; R1 was timed
to coincide with the susceptible genotype Gus reaching DS of 80-90S, and R2 was recorded
seven days after this, when disease pressure was much higher. Disease pressure and
other environmental factors, such as fluctuations in temperature, often lead to phenotypic
variation in the field that prevents the accurate characterization of APR genes [32]. The
minor APR gene Rph20 becomes less effective under high disease pressure [11], likely
accounting for MTAs corresponding to Rph20 being detected at R1_2019 but not at other
assessments. The linkage disequilibrium between these Rph20-linked markers and those at
the distal end of 1H indicate that this region is enhanced by other minor genes, which is
characteristic of APR.

This study was based on phenotypic data collected over two years from a single
location; additional studies will facilitate the detection of additional minor-gene-based
APRs expressed under different environmental pressures [11,32].

This study characterized leaf rust resistance in a set of diverse barley genotypes using
integrated greenhouse multi-pathotype tests, field screening and the application of molecu-
lar markers. GWAS provided a valuable resolution in identifying marker–trait associations
and genomic regions associated with leaf rust resistance that have been documented. Sev-
eral sources of resistance appear to be potentially novel and should be further characterized
for use in breeding and deployment in agriculture to diversify the genetic basis of resistance
to leaf rust.

4. Materials and Methods
4.1. Plant Material

One hundred and fourteen barley genotypes/lines from the 2018 CAIGE project
import identified as resistant to either BLR or other foliar diseases in Morocco were pro-
vided to the Plant Breeding Institute Cobbitty (PBIC) from the Australian Grain Genes
(AGG) bank (Table S1). Of the 114 introduced lines, 78 were single-plant-selection lan-
draces (identifier = LAN; passport data available in Table S2), 1 was a landrace selected
for heat/drought tolerance (identifier = FIG), 22 belonged to the ICARDA high-input
breeding program (identifiers = ZBS and ZIC) and 13 were from the ICARDA low-input
program (identifier = ZBT). In addition, a set of 23 BLR differentials [5] were included in all
disease-response screens as controls (Table 2). The set of differential genotypes is regularly
purified and maintained at PBIC.
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Table 2. Infection-type 1 responses of differential genotypes with nine pathotypes of Puccinia hordei,
based on which Rph genes were postulated.

Differential
Genotype Rph Gene 200 P− 220 P+

+Rph13 253 P− 4610 P+ 5610
P+

5453
P+

5656
P+

5457
P−

5457
P+

Sudan Rph1 −CN 0 3+ N −N 3+ 1−CN 3+ 3+
Peruvian Rph2 N N 3− 1+CN 1+CN 3+ 3+ 3+C 3+C
Estate Rph3 C 0 0 N -CN 1− 3+ 3+C 3+C
Gold Rph4 1- 33+ 3+ 33+ 3C 3+ 3+ 33+C 33+C
Magnif 104 Rph5 1−N 33+ N N -N N 1−N N N
Bolivia Rph2+Rph6 N N 3+ CN CN 33+ 12- 3+ 3+
Cebada Capa Rph7 N 0 N CN -N +N 1−CN +CN +N
Egypt 4 Rph8 33+ 33+ 33+ 3+ 33+ 3+ 12-CN 3+ 3+
Abyssinian Rph9 1N N 3+ 1CN 1+CN 33+ 33+ 3+ 3+
Clipper BC8 Rph10 3+ 33+ 1+CN 1+CN 3+ 3+ 33+ 33+ 3+
Clipper BC67 Rph11 12+ 1CN 12CN 2+C 2++C 3+ 12−CN 33+ 33+
Triumph Rph12 +N +N 1CN 33+C 3 3+ 33+ 3+ 3+
PI 531849 Rph13 0 3+ −N N -N CN 12−CN +CN +CN
PI 584760 Rph14 12+ 1CN 1+CN 12C 12+CN 1+CN 33+ 1CN 1+CN
Prior Rph19 1 33+ 1−CN 3+ 3+ 3+ 33+ 12− 3+
Cantala Rph9.am 3+ 3+ 12−C 3+ 3+ 3+ 3+ 3+C 3+

1 Infection type (IT) based on a 0–4 scale [6]. ITs below 3 in the host indicated resistant responses and ITs of 3 or
higher indicated susceptibility. IT response was further described using ‘−’ (less than average for the class), ‘+’
(more than average for the class), ‘C’ (chlorosis) and ‘N’ (necrosis).

4.2. Pathogen Material

Nine pathotypes of P. hordei (pts) were used in the greenhouse for seedling tests to
postulate ASR Rph genes [9,39] (Table 2). Pathotype 5457 P+ was used in the field to assess
adult-plant leaf rust response. Details of the virulence of these pathotypes with respect to
known Rph genes and their culture numbers (i.e., genotypic identifiers) can be found in
Table 3.

Table 3. Pathotypes of Puccinia hordei used in the present study and their virulence profiles with
respect to specific Rph genes.

Pathotype (Culture No.) Virulence 1

200 P− (518) 2 Rph8
220 P+ +Rph13 (577) 2 Rph5, Rph8, Rph13
253 P− (490) Rph1, Rph2, Rph4, Rph6, Rph8
4610 P+ (491) 2 Rph4, Rph8, Rph9, Rph12
5610 P+ (520) 2 Rph4, Rph8, Rph9, Rph10, Rph12
5453 P+ (584) Rph1, Rph2, Rph4, Rph6, Rph9, Rph10, Rph12, Rph19
5656 P+ (623) Rph2, Rph3, Rph4, Rph6, Rph8, Rph9, Rph12, Rph19
5457 P− (626) Rph1, Rph2, Rph3, Rph4, Rph6, Rph9, Rph10, Rph12
5457 P+ (612) Rph1, Rph2, Rph3, Rph4, Rph6, Rph9, Rph10, Rph12, Rph19

1 Pathotype designation is based on the virulence pattern of an isolate on the differential set (Rph1 to Rph12),
using an octal notation system proposed by Gilmour [40]. The symbols ‘P−‘ and ‘P+’ denote avirulence and
virulence, respectively, on genotype Prior (P) carrying Rph19 [9]; 2 The pathogenicity of these pathotypes for Rph6
is unknown due to avirulence on Rph2 in each and the presence of this gene in the Rph6 differential tester Bolivia
(Rph2+6).

4.3. Greenhouse Screening
4.3.1. Sowing and Plant Maintenance

Seeds of the test lines and differentials were sown in plastic pots containing a mixture
of pine bark and coarse sand at a ratio of 4:1. The lines were sown as clumps in a clockwise
direction, with three lines per pot (test lines) or five lines per pot (differentials), 10 seeds
per line. The pots were fertilized with a soluble nitrogenous fertilizer Aquasol® (Hortico
Pty Ltd., Padstow NSW, Australia) at a rate of 30 g in 10 L of water for 200 pots, prior to
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sowing. After sowing, the pots were kept in a growth room maintained at 18 to 20 ◦C,
where they were regularly watered and fertilized again one day prior to inoculation.

4.3.2. Inoculation and Disease Assessment

Ten- to twelve-day old seedlings (with fully expanded first leaves) were inoculated
and assessed for response to the nine pathotypes (Table 2). Urediniospores were mixed
with mineral Isopar™ L (Exxon Mobil Corporation., Irving TX, USA) in a tube and misted
with an atomizer over the top of seedlings in an inoculation chamber. The inoculated
seedlings were transferred to an incubation room (without lights) for 18 to 24 h at an
ambient temperature (18–24 ◦C), where artificial mist was generated by an ultrasonic
humidifier. The incubated seedlings were then transferred to a microclimate greenhouse
maintained at 22–24 ◦C. Disease response was assessed 10–12 days post-inoculation using
the 0–4 infection type (IT) scale with cv. Gus as the susceptible control. ITs below 3 for
the host indicated resistant responses and ITs of 3 or higher indicated susceptibility. IT
response was further described using ‘−’ (less than average for the class), ‘+’ (more than
average for the class), ‘C’ (chlorosis) and ‘N’ (necrosis); further details are provided by Park
and Karakousi [6].

4.4. Field Screening

Approximately 20–30 seeds from each line were packed in magazines for automated
sowing in 0.7 m (metre) rows at 0.3 m spacings in the years 2019 and 2021 at PBIC. The leaf-
rust-susceptible barley genotype ‘Gus’ was used as a disease spreader and was sown after
every five plots of test lines for uniform disease infection. The field disease assessments
were performed using a modified Cobb scale [41], based on a combination of disease
severity (percentage of leaf area affected) and host response (R, no uredinia present; TR,
trace or minute uredinia on leaves without sporulation; MR, small uredinia with slight
sporulation; MR-MS, small-to-medium-sized uredinia with moderate sporulation; MS-
S, medium-sized uredinia with moderate-to-heavy sporulation; S, large uredinia with
abundant sporulation, uredinia often coalesced to form lesions).

The 2019 field disease assessments were performed at PBIC throughout disease pro-
gression in the month of October (weather station 94755099999: maximum temperature:
36 ◦C, minimum temperature: 4.3 ◦C, total precipitation: 8 mm, max daily precipitation:
5.5 mm, rain days: 9, max sustained wind: 44 kph [42]) when the disease levels on the
susceptible Gus check reached 80–90% (reading 1; R1), followed by an assessment one week
later when Gus was 100% susceptible (reading 2; R2). The 2021 field disease assessments
were performed at PBIC in the month of October (weather station 94755099999: maximum
temperature: 31 ◦C, minimum temperature: 6.6 ◦C, total precipitation: 93 mm, max daily
precipitation: 23 mm, rain days: 18, max sustained wind: 41 kph [42]) when the disease
levels on the susceptible Gus was 100% susceptible. An early reading could not be per-
formed in this environment due to rain events washing away spores preventing accurate
disease-response data collection.

The disease-severity data and host-response data were combined into a single value,
the coefficient of infection (CI), by assigning a specific constant value of 0.1, 0.2, 0.4, 0.6,
0.8 and 1 to host-response ratings of TR, MR, MRMS, MS, MSS, and S, respectively, and
multiplying by the percentage of leaf area affected.

4.5. Molecular Marker Analysis for ASR and APR
4.5.1. DNA Extraction

Three to four young leaves per test line were collected in an Eppendorf tube and kept
over silica gel for 2–3 days for drying. Two ball bearings were added per tube to crush
the dried leaves using a tissue lyser for 2 min at 20 rpm. Ball bearings were removed after
crushing, and 800 µL of CTAB buffer was added to each tube. The samples were incubated
for 30–40 min at 65 ◦C and then kept at room temperature for 5 min. In each sample tube,
two layers formed upon adding a chloroform: phenol mixture (600 µL; 24:1 v:v). The two
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layers were mixed by inverting the tubes for 2 min, and then the samples were centrifuged
at 10,000 rpm at 10 min. A quantity of 600 µL of supernatant was transferred to a 1.5 mL
clean tube, followed by the addition of 500 µL cold isopropanol. Samples were kept at
−20 ◦C for 20 min and then centrifuged at 10,000 rpm for 10 min. The supernatant was
discarded, and the tubes were dried to remove all Ethanol. To wash the pellet of DNA,
500 µL washing buffer was added per tube and then centrifuged at 7000 rpm for 10 min.
Samples were dried, 100 µL TE (pH 8) with RNAase (1 µL per 100 µL TE) was added to each
tube, and they were kept in the oven at 37 ◦C for 1–2 h. The DNA samples were diluted
to 50 ng/µL using double-distilled autoclaved water and quantified using a Nanodrop
ND-1000 spectrophotometer (Nanodrop® Technologies); the DNA stock was stored in a
freezer at −20 ◦C until further use.

4.5.2. Molecular Marker Screening

To check the presence (+) or absence (–) of APR genes (Rph20, Rph23 and Rph24),
three closely linked molecular markers were applied in all lines except those classified as
susceptible. Lines with ASR response to all pathotypes at seedling growth stages were
genotyped with molecular markers closely linked to Rph7 and the co-dominant KASP
marker within the Rph15 gene. The primers were synthesized and supplied by Sigma; the
sequence information of primers for each marker used is given in Table 4. To a quantity of
10 µL of PCR reaction mix was added 2 µL DNA, 2 µL 10 MiFi Buffer, 1µL of each forward
and reverse primer (10 µM), 0.1 µL taq polymerase (Bioline), and 3.9 µL distilled autoclaved
water. The PCR conditions used for the genotypic analysis using markers linked to Rph15-,
Rph20-, Rph23- and Rph24-linked markers were previously described by Dracatos [23],
Hickey et al. [15], Singh et al. [11] and Dracatos et al. [19], respectively. Alleles of different
sizes were resolved using 2% agarose gel that was prepared by dissolving 2 g agarose per
100 mL of 1× Tris-borate EDTA (TBE) buffer (90 mM Tris-borate + 2 mM EDTA-pH 8.0),
and 1 µL of GelRed was added per 100 mL of gel solution for staining. Each well was
loaded with 2.5 µL PCR product, and a 100 bp ladder (Bioline) was used as a size reference.
The positive DNA controls used for genotyping with markers linked to genes Rph7, Rph15,
Rph20, Rph23 and Rph24 were the near-isogenic lines Bowman+Rph7, Bowman+Rph15,
Flagship, Yerong and ND24260, respectively. Flagship was used as a negative control
for markers linked to Rph23 and Rph24, whilst Gus was used as a negative control for
genotyping with the Rph7, Rph15 and Rph20 markers.

Table 4. Details of markers and sequences of the Rph7, Rph15, Rph20, Rph23 and Rph24 primers used
in this study.

Gene Marker Chr 1 Forward Primer Sequence, 5′-3′ Reverse primer Sequence, 5′-3′ Reference

Rph7 Unknown 3H GAGATAAAAGCATTACCAAAGGCTCAT GCGCGCGCAACAGCAAACGGC [20]
Rph15 Unknown 2H TGAAGAAGCTGGAAGGTCACC AGCCAAAAACCCTTCTGGCT [23]
Rph20 bPb0837 5H GACACTTCGTGCCAGTTTG CCTCCCTCCCTCTTCTCAAC [15]
Rph23 Ebmac0603 7H ACCGAAACTAAATGAACTACTTCG TGCAAACTGTGCTATTAAGGG [11]
Rph24 Sun43-44 6H CTAGACACCACCACCACACC ATACCAGAGTTTGCGTCCGG [19]

1 Chromosome.

4.6. Phenotypic and Genotypic Data for GWAS
Filtering for Quality Markers and Genotypes

Genomic DNA was extracted from young tissue using a CTAB method described
above and sent for DArT-SeqTM genotyping under arrangements of the CAIGE project.
DArT-Seq genotyping returned 63,473 polymorphic silico-DArT markers available at
www.caigeproject.org.au/germplasm-evaluation-barley-genotypic-data (accessed on 1
December 2022). Poor-quality markers were removed through the following data curation:
marker data were filtered for minor allele frequencies (MAFs) < 0.5%; those that failed to
provide information for >20% of the lines were removed, and markers without a mapped
position on the Barley Morex V2 genome assembly by TRITEX (2019) [43] were removed

www.caigeproject.org.au/germplasm-evaluation-barley-genotypic-data
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(16.9%). The resultant high-quality subset of 9236 markers was prepared for GWAS studies.
GWAS was based on genotypes of 97 of the 114 individuals; 4 did not have both genotypic
and phenotypic information available, 3 had > 20% missing genotypic values, and 10 were
genetically indistinguishable. The individuals excluded from the GWAS are indicated in
Table S1.

4.7. Population Structure Analysis Using PCA

Genetic relationships among accessions were investigated graphically based on DArT-
Seq genotypes. Principal component analysis (PCA) was performed in R [44] using the
“synbreed” package [45] to produce a similarity matrix. To compare genetic variation in the
population, the PCA was drawn as a biplot using “ggplot 2” [46]. The first three principal
components were depicted to visually determine whether individuals clustered according
to nursery type (Figure 4).
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Figure 4. Principal component analysis of the kinship matrix visualizing the genetic relationships
between 98 lines. The figure on the left (A) represents the first principal component (PC1; x-axis) and
the second principal component (PC2; y-axis), and the figure on the right (B) represents PC1 (x-axis)
and the third principal component (PC3; y-axis). In both plots, genotypes are coloured according
to nursery type. LAN, landraces; HI, high-input breeding line (ZBS + ZIC); LI, low-input breeding
line (ZBT).

4.8. Genome-Wide Association Studies of Leaf Rust Resistance

Kinship was estimated with genotypic similarity matrices formed using the “synbreed”
package [45]. Genome-wide association analysis was conducted using the “rrBLUP” pack-
age [47] with 9236 markers and CIs (described previously) at two 2019 time points (2019_R1
and 2019_R2) and a single 2021 time point (2021). Significant marker–trait associations
were determined using the threshold −log10p ≥ 3 (Figure 5). Twelve putative QTLs were
detected and mapped on the Barley Morex V2 genome assembly by TRITEX (2019) [43];
known Rph gene positions were estimated using BLAST with markers reported as linked in
previous studies and visualized with Mapchart 2.32 [48]. Markers associated with disease
response were referred to as MTAs (marker–trait associations) or putative QTLs. Marker
effects were calculated across all assessments for significant markers identified using modi-
fied the GWAS function in the “rrBLUP” package [47]. The allele for resistance for each
putative QTL was determined from marker effects. Linkage disequilibrium (LD) analysis
of the 12 putative QTLs was performed in R [44], an SNP matrix was calculated using the
“chopsticks” package [49] and pairwise LD as r2 between pairs of markers was visualized
using “LDheatmap” [50].
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