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Abstract Sustainable barley (Hordeum vulgare L.)

production will require access to diverse ex-situ

conserved collections to develop varieties with high

yields and capable of overcoming the challenges

imposed by major abiotic and biotic stresses. This

study aimed at searching efficient approaches for the

identification of new sources of resistance to barley

leaf rust (Puccinia hordei Otth). Two subsets, Gener-

ation Challenge Program Reference set (GCP) with

188 accessions and leaf rust subset constructed using

the filtering approach of the Focused Identification of

Germplasm Strategy (FIGS) with 86 accessions, were

evaluated for the seedling as well as the adult plant

stage resistance (APR) using two barley leaf rust (LR)

isolates (ISO-SAT and ISO-MRC) and in four envi-

ronments in Morocco, respectively. Both subsets

yielded a high percent of accessions with a moderately

resistant (MR) reaction to the two LR isolates at the

seedling stage. For APR, more than 50% of the

accessions showed resistant reactions in SAT2018 and

GCH2018, while this rate was less than 20% in

SAT2017 and SAT2019. Statistical analysis using chi-

square test of independence revealed the dependency

of LR reaction on subsets at the seedling (ISO-MRC),

as well as at the APR (SAT2017 and SAT2018) stage.

At seedling stage, the test of goodness of fit showed

that GCP subset yielded higher percentages of resis-

tant accessions than FIGS-LR in case of ISO-MRC
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isolate but the two subsets did not differ for ISO-SAT.

At APR, FIGS approach performed better than GCP in

yielding higher percentages of accessions in case of

SAT2017 and SAT2018. Although some of the tested

machine learning models had moderate to high

accuracies, none of them was able to find a strong

and significant relationship between the reaction to LR

and the environmental conditions showing the needs

for more fine tuning of approaches for efficient mining

of genetic resources using machine learning.

Keywords Barley � Efficient mining � Genetic

resources � Machine learning � Puccinia hordei �
Resistance

Introduction

Cultivated barley (Hordeum vulgare subsp. vulgare

L.) is the fourth most important cereal crop in the

world after wheat, maize, and rice, in terms of

production of 143.13 million metric tons and acreage

of around 47.37 million hectares (FAOSTAT 2017). In

Morocco, barley is grown on 2 million hectares in the

arid and semi-arid regions with 1.23 t/ha of average

grain yield, which is relatively low compared to North

America (3.67 t/h) (FAOSTAT 2017). The lower

national average grain yield of barley is due to limited

or no use of inputs, and the prevalence of abiotic and

biotic constraints. Foliar diseases such as powdery

mildew (Blumeria graminis f. sp. hordei), net form net

blotch (Pyrenophora teres f. teres) and spot form net

blotch (Pyrenophora teres f. maculata), spot blotch

(Cochliobolus sativus), and leaf rust (Puccinia hordei)

are important biotic constraints that limit the grain and

straw yields and their quality. Barley leaf rust caused

by Puccinia hordei Otth (Ph) is one of the most

destructive and globally spread barley diseases (Clif-

ford 1985; Park et al. 2015). It is widely distributed

throughout barley growing region, and can cause

serious yield losses in the regions of North Africa,

Europe, New Zealand, Australia, the Eastern and

Midwestern parts of United States, and some parts of

Asia, where susceptible and late maturing varieties of

barley are sown (Arnst et al. 1979; Clifford 1985;

Chicaiza et al. 1996; Brunner et al. 2000; Niks et al.

2000). Losses of barley production due to LR can

reach up to 30% on susceptible cultivars (Cotterill

et al. 1992; Griffey et al. 1994).

Applying fungicides is an efficient strategy to

control major foliar diseases, but it is not economical

for barley grown under marginal lands and low-input

conditions of Morocco. Therefore, the use of resistant

varieties is the most effective, economical, and

environmentally safe way for controlling barley LR.

This can be achieved by transferring identified resis-

tant genes from diverse genetic resources into elite

barley germplasm (Hajjar and Hodgkin, 2007; Reh-

man et al. 2020). To date, 23 Rph genes conferring

hypersensitive resistance to barley leaf rust at the

seedling stage (Rph1-Rph19, Rph21, Rph22,

Rph25 and Rph28), and 3 APR genes (Rph20,

Rph23, Rph24) have been identified from Hordeum

vulgare subsp. vulgare, or transferred from H. vulgare

subsp. spontaneum, and H. bulbosum (Park 2015;

Kavanagh et al. 2017; Yu et al. 2018; Rothwell et al.

2020; Mehnaz et al. 2021). However, LR resistance

faces a big challenge from a rapidly evolving pathogen

due to recombination and mutations which lead to the

development of new pathotypes that overcome

deployed single major Rph genes in a short time span

(McIntosh 1988; Figueroa et al. 2016). Most of the

barley varieties released in Morocco are susceptible to

LR, and limited sources of resistance are available

against the LR populations prevailing in the northern

parts of Morocco. Therefore, it is required to evaluate

and identify continuously new sources of resistance

from existing germplasm, and from gene bank collec-

tions (Qualset 1975; Sing et al. 2015).

The genetic resources remain the most important

source of parental germplasm for barley breeding

programs to develop new varieties with high yield,

better end-use quality, tolerant to abiotic stresses, and

resistant to major diseases and pests. But the search for

a given trait is limited owing to the large number of

accessions being held in the genebanks. Further, the

evaluation of these large collections for some traits can

be very expensive. To facilitate the screening and the

mining of genetic resources, it requires the develop-

ment of intelligent sub-setting approaches to fit the

available funding and facilities (ICARDA 2015).

These approaches aim to select subsets from the

original collection to harness maximum diversity

within limited number of accessions (Gollin et al.

2000a, b). Frankel and Brown (1984) recommended

the use of core collection which selects 5–10% of the
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original collection, representing maximum geograph-

ical or morphological diversities. However, because of

the large number of accessions in the entire collection

in genebanks, even a core collection can still be

unmanageable for the evaluation of some traits, and

other sub-setting approaches were suggested. Mini-

core collections were suggested by Upadhyaya and

Ortiz (2001) to concentrate broad genetic diversity in

smaller subsets. It allows selecting about 1% of the

total accessions from the entire collection to represent

maximum diversity. The Generation Challenge Pro-

gram (GCP) (https://www.generationcp.org) recom-

mended the development of a reference set

representing 10% of the core collection to represent

maximum diversity using molecular markers.

From ICARDA barley in-trust collection totaling

more than 32,000 accessions, the barley core collec-

tion (composite set) of 3000 accessions of both

cultivated and wild progenitor species (H. sponta-

neum) was selected based on climatological data of the

collection sites; from which the Generation Challenge

Program (GCP) developed a reference subset of 300

accessions based on the diversity of EST-derived, and

genomic SSR markers (https://www.croptrust.org/wp/

wp-content/uploads/2014/12/Barley_Strategy_

FINAL_27Oct08.pdf), however, many researchers

have reported on the limitations of core collections in

capturing rare and adaptive alleles (Dwivedi et al.

2008; Xu 2010).

The Focused Identification of Germplasm Strategy

(FIGS) was developed by ICARDA in collaboration

with the Australian and the Russian partners as an

alternative approach for efficient mining of genetic

resources that maximize the likelihood of capturing

specific adaptive traits in subsets of manageable size

extracted from the original collection (Mackay 1990;

Street et al. 2008). FIGS is based on the co-evolution

between the accessions and the environmental condi-

tions in which they evolved (Mackay 1995; Gollin

et al. 2000a, b; Mackay and Street 2004; Bari et al.

2012). This approach exploits the development of the

relationship between the specific sought-trait and

ecogeographical data by filtering germplasm collec-

tions through exerting selection pressures of the

emergence of a sought trait. When the relationship is

confirmed, a manageable subset can be selected to

include accessions with high probability of having the

sought trait. FIGS subsets have allowed to identify for

the first-time sources of resistance to Sunn pest in

wheat (El Bouhssini et al. 2009), resistance to net

blotch in barley (Endersen et al. 2011), and drought

tolerance in faba bean (Khazaei et al. 2021).

The present study aimed at: (i) identification of

sources of resistance to LR in FIGS_LR and GCP

subsets; (ii) assessing the dependence of resistance on

sub-setting approach; and (iii) search for the best

model that describes the relationship between resis-

tance to LR, and the environmental conditions using

machine learning.

Materials and methods

Plant material

Two barley subsets extracted from ICARDA in-trust

collection available from the regeneration efforts

conducted in Morocco to reconstruct the active and

base collections were used in this study. A total of 188

accessions from the reference set constructed within

the Generation Challenge Program (GCP) and

extracted from the composite set of barley collection

held at ICARDA based on diversity of EST-derived

and genomic SSR markers (Supplementary Table S1).

Another subset composed of 86 accessions was

selected using filtering approach of the Focused

Identification of Germplasm Strategy (FIGS_LR)

based on the following parameters:

• Count number of days where the average daily

temperature is between 8–15 �C, 10 days before

the onset of growing period and up to 15% into the

vegetative phase.

• Remove sites with zero count from step 1.

• Sum daily rain for 10 days before the onset of

growing period up to 10% into the vegetative

phase.

• Normalize both variables (steps 1 and 2) to range

0–1 for each site.

• Add variables to create index 1.

• Rank based on index 1 and remove bottom 25

percent of sites.

For the remaining sites, the following was done:

• From 10% into the vegetative phase until onset of

grain filling divide into 3 separate sub-phases of

equal length.
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• For each sub-phase count the number of days

where the average daily temperature is between

18–20 oC.

• For each sub-phase determine the amount of

precipitation.

• Remove sites if any of the variables = 0 (3 count

variables and 3 precipitation variables).

• Normalize each variable for a range between 0–1.

• Add each variable and then add index 1 to create

index 2.

• Rank sites using index 2 from largest to smallest.

• Since there are more sites than the desired set size,

then one accession could be chosen randomly from

each site starting at the top ranked site until the

desired set size is reached. Alternatively, this

approach could be taken after one candidate

accession is donated by each country represented

in the candidate site list.

The climatic conditions layers were extracted from

the GIS surfaces modeled from data collection sites as

described by De Pauw (2008). The FIGS_LR subset

has more accessions from Greece, Turkey, Ethiopia,

and India (Supplementary Table S2).

Seedling screening of LR resistance

The seedling screening of GCP and FIGS_LR subsets

was conducted under controlled conditions in the

growth chamber with two pure isolates of LR (ISO-

SAT and ISO-MRC). The single urediniospore was

isolated from infected leaves collected from the

experimental stations of Sidi Allal Tazi (ISO-SAT)

and Marchouch (ISO-MRC) in 2017 and were multi-

plied on the susceptible barley cultivars (Bowman and

Aglou) followed by collection and drying of uredin-

iospores on silica gel and storage at - 80 8C until

further use.

Barley plants were grown in sterilized peat moss

(supplemented with 14–14–14 NPK) in plastic cones

(14 cm long cones with 3.8 cm diameter) positioned

in a 14 9 7-unit tray (Steuwe & Sons, Inc., OR,

United States). For each barley accession, 4–5 seeds

were planted per cone in two replications. Each tray

contained 96-test genotypes along with resistant

(Philadelphia) and susceptible (Bowman) checks.

Plants were raised in the growth chamber (Snijder

Scientific, Tilburg, the Netherlands) with a photope-

riod of 16 h light/8 h dark at 20 ± 1 8C. Inoculation

was carried out on 10–12 days old seedlings when the

first leaf was fully expanded. To prepare LR inoculum,

urediospores were taken from the - 80 �C freezer and

subjected to heat shock for 5 min at 40 �C.

For each tray, 15 mg of urediniospores were

suspended in 10 ml of light mineral oil (Novec

7100, Sigma Aldrich), and this spore suspension was

sprayed onto plants as a fine mist using an airbrush

(Revell, Munchen, Germany). Inoculated plants were

left to dry for 20 min at the room temperature and

were placed in growth chamber in the dark for 24 h at

18 �C with * 100% relative humidity. Then plants

were maintained in the growth chamber with a light/

dark period of 16/8 h at 20 �C for symptoms devel-

opment. The evaluation for LR reaction was carried

out 12–14 days post-inoculation based on infection

types (ITs) according to the 0 to 4 scale developed by

Stakman et al. (1962). The seedlings were classified

either as immune (0), resistant (0; and 1), moderately

resistant (2), moderately susceptible (3), or susceptible

(4).

Field screening of LR resistance

The field screening of LR resistance was performed at

the INRA experimental station of Sidi Allal Tazi (34�
52’ N, 6.32 W) during 2016–17 (SAT2017), 2017–18

(SAT2018), 2018–19 (SAT2019), at Marchouch (33�
5601000N 6�6902100W) during 2017–18 (MRC2018),

and at Guich (33�58059.700N 6�51041.600W) during

2017–18 (GCH18). The tested accessions were sown

as single rows of 1 m with 0.5 m row spacing between

adjacent accessions using an augmented block design.

The seed mixture of susceptible cultivars Bowman and

Aglou were sown as a rust spreader row at the border

of each block to allow the uniform distribution of LR

inoculum.

At SAT, the disease was established naturally, but

at Guich station the disease was initiated using the

artificial inoculation. About 1 g of dried uredin-

iospores were suspended in 200 ml of mineral oil

and sprayed on the trial using an airbrush (Revell,

Munchen, Germany). The establishment and spread of

the disease were favored by covering the spreader

rows with a plastic sheet overnight and by periodic

sprinkler irrigation. The LR resistance was assessed

for GCP and FIGS_LR subsets at growth stage 65–77

(Zadoks et al. 1974) using the modified Cobb scale

(Peterson et al. 1948) which combined the LR severity
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(0 to 100%) and host response; 0 (Immune), no visible

infection on plants; R (resistant), visible chlorosis or

necrosis, no uredia are present; MR (moderately

resistant), small uredia are present and surrounded

by either chlorotic or necrotic areas; MS (moderately

susceptible), medium sized uredia are present and

possibly surrounded by chlorotic areas; S (suscepti-

ble), large uredia are present, generally with little or no

chlorosis and no necrosis. The Coefficient of Infection

(CI) was calculated by multiplying the infection

response values (R = 0.2, MR = 0.4, MS = 0.8,

S = 1) with the percent disease severity (0–100%)

(Stubbs et al.1986), and the accessions were rated

based on the average coefficient of infection (ACI)

where values of 0–7, 8–16, 17–29, 30–50, and[ 50

were considered as resistant, moderately resistant,

moderately susceptible, susceptible, and highly sus-

ceptible, respectively.

Data analysis

Comparing the reactions of GCP and FIGS subsets

The statistical analysis was performed using R soft-

ware (R Core Team 2018). The statistical association

between sub-setting approach and the reaction to LR

was calculated using v2 test of independence with

significance level (a = 0.05) using the following

equation:

v2 ¼
Xr

i¼1

Xc

j¼1

Oij � Eij

� �2

Eij

The equation used for calculating expected values

in a test of independence was as follows:

Eij ¼
Pc

k¼1 Oij

Pr
k¼1 Okj

N

where Eij = expected value,
Pc

k¼1 Oij is the sum of the

ith column,
Pr

k¼1 Okj is the sum of the kth row, N is the

total number.

To find out the differences between FIGS and GCP

subsets in terms of reaction to LR, the test of goodness

of fit using v2 test at a significance level (a = 0.05) was

used where GCP was simulated to a random sample.

The expected values for the test of goodness of fit are

calculated as follows:

Ei ¼ npi

where Ei is the expected value, n is the total sample

size, and pi is the hypothesized proportion of obser-

vations in level i.

Both tests were performed using different group-

ings of reactions, all classes (I, R, MR, MS and S),

three classes (I ? R, MR ? MS, S) and (I ? R ?

MR, MS, S), two classes (I ? R ? MR, MS ? S) at

the seedling stage, and all classes (R, MR, MS, S, HS),

three classes (R, MR ? MS, and S ? HS), and two

classes (R ? MR ? MS, S ? HS) at the adult plant

stage.

Modeling of the reaction to leaf rust disease

The second pathway of FIGS using machine learning

was investigated using the available reactions of the

accessions of FIGS_LR and GCP subsets to find a

function that links adaptive traits, environments (and

associated selection pressures) with genebank acces-

sions. We used environmental data from WorldClim1

databases as predictors. The WorldClim is an open

access database providing global climatic layers

describing past climatic profiles of collection sites

intended for spatial modeling or mapping. It includes

averages of monthly minimum and maximum tem-

peratures, precipitation and bioclimatic variables

(Fick and Hijmans 2017).

The following machine learning algorithms were

used: K-nearest neighbors KNN (Kotsiantis 2007),

Support Vector Machine SVM (Hsu et al. 2010),

Random Forest RF (Breiman, 2001), Neural networks

NNET (Venables and Ripley 2002), and Bagged Carts

BCART (Kołcz 2000). Each machine learning model

was tuned to select the best tuning parameters using a

training set (70% of the total set), and then the best

model was selected between different machine learn-

ing models based on several metrics including accu-

racy, specificity, and Kappa. The modeling metrics

were computed on the test set (30% of the total set). In

this study, R language and caret library were used for

machine learning analysis (Kuhn 2008). Models were

tuned for parameter’s optimization and trained on 70%

of the data and tested with 10 cross validation folds

and 100 replications. In addition, modeling was done

for the two isolates for the seedling stage. For the APR,

modeling was done for the entire multi-locations data

sets and for each location separately.
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Results

Seedling resistance

In the seedling test, successful artificial inoculation

was carried out for the two isolates and diverse

infection responses were recorded. The frequency

distribution of infection response of GCP and

FIGS_LR accessions at the seedling stage has been

presented in Fig. 1. The uniformity of the disease

development was assessed through the high suscepti-

bility of the check Bowman over the two replications.

The highest number of accessions of both FIGS_LR

(65.88% for ISO-MRC, and 51.16% for ISO-SAT),

and GCP (62.87 and 48.4% for ISO-MRC and ISO-

SAT isolates, respectively) subsets showed MR reac-

tion, and only few accessions showed R reaction with

one accession of GCP having immune reaction

(Figs. 1a and b). More resistant accessions were noted

when tested to ISO-MRC isolate with 5.88% for

FIGS_LR and 22.75% for GCP compared with ISO-

SAT isolate that showed 10.47% and 13.3% resistant

accessions for FIGS_LR and GCP, respectively. Some

accessions showed different disease reaction for the

two isolates. For example, the accessions IG 143,872,

IG 143,862, IG 143,864, IG 143,872, IG 143,890, IG

143,978, IG 143,984, IG 144,006, IG 144,090, IG

144,029, IG 144,077, IG 143,871, and IG 144,012

were resistant to ISO-MRC isolate but not to ISO-AT

isolate, whereas accessions IG 143,963, IG 18,725, IG

19,525 were resistant to ISO-AT isolate but not to

ISO-MRC isolate. Ten barley accessions in GCP (IG

143,876, IG 143,886, IG 143,906, IG 143,929, IG

143,998, IG 143,999, IG 144,014, IG 144,064, IG

144,076, IG 144,108) and one in FIGS_LR (IG

18,957) were resistant to both isolates. Most of the

resistant accessions originated from USA, Turkey,

Greece, and Morocco.

Adult plant resistance (APR)

Under field conditions, good natural LR infection was

recorded at the Sidi Allal Tazi during the three

cropping seasons, and good artificial infection was

established at Guich in 2018. However, late and light

artificial infection at Marchouch during 2017 and 2018

seasons did not allow disease severity assessments.

The uniformity of the disease development was

assessed through the high susceptibility of the checks,

Bowman and Aglou, at the adult stage at Sidi Allal

Tazi and Guich sites. The good development of the LR

allowed efficient screening of the germplasm at the

adult plant stage, as shown by wide range of reactions

observed (Fig. 2). The average of coefficient of

infection (ACI) values across the environments ranged

from 0 to 85 with several accessions showing

contrasting reactions in different environments.

Accessions of FIGS_LR and GCP subsets showed

different distributions of the reaction classes with near

normal distribution for SAT2017 and SAT2019, and

positive skewness with high percentage of R acces-

sions (ranged from 55.8 to 68.3%) for SAT2018 and

GCH2018 (Fig. 2b and c). While at SAT2017 and

SAT2019, this reaction class distribution percentage

ranged from 5.59 to 19.64% (Fig.. 2a and d) for both

subsets. When considering MR reaction, additional
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Fig. 1 Frequency distributions of LR disease reactions of

barley FIGS_LR and GCP subsets evaluated at the seedling

stage against ISO-MRC a and ISO-SAT isolates b. Here

I = immune, R = resistant, MR = moderately resistant,

MS = moderately susceptible, and S = susceptible
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8.94 to 30.36% accessions were found during

SAT2017 and SAT2019 cropping seasons. The high-

est numbers of susceptible accessions were observed

at SAT2017 with 34.64 and 15.29% showing suscep-

tibility, and 22.91% and 15.29% were highly suscep-

tible (HS) for GCP and FIGS_LR, respectively. Only

three accessions in FIGS_LR (IG 28,636, IG 28,647

and IG 33,039), and four accessions in GCP subset (IG

143,945, IG 144,000, IG 144,064, IG 144,105) were

found to be resistant across all environments (Table 1).

Comparison of the reaction of FIGS_LR and GCP

to leaf rust

Applying the chi-square tests of independence to both

subsets, the results showed that there is a significant

relationship (P-value = 0.04) between the response to

LR disease and the sub-setting approach for ISO-MRC

isolate, but not for ISO-SAT, when considering all

classes of reaction. For ISO-MRC, GCP included one

accession with immune reaction and 23% of the

accessions being resistant, while FIGS_LR subset

showed only 6% of the accessions being resistant

(Table 2, Fig. 1a). When screened with ISO-SAT

isolate, both FIGS_LR and GCP showed that the

infection response to LR was not dependent on the

sub-setting (p = 0.85), displaying same distribution

patterns of the reaction. No accession was found

immune in both subsets while 9 (10.47%) and 25

(13.3%) accessions were resistant, and 44 (51.16%)

and 91 (48.4%) accessions were MR for FIGS_LR and

GCP subsets, respectively (Table 2, Fig. 1b).

The test of goodness of fit showed that GCP subset

yielded higher percentage of accessions with R, but

FIGS_LR subset yielded higher percentage of acces-

sions with MR reactions in case of ISO-MRC isolate,

but no significant differences were observed between

the two subsets when tested with ISO-SAT isolate

(Table 2).

Except the grouping of two classes (I ? R ? MR,

MS ? S) for the goodness of fit test, the tests of

independence and goodness of fit were significant for
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Fig. 2 Frequency distributions of the adult plant resistance

(APR) of FIGS_LR and GCP subsets to leaf rust under field

conditions at Sidi Allal Tazi during a 2017 (SAT2017), b 2018

(SAT2018), d 2019 (SAT2019) cropping seasons, and at Guich

during 2018 (GCH2018 (c)). Here R = resistant, MR = moder-

ately resistant, MS = moderately susceptible, and

S = susceptible
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ISO-MRC, but not for ISO-SAT for different group-

ings of the reactions (Table 3).

For APR, the reaction to LR was dependent on

subsets for Sidi Allal Tazi during 2017 (SAT2017) and

2018 (SAT2018) with respective v2 (P-values) of

0.001 and 0.02, respectively. But this dependence was

not found in case of GCH 2018 (GCH18) and Sidi

Allal Tazi 2019 (SAT2019) (Table 4). The tests of

goodness of fit showed that FIGS_LR outperformed

GCP subset at Sidi Allal Tazi with higher percentages

of accessions with R and MR reactions under heavy

infection in 2017, but the opposite was observed

during 2018 season at the same site. For GCH2018 and

SAT2019 environments, no significant differences

were observed between the two subsets.

When different groupings of the reactions were

performed, the significance probability of the two tests

were highly significant for SAT2017 and SAT2018,

but not for GCH2018 and SAT2019, except for the test

of goodness of fit for GCH2018 in case of the grouping

(R ? MR ? MS; S ? HS) with P-value of 0.04

(Table 5).

Table 1 Average of coefficient of infection (ACI) values of most resistant accessions at the adult plant stage across environments,

and their infection responses (IR) at the seedling stage to LR isolates (ISO-MRC, ISO-SAT)

Accession Subset SAT2017 SAT2018 GCH2018 SAT2019 ISO-MRC ISO-SAT

IG 143,945 GCP 8 6.2 2.5 6 2 2

IG 144,000 GCP 12 2 6.8 4 2 2

IG 144,064 GCP 2 0.8 0.4 6 1 0;

IG 144,105 GCP 4.2 0.4 1 12 2 3

IG 28,636 FIGS 6 1.1 4.95 5 2 2

IG 28,647 FIGS 6.1 4.1 0.7 8 2 2 ?

IG 33,039 FIGS 4.2 0.4 6.7 0.2 2 2

Resistant accessions with ACI values ranging from 0–7

Table 2 Number of accessions per reaction type of barley

FIGS_LR and GCP subsets evaluated at the seedling stage

using two leaf rust isolates (ISO-MRC and ISO-SAT) with v2

(P-values) for the tests of independence and goodness of fit

ISO-MRC ISO-SAT

FIGS_LR GCP FIGS_LR GCP

I 0 1 0 0

R 5 38 9 25

MR 56 105 44 91

MS 22 21 28 64

S 2 2 5 8

*v2 (P) 16 .31 (0.04) 0.81 (0.85)

**v2 (P) 24.18 (0.0001) 1.2 (0.75)

*v2 test of independence, and **v2 goodness of fit test

Here I: immune; R: resistant; MR: moderately resistant; MS:

moderately susceptible; S: susceptible

Table 3 v2 (P-value) for the tests of independence and goodness of fit for different groupings of the reaction to two leaf rust isolates

(ISO-MRC and ISO-SAT) at the seedling stage for FIGS-LR and GCP subsets

Groups of reaction Test of independence Test of goodness of fit

ISO-MRC ISO-SAT ISO-MRC ISO-SAT

I ? R, MR ? MS, S 14.65 (0.001) 0.70 (0.71) 15.13 (0.001) 1.03 (0.60)

I ? R ? MR, MS, S 11.67 (0.003) 0.34 (0.84) 9.54 (0.008) 0.55 (0.76)

I ? R ? MR, MS ? S 10.10 (0.001) 0.0001 (0.99) 6.61 (0.10) 0.0002 (0.99)

Here I: immune; R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible
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Predictive modeling of the reaction to leaf rust

At the seedling stage, the tested machine learning

models did not perform similarly for the two LR

isolates. For ISO-MRC isolate, all models yielded a

significant medium to very high accuracy. The max-

imum accuracy (0.94) was reached using the BCART

model and was then chosen as the best model. The

remaining modeling parameters showed the strong

mathematical relationship between the reaction to

ISO-MRC and the environmental characteristics

(Table 6). However, the modeling pattern was oppo-

site for ISO-SAT isolate where all the models were not

significantly accurate (Table 7), since the accuracy

was similar to the ‘‘No Information Rate’’ and hence

demonstrating that the models were as good as the

naı̈ve model. It is noticeable that the specificity was

much lower than sensitivity for all tested models.

For the APR, no model performed significantly for

the two locations (Table 8). Accuracy was high for all

models, however, the unbalanced data due to the

higher number of resistant genotypes make the model

not performing better than the naı̈ve model because of

the low values of specificity and high value of ‘‘No

Information Rate’’. Among the tested models, RF was

the best model for all locations.

Discussion

LR occurs annually with high incidence in the

Northern regions of Morocco, and the Sidi Allal Tazi

has been used as the LR hotspot for the barley

germplasm screening. Over three years, most of the

barley varieties and advanced breeding lines showed

high susceptibility to P. hordei at this site. The

Table 4 Number and percentages of barley accessions per leaf rust reaction type of FIGS-LR and GCP subsets evaluated at the adult

plant stage at Sidi Allal Tazi (SAT) and Guich (GCH) stations with v2 (P-values) for the tests of independence and goodness of fit

SAT2017 SAT2018 GCH2018 SAT2019

FIGS_LR (%) GCP (%) FIGS_LR (%) GCP (%) FIGS_LR (%) GCP (%) FIGS_LR (%) GCP (%)

R 11 (12.9) 10 (5.6) 40 (65.6) 114 (68.36) 50 (63.3) 77 (55.8) 11 (19.6) 24 (17.3)

MR 11 (12.9) 16 (8.9) 2 (3.3) 16 (9.6) 16 (20.3) 23 (16.7) 17 (30.4) 32 (23)

MS 37 (43.5) 50 (27.9) 2 (3.3) 17 (10.2) 9 (11.4) 20 (14.5) 18 (32.1) 58 (41.7)

S 13 (15.3) 62 (34.6) 11 (6.6) 11 (6.6) 3 (3.8) 15 (10.9) 10 (17.9) 24 (17.3)

HS 13 (15.3) 41 (22.9) 6 (5.4) 9 (5.4) 1 (1.3) 3 (2.2) 0 (0) 1 (0.7)

*v2 (P) 18.3 (0.001) 12.26 (0.02) 4.46 (0.35) 2.33 (0.67)

**v2 (P) 28.49 (9.94E-06) 19.82 (0.001) 5.86 (0.21) 3.14 (0.53)

*v2 test of independence and **v2 goodness of fit test

Here R: resistant; MR: moderately resistant; MS: moderately susceptible; S: susceptible; HS: highly susceptible

Table 5 v2 (P-value) for the tests of independence and goodness of fit of the leaf rust reactions at the adult plant stage of FIGS_LR

and GCP subsets of barley at Sidi Allal Tazi (SAT2017, SAT2018 and SAT2019) and Guich (GCH2018)

SAT2017 SAT2018 SAT2019 GCH2018

Group of reactions Test of independence

R, MR ? MS, S ? HS 17.61 (0.0001) 11.8 (0.003) 0.16 (0.92) 3.64 (0.162)

R ? MR ? MS, S ? HS 16.76 (4.25E-05) 8.30 (0.004) 0.0004 (0.98) 3.51 (0.061)

Group of reactions Test of goodness to fit

R, MR ? MS, S ? HS 27.82 (9.11E-07) 18.31 (0.0001) 0.23 (0.89) 4.66 (0.097)

R ? MR ? MS, S ? HS 25.28 (4.97E-07) 14.62 (0.0001) 0.001 (0.98) 4.44 (0.04)

Here R: resistant; MR: moderately resistant; MS: moderately susceptible; S: sensible; HS: highly susceptible
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development of high yielding varieties with adequate

levels of resistance is the key to an integrated

management of LR and is compatible with the general

consideration of barley as a low input crop by most

farmers. Recent studies on the screening of interna-

tional germplasm collections reported that the effec-

tive sources of LR resistance available are limited,

highlighting the needs for additional new sources of

resistance (Golegaonkar et al. 2009; Derevnina et al.

2013; Sandhu et al. 2014; Singh et al. 2015). Genetic

resources conserved ex situ in the genebanks are

important sources of breeders ‘sought traits including

the resistance to major diseases, but need efficient

mining approaches. In this study, both FIGS_LR and

Table 6 Performance measures of different machine learning models for resistance of barley accessions to leaf rust isolate ISO-

MRC at the seedling stage

Performance measures k-NN SVM RF NNET BCART

Accuracy 0.716 0.686 0.961 0.912 0.941

95% CI (0.62–0.80) (0.59–0.77) (0.90- 0.99) (0.84- 0.96) (0.88- 0.98)

No Information Rate 0.5 0.5 0.5 0.5 0.5

P-Value [Acc[NIR] 7.75E-06 0.000107 8.73E-25 4.99E-19 2.83E-22

Kappa 0.431 0.373 0.922 0.824 0.882

Sensitivity 0.549 0.529 0.922 0.824 0.882

Specificity 0.882 0.843 1 1 1

Here k-NN: K-nearest neighbors KNN; SVM: Support Vector Machine; RF: Random Forest; BCART: Bagged Carts

Table 7 Performance measures of different machine learning models for resistance of barley accessions to leaf rust isolate ISO-SAT

at the seedling stage

Performance Measures k-NN SVM RF NNET BCART

Accuracy 0.722 0.556 0.597 0.542 0.653

95% CI (0.60–0.82) (0.43–0.67) (0.47–0.71) (0.42–0.66) (0.53–0.76)

No Information Rate 0.639 0.639 0.639 0.639 0.639

P-Value [Acc[NIR] 0.086782 0.943047 0.805548 0.965561 0.455707

Kappa 0.355 0.0368 0.089 - 0.0189 0.228

Sensitivity 0.87 0.652 0.739 0.674 0.761

Specificity 0.462 0.385 0.346 0.308 0.462

Here k-NN: K-nearest neighbors KNN; SVM: Support Vector Machine; RF: Random Forest; BCART: Bagged Carts

Table 8 Performance

measures of the best

machine learning model

(Random Forest) for the

prediction of leaf rust adult

plant resistance of barley

accessions

Here SAT: Allal Tazi; GCH:

Guich; RF: Random Forest

Model (SAT ? GCH) SAT GCH

RF RF RF

Accuracy 0.81 0.81 0.84

95% CI (0.741, 0.864) (0.691, 0.903) (0.719, 0.918)

No Information Rate 0.80 0.75 0.85

P-Value [Acc[NIR] 0.47 0.15 0.72

Kappa 0.31 0.42 0.20

Sensitivity 0.92 0.96 0.94

Specificity 0.35 0.40 0.22
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GCP subsets have yielded sources of resistance to LR,

but only few accessions showed resistant reaction at

the seedling and/or adult plant stages in SAT2017 and

SAT2019. The results indicated the changes in the

reaction of accessions to different isolates at the

seedling stage and at different locations and in

different years at the adult plant stage.

The response of differentials to pure isolates of a

pathogen at SRT and to field populations at APR

decipher putative R genes effective at both stages.

Race analysis of both isolates of LR (ISO-MRC and

ISO-SAT) on 19-Bowman near isogenic lines (NILs)

revealed their diverse virulence spectrum (Amou-

zoune et al. unpublished data). ISO-MRC was virulent

on NILs carrying Rph2.b, Rph3.c, Rph4.d, Rph5.e,

Rph6.f Rph5, Rph7.g, Rph8.h, Rph9.i, Rph10.o,

Rph11.p, Rph9.z Rph12, Rph2.j, Rph2.y, Rph2.t,

whereas the isolate ISO-SAT was virulent on NILs

carrying Rph1.a, Rph3.c, Rph4.d, Rph8.h, Rph9.

Furthermore, of the 19 differentials tested, 11 (58%)

showed differential interaction between both isolates.

Hence, differential response of both LR isolates to

FIGS_LR and GCP at SRT can be attributed to their

diverse virulence spectrum (Fig. 1). In addition,

among the resistant accessions to both isolates in case

of FIGS_LR and GCP subsets, only 7 and 16% R

accessions were common which further corroborate

difference in their virulence spectrum. Of the 19

Bowman differential lines tested at the adult plant

stage at Sidi Allal Tazi in 2017 cropping season

(SAT2017), only one differential line carrying Rph2

(Rph2.y) displayed moderately resistant reaction to LR

field population (unpublished data). Contrary to SRT,

FIGS_LR performed better than GCP at APR. Except

SAT2018, higher percentage of R and MR barley

accessions were observed in SAT2017, SAT2019, and

GCH2018 in FIGS subset compared to GCP (Fig. 2).

In the present study, four accessions IG 143945, IG

144000, IG 144064 from GCP subset, and three

accessions IG 28613, IG 28636, IG 33039 from

FIGS_LR subset showed resistant (R) to moderately

resistant (MR) response at the seedling and at APR

stage (Table 1). Under Moroccan growing conditions,

barley is planted in November and LR is the last

disease which effect barley in March–April. There-

fore, APR is quite important, and a large number of

R-MR accessions identified in FIGS_LR and GCP

subsets will be useful resource for combating LR.

Most probably, LR resistant accessions identified in

this study may possess either new R genes or allelic

variants of existing R genes or a combination of both.

A high-density genotyping and genome wide associ-

ation studies seem to be a logical step to dissect the

resistance diversity. These putative R genes could be

either pyramided or used sequentially to ensure a

better R gene deployment strategy.

The seedling resistance is usually characterized by

hypersensitivity and is governed by single major

genes, Such genes can be easily overcome by new LR

races because of their excessive utilization over large

areas which exert selection pressure on the pathogen

population which lead to the emergence of new races,

and eventual breakdown the effectiveness of resis-

tance genes. Virulence has been detected for most

known seedling Rph genes in various barley growing

regions throughout the world. In Australia, only Rph3,

Rph7, Rph11, Rph14, Rph15, and Rph18 of the

characterized major genes were still effective to

prevailing pathotypes (Cotterill et al. 1995; Park

2003). However, pathotypes virulent to Rph3 were

detected in New Zealand (Cromey and Viljanen-

Rollinson 1995), and the virulence for Rph7 has been

identified in Israel (Golan et al.1978), Morocco

(Parlevliet et al. 1981), and North America (Steffen-

son et al. 1993). Virulence for Rph11 and Rph14 has

also been found frequently in many parts of the world

(Fetch et al. 1998), and virulence to Rph15 was

reported by Sun et al. (Sun 2007). Therefore, an

accession with LR resistance at the seedling stage

alone might not provide durable and effective resis-

tance (Singh 1992; Park 2008; Singh et al. 2015).

APR against rusts is a key component of durable

resistance in wheat (Singh et al., 2001). Similarly,

APR to barley LR is a good strategy for effective

disease control and the identification and characteri-

zation of such sources could facilitate their utilization

in breeding programs. Since there are several acces-

sions at the adult plant stage with MR and MS

reactions or with slow progression of the disease based

on the area under the disease progress curve (data not

presented) under heavy rust epidemics, partial resis-

tance and slow rusting mechanism could be consid-

ered to ensure a race non-specific and a more durable

resistance. Several studies have promoted partial and

non-race specific resistance in case of rusts and

powdery mildew in barley and wheat as this type of

resistance is available in some commercial varieties

(Parlevliet and Kuiper 1977; Andres and Wilcoxon
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1986; Niks et al. 2000; Stuthman et al. 2007). Several

APR genes were well characterized and deployed in

wheat to control rust diseases (Park and McIntosh

1994). In barley, three genes governing APR to LR

have been identified and used (Rph20, Rph23, and

Rph24) (Hickey et al. 2011; Singh et al. 2015; Ziems

et al. 2017). Even if there are no reports of virulence

for Rph20, Rph23 or Rph24, identifying new APR

resistance genes for LR are essential for diversifying

resistance and to promote gene pyramiding to increase

resistance levels. Marker assisted selection (MAS)

provides an opportunity to breeders to pyramid the

APR genes in barley.

FIGS has shown its efficiency in identifying novel

sources of resistance to powdery mildew, yellow and

stem rusts, Sunn pest, and Russian wheat aphid in

wheat (Bhullar et al. 2009; El Bouhssini et al.

2009, 2011; Bari et al. 2012, 2014), and to net blotch

of barley (Endresen et al. 2011). This study included

the first attempt to compare FIGS with another subset,

the Reference set of the Generation Challenge Pro-

gram (GCP) selected from the global barley core

collection based on diversity using SSR markers.

FIGS sub-setting using filtering approach has allowed

to identify higher percentages of accessions when

combining R and MR reactions compared to GCP

subset in case of field tests (except SAT2018). The

reduced sample size as well as the non-balance

between the two classes (Resistant and Susceptible)

could explain the low predictability of the machine

learning models. Modeling outcomes using machine

learning approach were dependent on the isolates or

predominant field pathogen populations and the envi-

ronments. The results showed the need for further fine

tuning of FIGS approach to consider the diversity of

virulence of the pathogen populations using larger

subsets. Overall FIGS remains more relevant as it

focuses on the traits needed by users, uses available

evaluation data, and allows to select subsets from all

the collections compared to core and mini-core

collections where the focus is only on the overall

genetic diversity included in 10% and 1% of the whole

collection. It will be interesting also to compare both

sub-setting methods in yielding new different effec-

tive genes. This can be investigated using molecular

markers or by screening the identified sources of

resistance to a larger number of isolates with different

virulence spectrums.

Conclusion

This current study suggests that the trait mining

approach can be an efficient alternative to the core

collection method. The resistant and moderately

resistant accessions at the seedling and at the adult

plant stages in this study are valuable resources of P.

hordei resistance and can lead towards effective and

durable resistance against P. hordei when combined

with appropriate gene deployment strategies. The

evaluation of larger subsamples in different environ-

ments, and against different pathotypes will allow the

fine tuning of FIGS sub-setting approach using

machine leaning.
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