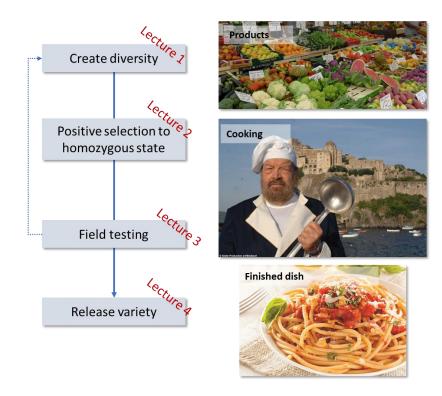


Cap Dev Lectures series:

Breeding autogamous cereals - a complete lecture from Parents to Farms

Filippo M Bassi senior durum wheat breeder


Lecture 2 – April 7th 2022

Progression to inbreeding (F1 to F5)

- Inbreeding
- Intensity of selection
- What traits can be selected for
- Heterogeneity
- Selection history
- Practical examples

Breeding schemes

Logistics of a breeding program

Inbreeding

- At each generation, half of the alleles are fixed in one homozygous state
 - Why is that important?

Generation	Heterozygosity	Inbreeding
F1	100.0%	0.0%
F2	50.0%	50.0%
F3	25.0%	75.0%
F4	12.5%	87.5%
F5	6.3%	93.8%
F6	3.1%	96.9%
F7	1.6%	98.4%

Inbreeding: it also reduces your options

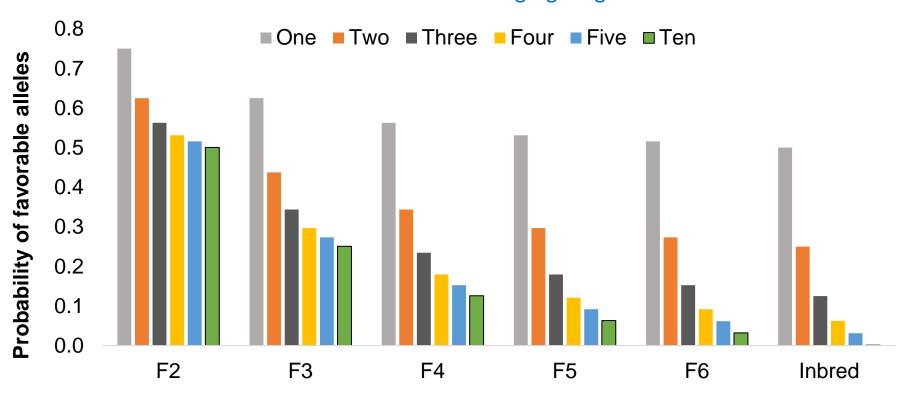
We want allele A-

We want allele A- B-

F1: Aa

F1: AaBb

<u>Aa</u>	Α	а
Α	AA	<u>Aa</u>
а	<u>aA</u>	aa

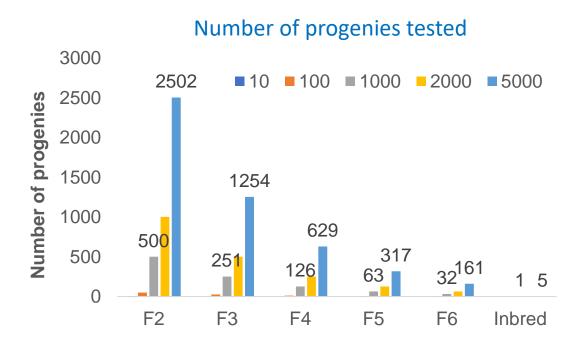

<u>AaBb</u>	AB	аВ	Ab	ab
AB	AABB	AaBB	AABb	<u>AaBb</u>
аВ	aABB	aaBB	<u>aABb</u>	aaBb
Ab	AAbB	<u>AabB</u>	AAbb	Aabb
ab	<u>aAbB</u>	aaBb	aAbb	aabb

Gen	Frequency					
Gen	AA	Aa	aa	A-		
F2	25%	50%	25%	75%		
F3	38%	25%	38%	63%		
F4	44%	13%	44%	56%		
F5	47%	6%	47%	53%		
F6	48%	3%	48%	52%		

	Frequency									
	AABB	aaBB	AAbb	aabb	aAbb	aABB	AABb	aaBb	AaBb	A-B-
F2	6%	6%	6%	6%	13%	13%	13%	13%	25%	56%
F3	14%	14%	14%	14%	9%	9%	9%	9%	6%	39%
F4	20%	20%	20%	20%	5%	5%	5%	5%	0%	31%
F5	22%	22%	22%	22%	3%	3%	3%	3%	0%	28%
F6	24%	24%	24%	24%	1%	1%	1%	1%	0%	26%

Inbreeding: it also reduces your options

Number of loci segregating


 $P = Inbreeding \times 0.5^n + Heterozygosity$

Inbreeding: a friend to be understood

- When crossing parents that are very genetically different it would be hard to select for all segregating traits (i.e. pre-breeding)
- Selection in early generation has more chances of finding positive progenies
- <u>Population size</u> needs to be large enough to account for the number of segregating loci

Intensity of selection: forget at your own cost

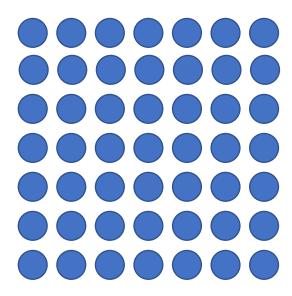
- Assuming 10 QTLs segregating, only screening >1000 progenies as inbred can be found 1
- The little row is not sufficient to find positive progenies
- This is called "intensity of selection"

Accuracy of selection: forget at your own cost

- Also, not all traits can be selected for in early generations:
 - Highly heritable traits can be effectively selected in single plants
 - Low heritability traits need entire plots

This is a combination of "accuracy of selection" and "heritability" of the trait

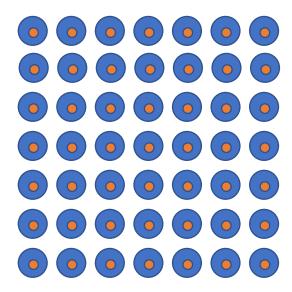
What traits can be selected for in F2>F4?



Starting from a 100% inbred spike

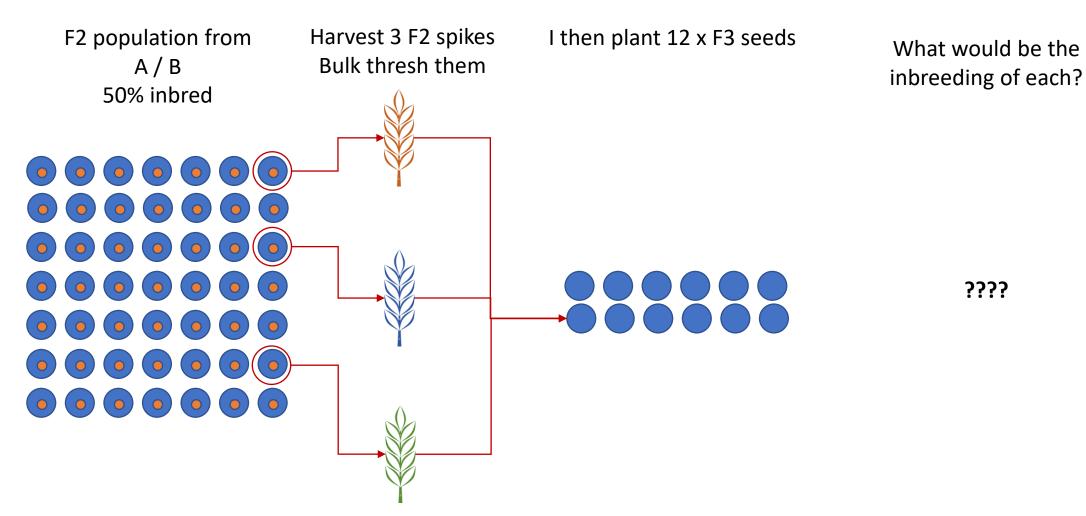
We get 100% inbred identical grains

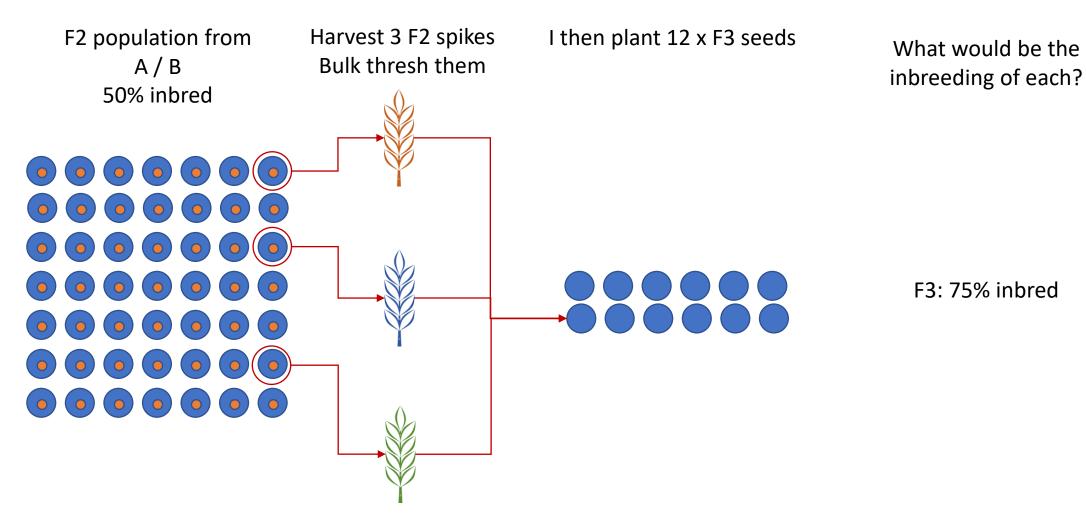
That will produce 100% inbred and identical spikes

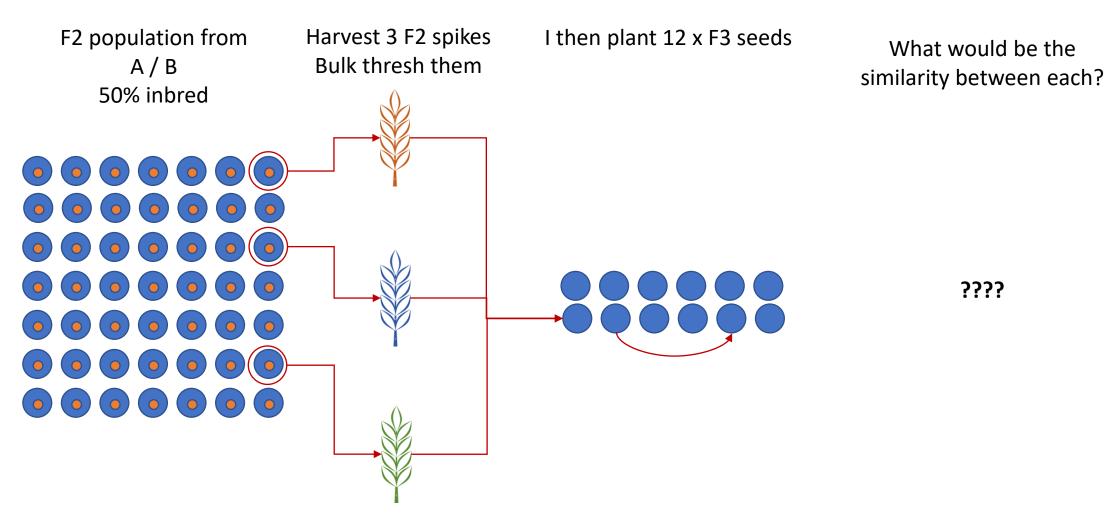


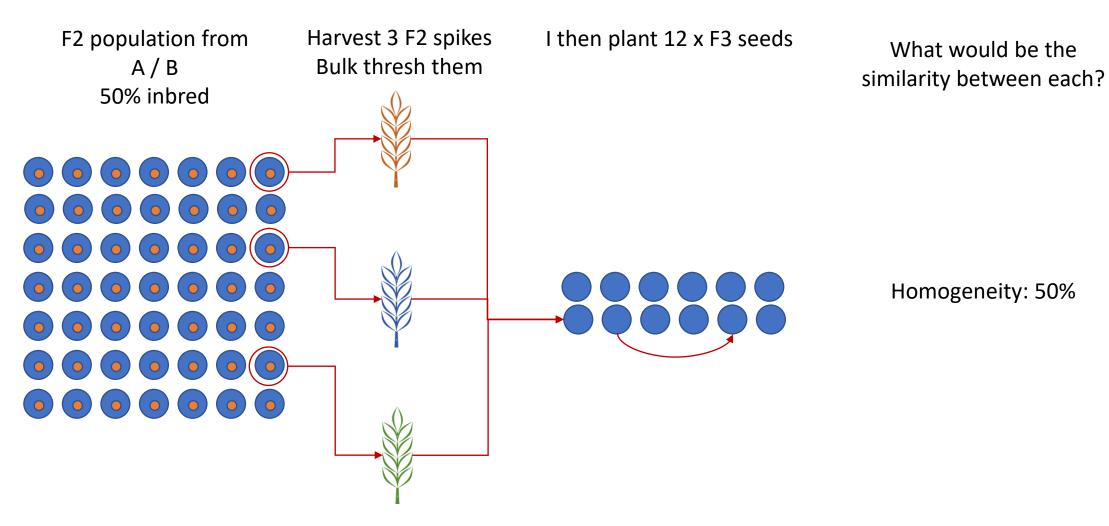
- An inbred line produces 100% identical seeds
- What about a non inbred line?

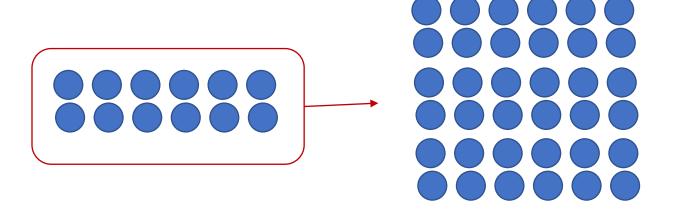

Starting from a 50% inbred spike (F2)




We get 75% inbred grains, which differ for 50% of their DNA




That will produce 75% inbred and 50% different spikes

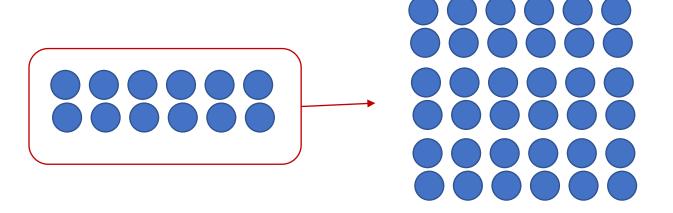


I then plant 12 x F3 seeds

I then plant 36 x F4 seeds

If I bulk harvest them, what will be the inbreeding of the resulting individuals?

Bulk harvest

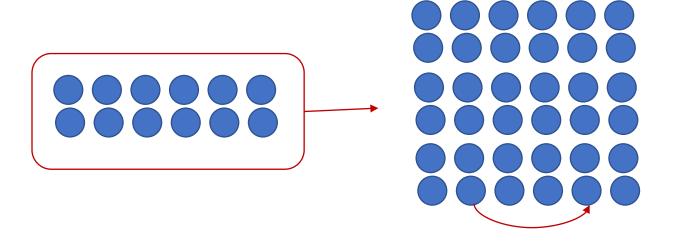

????

I then plant 12 x F3 seeds

I then plant 36 x F4 seeds

If I bulk harvest them, what will be the inbreeding of the resulting individuals?

Bulk harvest

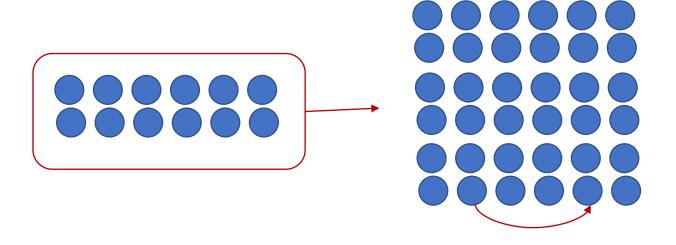

F4: 87.5%

I then plant 12 x F3 seeds

I then plant 36 x F4 seeds

What would be the difference among them?

Bulk harvest


?????

I then plant 12 x F3 seeds

I then plant 36 x F4 seeds

What would be the difference among them?

Bulk harvest

Still 50% of original bulking

To bulk or not to bulk

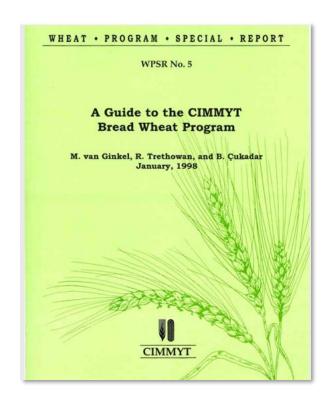
- Proceeding by pedigree (single plant/spike or pod) advances homogeneity together with inbreeding
- Proceeding by bulking (2 or more plants/spikes) advances inbreeding but block homogeneity

	_				Hor	nogeneity	1			
Gen	Inbr.	Pedigree	Bulk F1	Bulk F2	Bulk F3	Bulk F4	Bulk F5	Bulk F6	Bulk F7	Bulk F8
F1	0.000	0.000	0.000							
F2	0.500	0.500	0.000	0.500						
F3	0.750	0.750	0.000	0.500	0.750					
F4	0.875	0.875	0.000	0.500	0.750	0.875				
F5	0.938	0.938	0.000	0.500	0.750	0.875	0.938			
F6	0.969	0.969	0.000	0.500	0.750	0.875	0.938	0.969		
F7	0.984	0.984	0.000	0.500	0.750	0.875	0.938	0.969	0.984	
F8	0.992	0.992	0.000	0.500	0.750	0.875	0.938	0.969	0.984	0.992
F9	0.996	0.996	0.000	0.500	0.750	0.875	0.938	0.969	0.984	0.992
F10	0.998	0.998	0.000	0.500	0.750	0.875	0.938	0.969	0.984	0.992
F11	0.999	0.999	0.000	0.500	0.750	0.875	0.938	0.969	0.984	0.992
F12	1.000	1.000	0.000	0.500	0.750	0.875	0.938	0.969	0.984	0.992

So why breeders bulk?

To bulk or not to bulk

- Breeders declare the difference between the two method of advancement:
- "derived" marked as ":"
- F4 > 87.5% inbred (homozygous) and 87.5% homogeneous
- F2:4 > 87.5% inbred (homozygous) but only 50% homogeneous as it is derived by bulking F2


• For this reason, breeders keep track of the bulking vs pedigree using selection history

Selection History Codes

Every F1, segregating line or advanced line in the program is assigned a so-called "breeder's cross ID" (BCID) and a selection history. This history records the process of selection, which describes where and how the selection was made and the stage or generation of selection.

Each BCID begins with a letter designation of the cross origin (e.g. CM), followed by an indication of the kind of cross (e.g. SS = spring x spring wheat), the abbreviation of the year when the cross was made (e.g. 97 = 1997), and of the location (e.g. Y = Yaqui Valley) and finally a sequential number (e.g. 01001). After this BCID, there follows the selection history: the numbers identify the individual plant selected and the letter indicates the location where selection took place.

The zero-letter combinations (e.g. 0Y, 0M, etc.) are reserved for populations harvested in bulk in that generation. A zero followed by a number (e.g. 05.., 010..) indicates the modified bulk selection method, in which a certain number (in the examples: 5 or 10) selected spikes are bulk harvested. The following codes indicate Mexican locations of selection (maximum code length is three spaces):

Cross code:

- 2-3 letters institution ID: *IC*
- ___ 1-3 letters crop code: D
- __ at ICARDA we keep track of top crosses: (F2) or (F1)
- __ 2 digits year: 22
- Dash "-"
- 2-4 digits serial number: 0001

ICD(F2)22-0001

• Dash "-"

For each generation add a choice between:

- 0 for bulk
- 020 for bulk of 20 spikes (or 030, 040, ..)
- A number (i.e. 1) indicating the plant harvested by pedigree
- And a 1-3 digit for location

ICD(F2)22-0001-0SAN-030MCH-0SAN-5MCH-0SAN-0MCH

- A F2 top cross made at ICARDA in 2022 for durum wheat combination 0001 (it matches pedigree)
- The F1 were bulk harvest (all plants) in Summer Annoceur
- For F2 30 spikes were selected in Marchouch and bulk harvested
- The F3 were bulk harvest (all plants) in Summer Annoceur
- The F4 pedigree selection was made and plant number 1 was advanced
- The F5 was bulk harvested in Summer Annoceur
- The F6 was tested in yield trial in Marchouch and bulk harvested
- What would be the inbreeding of the F6?
- What would be the homogeneity of the F6?
 - Is it a true F6 or is it "derived"?

ICD15-024-0SAN-015MCH-0SAN-1TR-0STR-2TR-0STR-0AREC

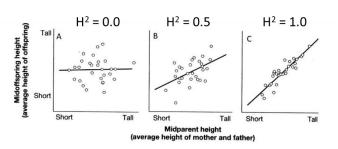
ICD15-024-0SAN-015MCH-0SAN-2TR-0STR-1TR-0STR

ICD16(F2)-180-0STR-020TR-0STR-3TR-0STR-0MCH-0MCH

ICD16(F2)-235-0STR-020TR-0STR-1MCH-0SAN-0MCH-0MCH

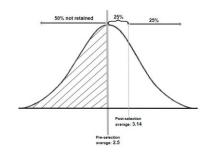
ICD15-024-0SAN-015MCH-0SAN-1TR-0STR-2TR-0STR-0AREC

ICD15-024-0SAN-015MCH-0SAN-2TR-0STR-1TR-0STR


ICD16(F2)-180-0STR-020TR-0STR-3TR-0STR-0MCH-0MCH

ICD16(F2)-235-0STR-020TR-0STR-1MCH-0SAN-0MCH-0MCH

The selection history explains also the breeding method



Accuracy: how close to the actual value

Heritability: how likely to move a trait from parents

The breeder equation

Selection intensity: what proportion of the progenies is advanced each cycle

Accuracy × Heritability × Selection intensity

Genetic gain year =

Recycling time in years

Recycling time in years: how many years between crossing and re-crossing

- Recycle as fast as possible, but being accurate
- Be strategic in selecting highly accurate/heritable traits in early generations (inbreeding)
- Keep high intensity (large populations)
 - What issues are associated with this?
- Why do we need to arrive to F4-F6 before doing a yield trial?

	r carbice memoa	bank method
W1	P1 x P2	P1 x P2
S1		
W2	F ₁	F ₁
S2		
W3	F ₂	F _{1:2}
S3		
W4	F ₃	F _{1:3}
S5		
W5	F ₄	F _{1:4}
S6		
W6	F ₅	F ₅
S7		
W7	Stage 1 (F ₆)	Stage 1 (F ₆)
	-	

Bulk method

Pedigree method

	Pedigree method	Bulk method	Mixed
W1	P1 x P2	P1 x P2	P1 x P2
S1 W2	F ₁	F ₁	F ₁
S2 W3	F ₂	F _{1:2}	F _{1:2}
S3 W4			
S5	F ₃	F _{1:3}	F ₃
W5 S6	F ₄	F _{1:4}	F _{3:4}
W6 S7	F ₅	F ₅	F ₅
W7	Stage 1 (F ₆)	Stage 1 (F ₆)	Stage 1 (F ₆)

	Pedigree method	Bulk method	Mixed	Sel. bulk pedigree
W1	P1 x P2	P1 x P2	P1 x P2	P1 x P2
S1 W2	F ₁	F ₁	F ₁	F ₁ F _{1:2}
S2 W3	F ₂	F _{1:2}	F _{1:2}	F _{1:3}
S3				F ₅
W4 S5	F ₃	F _{1:3}	F ₃	Stage 1 (F _{5:6})
W5	F ₄	F _{1:4}	F _{3:4}	
S6 W6	F ₅	F ₅	F ₅	
S7 W7	Stage 1 (F ₆)	Stage 1 (F ₆)	Stage 1 (F ₆)	
		(- 6/		

	Pedigree method	Bulk method	Mixed	Sel. bulk pedigree	SSD
W1	P1 x P2	P1 x P2	P1 x P2	P1 x P2	P1 x P2
S1 W2 S2	F ₁	F ₁	F ₁	F ₁ F _{1:2}	F ₁ F ₂ & F ₃
N3 3	F ₂	F _{1:2}	F _{1:2}	F _{1:3} F _{1:4} F ₅	F ₄ Stage 1 (F _{4:5})
V4 5	F ₃	F _{1:3}	F ₃	Stage 1 (F _{5:6})	
N5 86	F ₄	F _{1:4}	F _{3:4}		
N6 57	F ₅	F ₅	F ₅		
N7	Stage 1 (F ₆)	Stage 1 (F ₆)	Stage 1 (F ₆)		

	Pedigree	Bulk	Mixed	Sel bulk	SSD
Accuracy	High	Low	Med	Low	Low
Intensity	Low	High	Med	High	Low
Heritability	Med	High	High	High	Med
Recycling time	Slow	Slow	Slow	Fast	Very fast
Genetic gain	Low	Medium	Medium	High	High
Cost	High	Low	Medium	Medium	Low

Conclusion lecture 2

- The genetic gain equation drives all breeding decisions
- Inbreeding and heterogeneity need to be recorded and used
- Using tools to increase accuracy for selection of highly heritable traits in F2>4 drives up genetic gain
- Keeping high intensity is fundamental to achieve results
- All schemes are valid, you need to find the one fitting for you