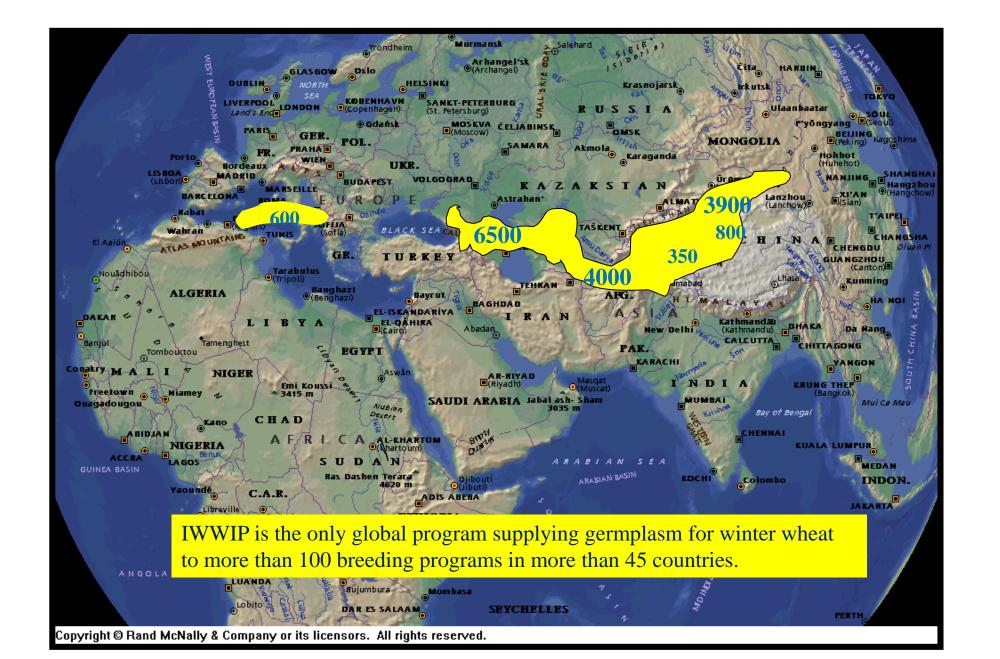
# Developing new wheat varieties tolerant to biotic and abiotic stresses to improve food security under climate change in Central Asia

**Mesut Keser** 

**ICARDA-Turkey** 


04.04.2019 CC Conference Tashkent, Uzbekistan



#### **IWWIP** History

- •1986 IWWIP: Turkey and CIMMYT established joint winter wheat breeding program for the region based in Anatolian Plateau of Turkey.
- •1990 IWWIP: Turkey/CIMMYT/ICARDA

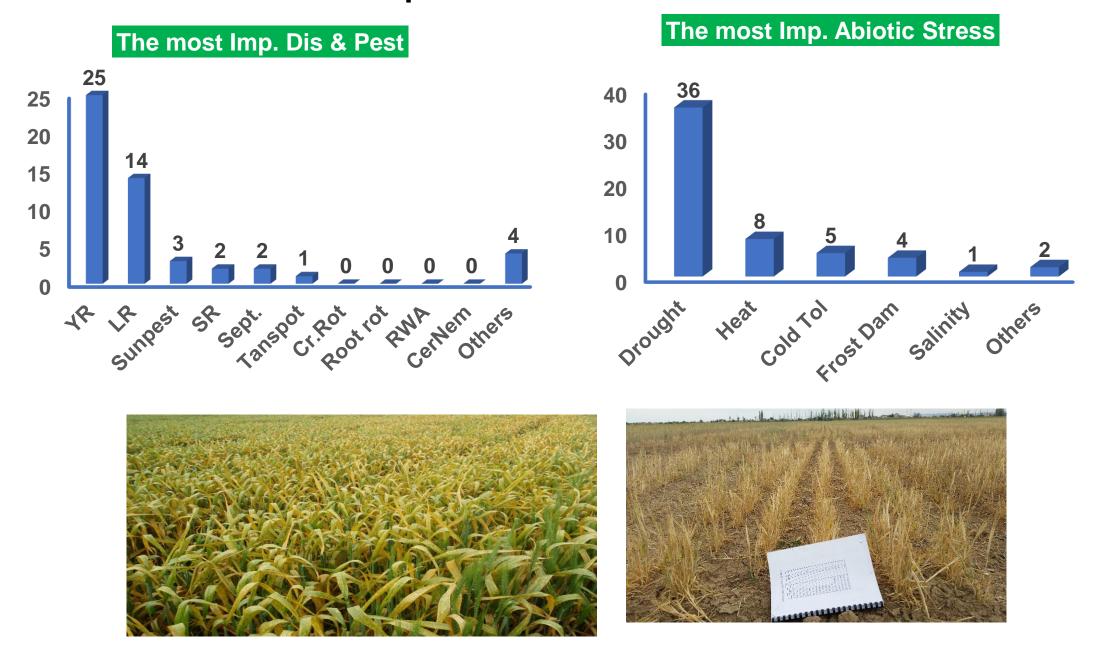
ICARDA Highland Wheat Breeding Program joined IWWIP to establish a well integrated international breeding framework.



#### **Current status**

- Present framework
  - IWWIP-Turkey (crosses, segregating generations, trials, multiplication and international nursery distribution)
  - CIMMYT-Mexico (limited number of spring x winter crosses for spring wheat breeding)
  - ICARDA-Lebanon (crosses, segregating generations, trials, trait evaluation)
  - Iran (segregating populations exchange, trials)
  - ICARDA-Tashkent (segregating populations exchange, trials)



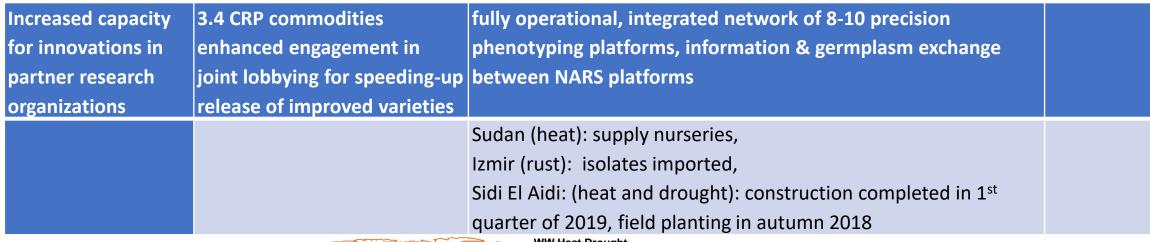


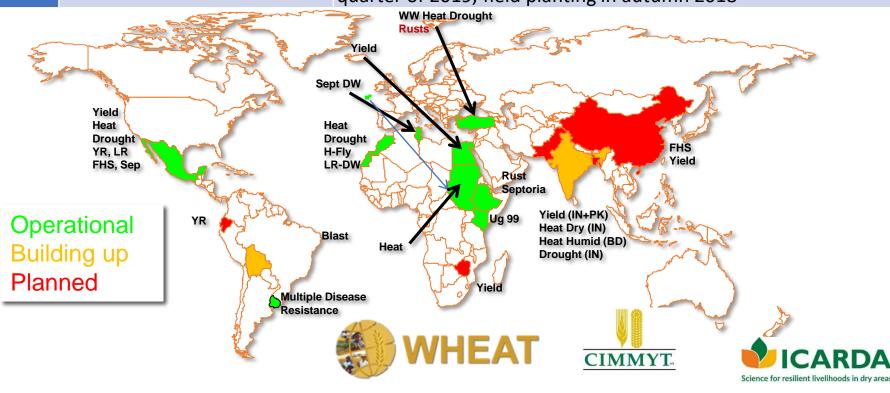

### Target environments

| Mega-environment                               | Yield, t/ha | Area, mIn ha |      |              |       |
|------------------------------------------------|-------------|--------------|------|--------------|-------|
|                                                |             | Turkey       | Iran | Central Asia | Total |
| Moderate cold full irrigation or high rainfall | >4.5        | 1            | 0.5  | 3            | 4.5   |
| Moderate cold supplementary irrigation         | 2.0-4.5     | 3            | 1    | 1            | 5     |
| Moderate cold semi-arid                        | <2.0        | 4            | 1    | 1            | 6     |
| Severe cold rainfed                            | ~3.0        | 0.2          | 0.2  | 0.2          | 0.6   |

- Spring growth habit: no requirement for vernalization (exposure to low t.)
- Facultative type: weak requirement for vernalization
- Winter growth habit: strong vernalization requirements

#### The most Important Biotic and Abiotic stresses





# Research Institutes in Turkey contributing to the Turkey – CIMMYT – ICARDA International Winter Wheat Improvement Program



# **Germplasm movement**

| Generation          | Entry | Breeding activity                                                  | Locations                                             |  |
|---------------------|-------|--------------------------------------------------------------------|-------------------------------------------------------|--|
| F1 & F1TOP          | 1000  | Discard poor crosses                                               | Izmir                                                 |  |
| F2                  | 800   | Bulk, discard poor, select resistant to leaf rust and winter types | Edirne (high rainfall, cold, Leaf Rust)               |  |
| F3                  | 700   | Individual spikes selections                                       | Diyarbakir (Irr, heat, Yr)                            |  |
| <b>F4</b> 30,000    |       | Head Rows                                                          | Eskisehir<br>Eskisehir; Adapazari<br>(LR); Izmir (Yr) |  |
| <b>F5</b> 3,500     |       | PYT: irrigated & semi-arid (unreplicated) & diseases               |                                                       |  |
| <b>F6 - YT</b> 1000 |       | Replicated YT & diseases & quality                                 | 3-4 sites YT + 4-5 sites diseases                     |  |
| <b>F7 - AYT</b> 500 |       | Replicated YT & multiplication & mol.  Markers                     | 5-6 sites                                             |  |
| F8 – IN             | 200   | Distribution outside                                               | 120 sites                                             |  |





**Lab and Offices BSL3 Facility** 





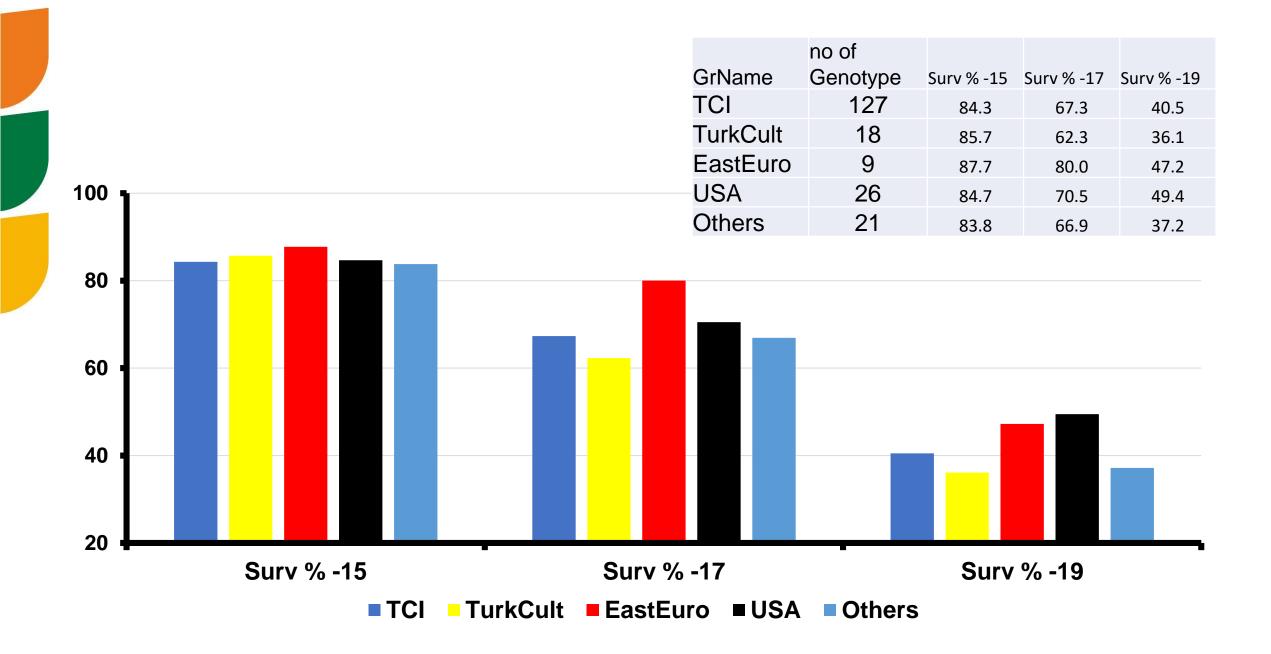








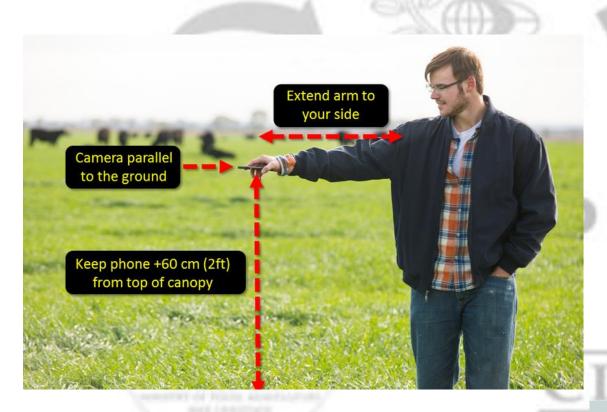












# Cold Tolerance of different origins at different temperatures



#### Vrn Comb vs Cold Surv No of Ent VrnGroup Vrn Combinations vrn-A1\_winterHereward-typeJagger-type:2147-typevrn-89 B1 winterVrn-D1a a vrn-A1\_winterHereward-typeJagger-type:2147-typeVrnb 33 B1\_springVrn-D1a 24 C vrn-A1\_winterClaire-typeJagger-typevrn-B1\_winterVrn-D1a 10 d vrn-A1\_winterClaire-typeJagger-typeVrn-B1\_springVrn-D1a 100 9 е Vrn-A1\_springClaire-typeJagger-typevrn-B1\_winterVrn-D1a vrn-A1\_winterHereward-typeJagger-type:2147-typevrn-9 B1\_wintervrn-D1 80 27 0 60 40 20 **Surv % -15 Surv % -17 Surv % -19** ■c ■d ■e ■f ■o

# INCREASE SELECTION ACCURACY FOR THE DRYLANDS PhenoApps: EARLY GROUND COVERAGE



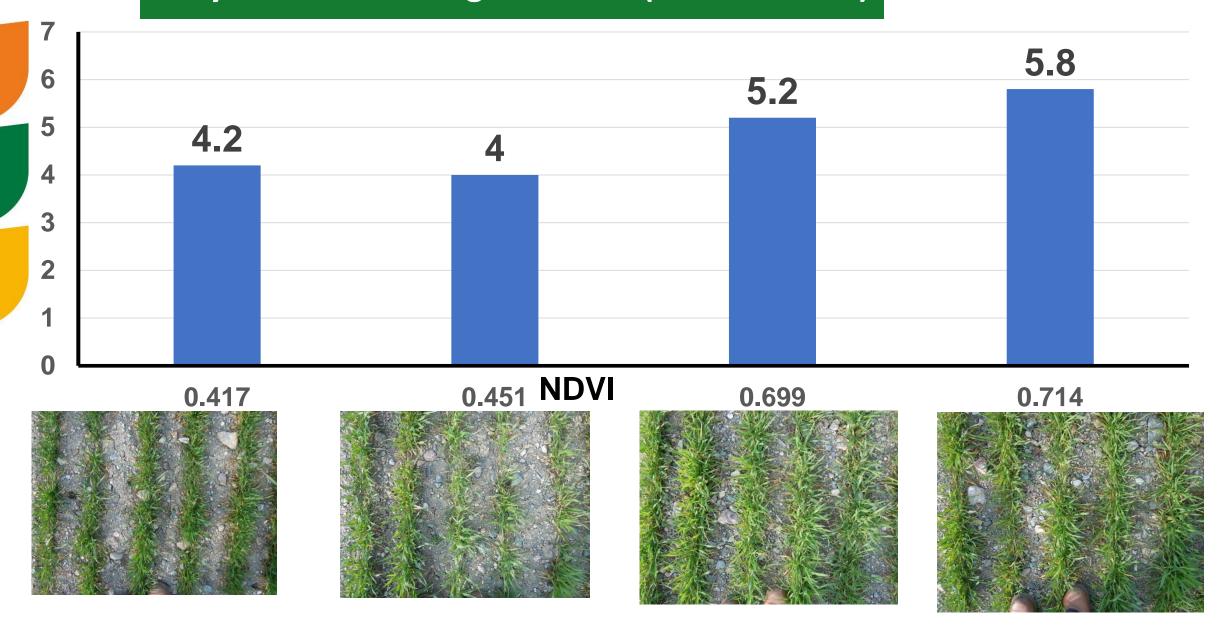


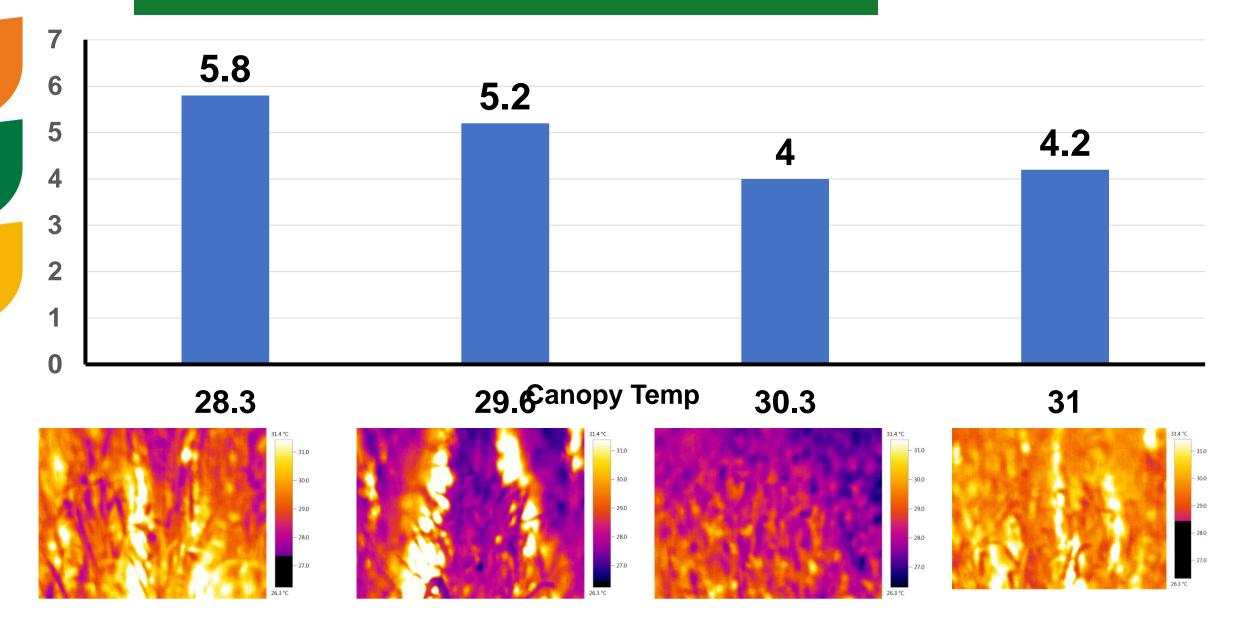




http://canopeoapp.com/

## **Early Ground Coverage in WFW (NDVI vs Yield)**



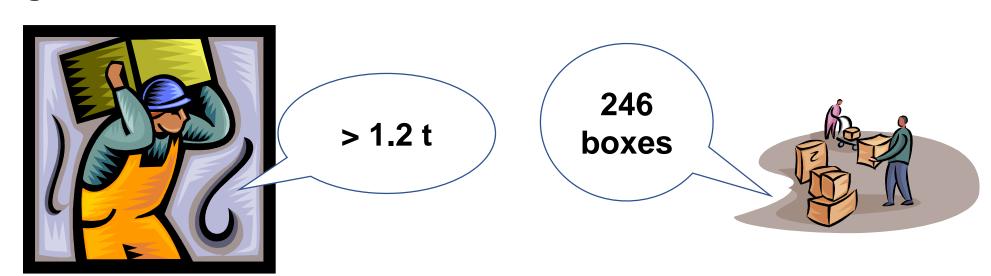


Table 1: An overview of wheat phenotyping techniques.

#### **Canopy Temperature (°C)**

| , ,, ,                   |                                              |                                                                                                                                            | canopy remperature ( c)                                                 |                                                                               |  |
|--------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|
| Measurement              | Physiological trait/s                        | Reason to measure trait                                                                                                                    | Advantages of tool                                                      | Disadvantages of tool                                                         |  |
| 1. Canopy<br>temperature | Evaporative cooling from the canopy surface. | Linked to many physiological factors: stomatal conductance, plant water status, roots and yield performance under a range of environments. | Integrative; quick, easy and cheap to measure; non-destructive; remote. | Sensitive to environmental fluxes; interaction with tim of day and phenology. |  |
|                          |                                              |                                                                                                                                            |                                                                         |                                                                               |  |
|                          | f and next to anth<br>test time of day (i    | lecto thermal                                                                                                                              | cam                                                                     |                                                                               |  |

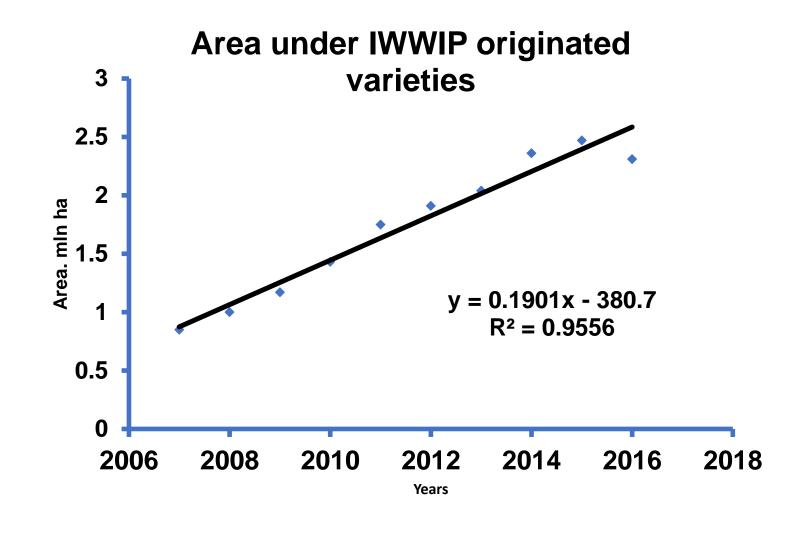
Canopy Temperature: Well irrigated plants have lower temperatures then ambient air because of evaporative cooling. Low canopy temperature indicates more stomatal conductance and generally good adaptation (Reynolds *et al.*, 2001). Canopy temperature is measured with a infrared thermometer. Measure when the plant surfaces are dry (i.e. without dew) and when there the sky is clear and wind low, at an angle of 30 o, 30 cm above canopy.

### **Canopy Temperature vs Yield in WFW**






32 Countries74 Programs


# International Nursery Dist. 2018-2019

| No    | Nursery      | # of Entry | Gr  | Distributed |
|-------|--------------|------------|-----|-------------|
| 1     | 26FAWWON-Irr | 208        | 20  | 89          |
| 2     | 26FAWWON-SA  | 105        | 20  | 66          |
| 3     | 22IWWYT-IR   | 40*2       | 140 | 48          |
| 4     | 21IWWYT-SA   | 40*2       | 150 | 43          |
| Total |              |            |     | 246         |



# W/F Wheat varieties from IWWIP released in the region

| Country      | Varieties released |  |
|--------------|--------------------|--|
|              | releaseu           |  |
| Afghanistan  | 6                  |  |
| Armenia      | 4                  |  |
| Azerbaijan   | 4                  |  |
| Georgia      | 6                  |  |
| Iran         | 9                  |  |
| Kazakhstan   | 2                  |  |
| Kyrgyzstan   | 9                  |  |
| Tajikistan   | 5                  |  |
| Turkey       | 35                 |  |
| Turkmenistan | 3                  |  |
| Uzbekistan   | 3                  |  |
| Total        | 86                 |  |



# Highest yield lines of winter wheat in Karshi-Uzbekistan: 2018

| Entry               | Name                    | Seed<br>color | YR, rep-1 | YR, rep-2 | YR, rep-3 | GY, t/ha | TKW (g) |
|---------------------|-------------------------|---------------|-----------|-----------|-----------|----------|---------|
| 35                  | UZ23FAWIR-37            | White         | 30 MR     | 30 MR     | 40 MR     | 10.14    | 48.91   |
| 31                  | UZ15PC-295              | White         | 10 MR     | 10 MR     | 10 MR     | 9.881    | 44.29   |
| 20                  | UZ15PC-58               | Red           | 30 MR     | 35 MR     | 40 MR     | 9.729    | 46.28   |
| 49                  | KRBW17-12               | White         | 10 MR     | 5 MR      | 5MR       | 9.696    | 40.25   |
| 47                  | KRBW17-10 (New Variety) | Red           | 10 MR     | 10 MR     | 0 MR      | 9.62     | 44.31   |
| 43                  | KRBW17-6                | Red           | 25 MR     | 20 MR     | 25 MR     | 9.563    | 48.71   |
| 5                   | KR15-9808 (New Variety) | Red           | 10 MR     | 10 MR     | 10 MR     | 9.523    | 42.05   |
| 3                   | Gozgon (CK)             | Red           | R         | 5R        | R         | 9.362    | 42.08   |
| 4                   | Yaksart (CK)            | Red           | 10 MR     | 5 MR      | 10 MR     | 9.063    | 40.75   |
| 2                   | Buniyodkor (CK)         | White         | 10 MR     | 20 MR     | 10 MR     | 8.885    | 45.2    |
| 1                   | Krasnodar-99 (CK)       | Red           | 100 S     | 95 S      | 90 S      | 8.087    | 39.55   |
| LSD <sub>0.05</sub> |                         |               |           |           |           | 0.5295   | 2.664   |
| CVIIO/              |                         |               |           |           |           | 2 [7     | 2.05    |

# Adoption and Impact studies in Tajikistan and Kyrgyzstan

Preliminary study description and findings
January 2019

Study team (Aziz Karimov et al)

# **Tajikistan**

- Survey in three provinces (Khatlon, Sugd and Districts of Republican Subordination (DRS)) of Tajikistan in the 2016/17.
- Chosen 6 districts, 115 wheat growing farm households in each district; 5-9 villages in each district
- The top-10 varieties cultivated about 92%, Most of them 3-16 years old, released before 2002 and 2014
- The top 3 varieties are Basribey, Alex and Krasnodar which accounts 60.3% of all Tajik farmers.
- Five varieties (Alex, Ormon, Norman, Chumon and Shokiri) originated from the IWWIP and cultivated 27.1 %.
- Alex was released in 2007, Chumon released in 2011 and Shokiri released in 2015
- The achievement by the IWWIP varieties is encouraging. Expected higher adoption in the future especially for the most recent varieties

- In 2017, The survey with 700 households from Osh, Chuy and Issyk-Kul provinces; account about 80% of the cultivated area of wheat.
- In the 2017/2018 season, many farmers began to grow barley. Like in; Chuy oblast, in the Zhayilsky and Sokuluk districts.
- The most widely grown varieties are;
  - Osh; Intensiv (32%), Kayrak (17%), Zubkov (8%), Krasnovodopodskaya210 (6%), Aidar Manyz (6%)
  - Chuy: Intensiv (56%), Bezostaya1 (12%), Krasnodarsky (7%)
  - **Issyk-Kul**; Kazakhstan10 (53%), Bezostaya 1 (20%), Intensiv (12%)
- Many farmers first **learned** new varieties from **relatives**, **friends** and other **farmers** (78%), **market** (8%), **farmer groups** (6%).
- Most varieties are grown mainly from 2008 until now. Cultivation years of a variety is 4-7 years.
- Farmers mainly use their own seeds. In all three oblasts in 2017/2018 compared to 2016/2017, own seed usage increased.

# Human Resource Development

| Year  | # of Trainee from CAC | Place  | # of Partic.<br>Trav. Sem. | Place      |  |
|-------|-----------------------|--------|----------------------------|------------|--|
| 2007  | 3                     | Turkey | 50                         | Turkey     |  |
| 2008  | 5                     |        |                            |            |  |
| 2009  |                       |        | 45                         | Ukraine    |  |
| 2010  | 3                     | Turkey |                            |            |  |
| 2011  | 3                     | Turkey | 46                         | BulgRom.   |  |
| 2012  | 5                     | Turkey |                            |            |  |
| 2013  | 2                     | Turkey | 45                         | Uzbekistan |  |
| 2014  | 2                     | Turkey |                            |            |  |
| 2015  | 2                     |        | 48                         | AzGeorgia  |  |
| 2017  | 2                     | Russia | 74                         | Russia     |  |
| 2018  | 3                     | Turkey | 54                         | Turkey     |  |
| Total | 30                    |        | 372                        |            |  |



Turkish Juniour Scientists Training (2007-2018)

| Place                     | # of trainee |
|---------------------------|--------------|
| CIMMYT HQ                 | 9            |
| ICARDA HQ                 | 5            |
| Turkey-ICARDA Rust Center | 20           |
| Kenya, BGRI               | 6            |
| Total                     | 43           |
| Eng. Course (2007-19)     | 873          |

