
Citation: Sanad, H.; Moussadek, R.;

Mouhir, L.; Oueld Lhaj, M.; Dakak, H.;

El Azhari, H.; Yachou, H.; Ghanimi,

A.; Zouahri, A. Assessment of Soil

Spatial Variability in Agricultural

Ecosystems Using Multivariate

Analysis, Soil Quality Index (SQI),

and Geostatistical Approach: A Case

Study of the Mnasra Region, Gharb

Plain, Morocco. Agronomy 2024, 14,

1112. https://doi.org/10.3390/

agronomy14061112

Academic Editor: Andrea Baglieri

Received: 2 May 2024

Revised: 17 May 2024

Accepted: 20 May 2024

Published: 23 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Assessment of Soil Spatial Variability in Agricultural Ecosystems
Using Multivariate Analysis, Soil Quality Index (SQI), and
Geostatistical Approach: A Case Study of the Mnasra Region,
Gharb Plain, Morocco
Hatim Sanad 1,2,* , Rachid Moussadek 3 , Latifa Mouhir 1, Majda Oueld Lhaj 1,2 , Houria Dakak 2 ,
Hamza El Azhari 4 , Hasna Yachou 2, Ahmed Ghanimi 5 and Abdelmjid Zouahri 2

1 Laboratory of Process Engineering and Environment, Faculty of Science and Technology Mohammedia,
University Hassan II of Casablanca, Mohammedia 28806, Morocco; latifa.mouhir@fstm.ac.ma (L.M.);
majdaoueldlhaj1999@gmail.com (M.O.L.)

2 Research Unit on Environment and Conservation of Natural Resources, Regional Center of Rabat,
National Institute of Agricultural Research, AV. Ennasr, Rabat 10101, Morocco; houria.dakak@inra.ma (H.D.);
yachou@inra.ma (H.Y.); abdelmjid.zouahri@inra.ma (A.Z.)

3 International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat 10100, Morocco;
r.moussadek@cgiar.org

4 Laboratory of Physical Chemistry of Materials, Natural Substances and Environment, Chemistry Department,
Sciences, and Technology Faculty, Abdelmalek Essaâdi University, Tangier 90090, Morocco;
hamza.elazhari@etu.uae.ac.ma

5 Laboratory of Materials, Nanotechnologies, and Environment, Department of Chemistry, Faculty of Sciences,
Mohammed V University in Rabat, Rabat 10101, Morocco; ghanimiahmed@gmail.com

* Correspondence: hatim.sanad99@gmail.com

Abstract: Accurate assessment of soil quality is crucial for sustainable agriculture and soil conserva-
tion. Thus, this study aimed to assess soil quality in the agricultural ecosystem of the Mnasra region
within the Gharb Plain of Morocco, employing a comprehensive approach integrating multivariate
analysis and geostatistical techniques. Thirty soil samples were collected from the surface layers
across thirty selected sites. The results showed significant variations in soil properties across the study
area, influenced by factors such as soil texture, parent material, and agricultural practices. Pearson cor-
relation and principal component analysis (PCA) were employed to analyze the relationships among
soil properties and compute the Soil Quality Index (SQI). The SQI revealed values ranging from
0.48 to 0.74, with 46.66% of sampled soils classified as “Good” and 53.33% as “Fair”. Geostatistical
analysis, particularly ordinary kriging (OK) interpolation and semivariogram modeling, highlighted
the spatial variability of soil properties, aiding in mapping soil quality across the landscape. The
integrated approach demonstrates the importance of combining field assessments, statistical analyses,
and geospatial techniques for comprehensive soil quality evaluation and informed land management
decisions. These findings offer valuable insights for decision-makers in monitoring and managing
agricultural land to promote sustainable development in the Gharb region of Morocco.

Keywords: agriculture; geostatistical analysis; Morocco; principal component analysis; soil quality
index; soil spatial variability

1. Introduction

Soil, a fundamental element of terrestrial ecosystems, functions as a complex and
vital entity crucial for numerous ecological processes [1]. It serves as the foundational
resource for a wide array of land uses and plays a central role in sustainable agriculture [2].
The pursuit of sustainable agricultural development emerges as a universal imperative,
transcending geographical disparities [3].
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In Morocco, agriculture significantly contributes to the economy, representing 14–20%
of the GDP and employing 40% of the total workforce [4]. As a cornerstone of economic
development policy, the government has implemented various measures, including the
“Green Generation” initiative, aimed at fostering agricultural growth and making it a
driving force for economic prosperity [5]. However, agriculture faces the challenge of
simultaneously meeting the increasing demand for food and maintaining sustainable
practices to preserve soil-mediated ecosystem services, including carbon sequestration,
nutrient supply, and water cycle regulation [6].

Agricultural soils play a pivotal role in preserving environmental integrity by con-
tributing to clean air and water, mitigating greenhouse gas emissions, fostering natural
biodiversity, ensuring food safety, and striking a balance between soil resources and crop
demands while optimizing productivity over the long term [7]. The suitability of soils for
agricultural purposes hinges upon the integrity of their physical, chemical, and biological
properties [8]. However, the spatial variability of soil characteristics within ecosystems
is profoundly influenced by environmental factors such as parent materials, topography,
climate, vegetation, and human-induced disturbances [9,10]. Notably, intensive agricul-
tural practices in arid and semi-arid regions have bolstered agricultural output but have
concurrently engendered soil degradation, imperiling the sustainability of land use sys-
tems [11,12]. The mean yearly rate of soil degradation in Morocco ranges from 23 to
55 t/ha/year, with extreme values spanning from 115 to 524 t/ha/year [13]. This degrada-
tion, largely attributed to the confluence of climate change and anthropogenic activities,
has resulted in the partial or complete deterioration of fertile land, leading to the loss of
soils with the lowest productivity and quality [3].

Soil quality (SQ) encompasses various aspects, reflecting the intricate and multifaceted
nature of subterranean systems [14]. Specifically, SQ denotes the soil’s ability to adequately
serve as a medium for plant growth (productivity), regulate water flow, act as a buffer,
and effectively integrate its biological, physical, and chemical components [15]. A primary
global objective today is the preservation of overall soil quality [16], which necessitates the
identification of soils, determination of optimal management practices, and monitoring
changes in soil properties [1]. Consequently, there has been a surge in research efforts aimed
at identifying sensitive indicators and methods capable of detecting soil quality changes,
thereby facilitating the assessment of soil hazards and management implications [17].

The development of a Soil Quality Index (SQI) holds paramount importance for
fostering sustainable agriculture, as SQ is closely linked to soil properties influenced by
field management practices. The SQI integrates pertinent soil indicator data into numer-
ical values [18], typically reflecting regional variations in soil’s chemical and physical
attributes [19]. These attributes, encompassing physical, chemical, and biological charac-
teristics, serve as key indicators of soil health and fertility status [16]. Physical indicators
include soil depth, bulk density, porosity, aggregate stability, texture, and compaction,
while chemical indicators encompass pH, salinity, organic matter content, nutrient avail-
ability, cation exchange capacity, nutrient cycling, and soil contaminant levels [20]. Thus,
a comprehensive understanding of soil quality enables the delineation of effective soil
management strategies conducive to sustainable agricultural production [21]. Studies on
the SQI highlight its utility in evaluating crop productivity and assessing the impact of
land use conversion on soil quality and degradation, particularly in native rangelands of
upland arid and semi-arid regions [22,23].

The SQI serves as a versatile model for evaluating soil quality and delineating the
extent of soil degradation within specific regions [24]. Various techniques are employed
to derive the SQI, including the simple additive SQI [20], weighted additive SQI [25], and
statistically modeled SQI [26]. Multivariate statistical approaches (MSA), such as cluster
analysis and principal component analysis (PCA), are commonly employed to discern
the underlying mechanisms influencing soil quality [27,28]. These analytical tools greatly
enhance data comprehension and facilitate informed decision-making across diverse fields,
including soil science and environmental management [16,29]. Among these methods, PCA
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stands out as a prominent approach for reducing the dimensionality of data by identifying
the most influential variables [30].

Concurrently, Geographic Information Systems (GISs) are recognized for their efficacy
in integrating stakeholder preferences and concerns to generate comprehensive evaluations
for selecting suitable agricultural activities and sites [31,32]. GISs, alongside geostatistical
analyses, constitute contemporary monitoring strategies for assessing soil quality [19].
Integrated GIS and geostatistical analyses prove beneficial in delineating spatial variations
in soil properties and predicting them in unsampled locations [33]. Notably, Kriging
emerges as a widely utilized interpolation method within geostatistics. It characterizes
variable values near original sample locations, exhibiting a statistically higher correlation
with observed values in those areas compared to elsewhere [34]. Among Kriging techniques,
ordinary Kriging is deemed most suitable for producing accurately predicted distribution
maps [35]. Previous research has extensively employed MSA in conjunction with GIS
approaches to ascertain SQI [16]. Specifically, in Egypt, a study utilized GIS and MSA to
evaluate and map SQI [28], focusing on the El-Fayoum depression in the Western Desert.
Additionally, Abdel-Fattah [36] employed PCA to synthesize soil properties and GISs to
delineate the spatial distribution of various soil attributes.

The primary aim of our investigative study is to explore and understand soil properties
and SQI modeling within the agricultural ecosystem of the Mnasra region, situated within
the Gharb Plain of Morocco. The specific objectives of this paper are as follows: firstly,
to identify and characterize key soil properties relevant to agricultural productivity in
the Mnasra region; secondly, to develop a comprehensive model of the SQI integrating
various soil parameters; thirdly, to utilize multivariate analysis techniques, including
PCA, to identify underlying patterns and relationships among soil variables; and fourthly,
to employ geostatistical analysis techniques for the evaluation of spatial variability and
distribution of soil properties across the study area.

2. Materials and Methods
2.1. Description of the Study Area

This research was conducted in the Mnasra region, situated within the Gharb plain,
celebrated as the most agriculturally productive area along the Atlantic Ocean, covering
an expanse of 488 km2 (Figure 1). Its boundaries stretch from the city of Kenitra in the
south to the Sebou River, marked by a parallel line extending through Sidi Allal Tazi in the
east and reaching Merja Zerga near Moulay Bouselham in the north. The Gharb region,
located in the northwestern part of Morocco, boasts distinctive geographical and geological
attributes. Bordered by the Drader-Souier Plain to the north and the Maamora plateau to
the south, the Gharb Plain is flanked by the vast Atlantic Ocean to the west. Embracing
a Mediterranean climate with notable oceanic influences, the study area witnesses an
average annual precipitation of approximately 551 mm. The rainy season typically spans
from October to the end of April, with peak rainfall occurring in November, December,
and January. Temperature fluctuations range from 12 ◦C in winter to 23 ◦C in summer.
Remarkably, potential evaporation exceeds 150 mm during the arid months of June through
to September, in contrast to less than 80 mm from December to February.

Geologically, sandy soils extensively cover the coastal zone, comprising approximately
39,000 hectares or 15% of the total area [32]. Notably, the Mnasra region is distinguished by
the prevalence of sandy-clay and silty-clay textures. It should also be noted that the soil of
the region is occupied by heavy soils (vertisols and fluvisols).

Renowned for sugarcane cultivation, this region contributes significantly to Morocco’s
sugar production. Agricultural practices encompass intensive vegetable farming, field crop
cultivation, and tree crop cultivation systems [37]. These practices involve the application
of mineral and organic fertilizers, including Ammonitrate, NPK, urea, as well as livestock
manure sourced from cattle and poultry [38].
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2.2. Soil Sampling Collection and Analysis

In this study, soil sampling was conducted in January 2024 at thirty distinct locations
(Figure 2). At each location, a composite soil sample representing the root zone (0 to 20 cm
depth) was collected using an auger.
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Figure 2. Map of sampling sites and crop types.

The selection of sampling sites was based on considerations of distance between
positions and morphological characteristics of the soil to ensure representation of all soil
variations. Additionally, latitude, longitude, elevation, and topography data were recorded
for each site, accompanied by an investigation into land-use and agricultural activities. The
collected soil samples were carefully placed in polyethylene bags and transported to the
laboratory. Upon arrival, the samples underwent manual removal of fine roots, stones,
and plant organic residues, following which they were air-dried at room temperature.
Subsequently, the dried samples were crushed, sieved through a 2 mm mesh sieve, and
thoroughly mixed to ensure homogeneity. These prepared samples were then subjected to
analysis for twenty physicochemical parameters to assess soil quality.

2.2.1. Soil Physical Properties

The soil particle size distribution was analyzed utilizing the hydrometric method [39].
The soil moisture (%) was assessed by oven-drying 10 g of fresh soil sample at 105 ◦C
for 24 h. The weight of the sample before and after oven drying was recorded, and soil
moisture content was computed using Equation (1) [40]:

Soil moisture(%) =
[Initial wet weight(g)− final oven dried weight(g)]

Initial wet weight (g)
× 100 (1)
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Soil bulk density was determined based on the volume–mass relationship for each
core sample [41]. Total porosity (TP) was subsequently calculated using the values of bulk
density (BD) and particle density (PD) [42].

2.2.2. Soil Chemical Properties

Soil pH was determined potentiometrically using a pH meter (Mettler Toledo Seven
Easy-728 Metrohm) [43]. Electrical conductivity (EC) was assessed in the saturated soil
paste extracted using a conductivity meter (Orion brand, model 162) [44]. Total carbonates
were quantified as (CaCO3) using a Collins calcimeter [45]. Soil organic matter (OM) con-
tent was determined using the Walkley and Black method [46]. Cation exchange capacity
(CEC) was measured utilizing the ammonium acetate extract method (1N NH4OAc) [47].
Total nitrogen (Av. N) content was calculated using the Kjeldahl method [48]. Available
phosphorus (Av. P) was determined through Olsen extraction methods and spectrophotom-
etry analysis (JENWAY 6405 Model) [49]. Exchangeable potassium (Ex. K) and sodium (Na)
were quantified using flame photometry (Jenway PFP7 model) [43]. Exchangeable calcium
(Ca) and magnesium (Mg) were measured using atomic absorption spectrophotometry
(novAA 800 D Analyzer) [43]. Extractable micronutrients iron (Fe), zinc (Zn), copper (Cu),
and manganese (Mn) were extracted using the diethylenetriaminepenta-acetic acid (DTPA)
method, and their concentrations were determined using a novAA 800 D Analyzer [50].

2.3. Statistical Analysis

To comprehensively understand the soil dynamics within the Mnasra region, multi-
variate analysis was conducted to identify underlying patterns and relationships among
the various soil variables. Descriptive statistics for each soil physicochemical characteristic
were computed using IBM SPSS Statistics 25. Measures such as minimum, maximum, mean,
variance, standard deviation, coefficient of variation (CV), skewness, and kurtosis were
determined to provide a comprehensive overview of the data. Additionally, the correlation
between different soil properties was assessed using Pearson correlation coefficient. PCA
was employed to reduce the dataset into new variables known as principal components
(PCs). This approach aids in mitigating multicollinearity between the original variables
and allows for a more concise representation of the data. The principal components elu-
cidate the majority of the variance present in the original variables, facilitating a deeper
understanding of the underlying patterns and relationships within the dataset [51,52].

2.4. Soil Quality Index (SQI)

The SQI was computed using Equation (2), as outlined by [53]:

SQI = ∑n
i=1 Wi × Si (2)

where Wi represents the weight of an indicator, Si denotes the score of an indicator, and n
signifies the total number of indicators considered.

From the results of PCA, Wi represents the component score coefficient (CSC). Due to
variations in scales and units among soil indicators, the scores Si were standardized using
Equation (3), following the methodology described by [54]:

z =
x − x
σ

(3)

where, z represents the standardized value, x is the value of a soil indicator, x denotes the
average value of the indicator, and σ represents the standard deviation of the indicator.

Therefore, the SQI equation based on PCs is formulated as follows (Equation (4)):

SQI − PC = ∑n
i=1 CSC × z. (4)

The comprehensive SQI (CSQI) was then calculated using Equation (5):
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CSQI = ∑n
i=1 Variability of each PC × SQI − PC = ∑n

i=1 Variability of each PC × ∑n
i=1 CSC × z. (5)

The CSQI, which is determined using z scores, was transformed into a standard normal
distribution (with a mean of zero and a standard deviation of one) utilizing Equation (6) [54]:

f (x) =
1√
2π

e−
(z)2

2 (6)

where e refers to the natural logarithm and z the standardized value.
The soil quality can be classified into the following categories, as shown in (Table 1).

Table 1. SQI classification [28].

SQI Values SQI Interpretation

From 0.80 to 1 Very good
From 0.60 to 0.79 Good
From 0.35 to 0.59 Fair
From 0.20 to 0.34 Bad

From 0 to 0.19 Very bad

2.5. Geostatistics Analysis

The spatial variability of soil physicochemical properties, including pH, EC, OM, CEC,
Av. N, Av. P, Ex. K, Na, Ca, Mg, Fe, Zn, Cu, Mn, sand, silt, clay, and porosity, was assessed
using the geostatistical analyst extension module within ArcGIS 10.3. Geostatistical meth-
ods, which rely on semivariogram functions and Kriging interpolation as fundamental
tools, facilitate the investigation of the spatial distribution of variables exhibiting both
randomness and structure [55].

The ordinary kriging (OK) interpolation method was employed to map the spatial
distribution of soil characteristics in unsampled locations using Equation (7) [56]:

ẑ(x0) = ∑n
i=1 λiz(x i) (7)

where ẑ(x0) represents the estimated value at an unsampled location of x0, z(xi) denotes
the measured value at a sampled location xi, and n is the number of sites surrounded by
the search neighborhood used for the estimation.

To represent the average rate of variation of soil properties with distance, semivari-
ogram models are utilized alongside OK for each soil property [7,57]. Eleven semivariogram
models were tested, employing cross-validation based on prediction errors for each soil
property dataset to identify the most suitable model. The semivariogram was estimated
using Equation (8) [58,59]:

γ(h) =
1

2N(h)∑
N(h)
i=1 [Z(xi)− Z(xi + h)]2 (8)

where γ(h) represents the semivariance value for a distance h, N(h) signifies the number
of pairs involved in the semivariance calculation, Z(xi) denotes the value of the attribute Z
at position xi, and Z(xi + h) is the value of the attribute Z separated by a distance h from
the position xi.

The best semivariogram models were selected based on criteria such as strong spatial
dependence (SDC), mean error (ME), root-mean-square error (RMSE), mean standardized
error (MSE), root-mean-square standardized error (RMSSE), and average standard error
(ASE). The chosen model should ideally exhibit mean error (ME), average standard error
(ASE), and mean standardized error (MSE) values close to zero [60]. The flowchart of the
procedures used to determine the SQI in this study is shown in (Figure 3).
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3. Results and Discussion
3.1. Soil Physical Properties
3.1.1. Particle Size Distribution and Soil Texture

The soil physical characteristics of the study area are summarized in (Table 2). The anal-
ysis revealed varying proportions of sand, silt, and clay across the surface layer (0–20 cm)
representing a range of soil texture categories.

Table 2. Soil physical properties of the sampling sites in the study area.

Samples Sand
(%)

Silt
(%)

Clay
(%) Textural Class Moisture

(%)
Bulk Density

(g/cm3)
Particle Density

(g/cm3)
Total Porosity

(%)

S1 88.21 6.21 5.57 Sand 0.90 1.58 2.90 45.52
S2 28.21 45.43 26.36 Loam 1.40 1.46 2.30 36.52
S3 24.71 54.57 20.71 Silty loam 6.70 1.41 2.30 38.70
S4 22.86 48.21 28.93 Clay Loam 3.10 1.44 2.30 37.39
S5 19.64 47.86 32.50 Silty clay loam 3.70 1.45 2.20 34.09
S6 12.14 55.79 32.07 Silty clay loam 4.00 1.40 2.20 36.36
S7 20.29 37.71 42.00 Clay 7.50 1.38 2.10 34.29
S8 21.00 57.71 21.29 Silty loam 11.40 1.39 2.30 39.57
S9 90.21 6.86 2.93 Sand 1.80 1.58 2.80 43.57

S10 87.86 7.57 4.57 Sand 2.50 1.55 2.60 40.38
S11 89.79 2.79 7.43 Sand 1.50 1.56 2.60 40.00
S12 88.29 5.14 6.57 Sand 3.30 1.55 2.60 40.38
S13 90.21 2.86 6.93 Sand 1.30 1.57 2.80 43.93
S14 90.07 7.93 2.00 Sand 3.20 1.57 2.80 43.93
S15 88.07 0.43 11.50 Loamy sand 3.70 1.49 2.50 40.40
S16 89.64 5.43 4.93 Sand 0.90 1.52 2.60 41.54
S17 91.36 5.43 3.21 Sand 3.60 1.59 2.80 43.21
S18 92.36 5.14 2.50 Sand 3.89 1.59 2.80 43.21
S19 83.36 11.93 4.71 Loamy sand 5.25 1.54 2.60 40.77
S20 81.00 9.14 9.86 Loamy sand 4.79 1.53 2.60 41.15
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Table 2. Cont.

Samples Sand
(%)

Silt
(%)

Clay
(%) Textural Class Moisture

(%)
Bulk Density

(g/cm3)
Particle Density

(g/cm3)
Total Porosity

(%)

S21 79.86 7.79 12.36 Sand loam 4.71 1.49 2.50 40.40
S22 81.79 8.71 9.50 Loamy sand 3.96 1.53 2.60 41.15
S23 90.07 5.86 4.07 Sand 5.26 1.58 2.80 43.57
S24 88.14 7.14 4.71 Sand 2.69 1.55 2.60 40.38
S25 86.00 5.64 8.36 Loamy sand 3.20 1.52 2.60 41.54
S26 86.21 7.50 6.29 Loamy sand 2.28 1.55 2.60 40.38
S27 87.50 10.21 2.29 Sand 8.14 1.56 2.70 42.22
S28 81.14 4.71 14.14 Sand loam 5.21 1.46 2.30 36.52
S29 81.64 5.21 13.14 Sand loam 4.97 1.48 2.45 39.59
S30 83.43 12.43 4.14 Loamy sand 1.29 1.53 2.60 41.15

The data indicate that sand content ranged from 12.14% to 92.36%, with an average of
71.50%. Silt content varied from 0.43% to 57.71%, with an average of 16.65%. Meanwhile,
clay content ranged from 2.00% to 42.00%, with an average of 11.85%. Consequently, the soil
texture triangle (Figure 4) illustrated that sand predominated in the study area, comprising
43.33% of the sampled zones, with an additional 23.33% classified as loamy sand.
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Samples S21, S28, and S29 (approximately 10%) in the surface layer were categorized
as sand loam. A silty loam texture was observed only in samples S3 and S8 within the
surface layer, while samples S5 and S6 exhibited silty clay loam texture. Clay, clay loam,
and loam textures were solely present in samples S7, S4, and S2, respectively.

3.1.2. Soil Moisture, Bulk Density, Particle Density, and Soil Porosity

The analysis revealed that soil moisture content ranged from 0.90% to 11.40%, with
a mean of 3.87%. The highest moisture content was observed in sample S8, whereas
the lowest was recorded in sample S1. Soil bulk density serves as a crucial indicator
of soil drainage characteristics [61]. Across all selected zones, soil bulk density ranged
from 1.38 g/cm3 to 1.59 g/cm3, with an average of 1.51 g/cm3. Total porosity of the soil
exhibited a range from 34.09% to 45.52% across all sampled soils, with an average of 40.39%.
Sample S1, characterized by sandy texture, demonstrated the highest total porosity, while
sample S7, classified as clay soil texture, exhibited the lowest total porosity. This disparity
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underscores the influence of soil texture on porosity, with sandy soils typically possessing
higher porosity than clayey soils due to differences in particle size and arrangement.

3.2. Soil Chemical Properties
3.2.1. Soil pH, Electrical Conductivity, Soil Organic Matter, CaCO3 Content, and Cation
Exchange Capacity

Descriptive statistics data for the studied soil properties are summarized in (Table 3).

Table 3. Statistical characterization of soil chemical properties.

Parameters Minimum Maximum Mean Variance Std. Dev. CV Skewness Kurtosis

pH 6.61 8.33 7.46 0.14 0.38 0.05 −0.08 0.06
EC (dS/m) 0.15 3.05 0.76 0.52 0.72 0.95 1.98 3.64

OM (%) 1.61 10.08 3.4 2.8 1.67 0.49 2.37 8.03
CaCO3 (%) 0 4.28 0.68 1.14 1.06 1.56 2.01 3.8

CEC (cmol/kg) 1.34 3.11 2.09 0.27 0.52 0.24 0.44 −0.96

Macronutrients of soils

Av. N (mg/kg) 65.56 193.53 107.72 1452.26 38.1 0.35 0.94 −0.18
Av. P (mg/kg) 0.82 103.47 25.81 653.6 25.56 0.99 1.63 2.41
Ex. K (mg/kg) 65 362.5 177.5 9721.55 98.59 0.55 0.62 −1.01

Na (mg/kg) 2.83 6.54 4.78 0.39 0.62 0.13 −0.38 3.67
Ca (mg/kg) 3 34.5 14.9 104.16 10.2 0.68 0.75 −0.91
Mg (mg/kg) 0 9.5 3.51 7.18 2.67 0.76 0.55 −0.53

Micronutrients of soils

Fe (mg/kg) 1.77 13.82 5.44 9.35 3.05 0.56 1.23 1
Zn (mg/kg) 2.49 120.8 17.75 487 22.06 1.24 3.88 17.22
Cu (mg/kg) 0 18.85 1.72 16.84 4.1 2.38 3.15 10.87
Mn (mg/kg) 0.28 8.87 3.47 6.94 2.63 0.75 0.56 −0.96

Soil pH, a measure of the soil’s acidity or alkalinity, plays a crucial role in determining
the availability of essential nutrients for plant growth [62]. In the sampled site, soil pH
values ranged from 6.61 to 8.33, with a mean of 7.46. The standard deviation and coefficient
of variation (CV%) are reported as 0.38 and 0.05, respectively (Table 3). The lower CV in
pH compared to other soil chemical parameters can be attributed to the uniform conditions
observed in the study area, as indicated by the minimal skewness (−0.08). The alkaline
nature of the soil is attributed to various factors such as alkaline parent material, climate,
topography, and precipitation [7]. Similar results have been reported in the Hail region of
Saudi Arabia by Alharbi and Aggag [63].

Soil electrical conductivity serves as a measure of soil salinity and can also indicate
nutrient availability in the soil [64]. In the sampled area, the measured salinity values
ranged from 0.15 to 3.05 dS/m, with an average of 0.76 dS/m. These values indicate low soil
salinity, which is considered suitable for agriculture, as previously noted by Richards [65].
The standard deviation and coefficient of variation (CV%) for soil salinity are reported as
0.72 and 0.95, respectively (Table 3).

Soil OM is widely recognized as a crucial regulator of soil quality, directly impacting
the availability of both macronutrients and micronutrients for plant uptake. Across the
sampled sites, soil organic matter content ranged from 1.61% to 10.08%, with a mean of
3.4%, a standard deviation of 1.67, and a coefficient of variation (CV%) of 0.49 (Table 3).
The variability in soil organic matter content was notably distinct among all selected sites.
Sample S28 exhibited the highest OM content, classified as very rich, while sample S24
presented the lowest OM content, categorized as moderately low. The higher percentage of
organic matter observed in some samples may be attributed to the application of organic
manures and the implementation of soil management practices such as balanced fertiliza-
tion, known to enhance soil organic matter levels [66]. However, it is important to note that
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the variability in soil organic matter content may also be influenced by pedogenic processes
influenced by micro-topographical variations [67].

The CaCO3 content ranged from 0% to 4.28%, with an average of 0.14% across all
sampled soils. The standard deviation and coefficient of variation (CV%) for CaCO3
content are reported as 1.06 and 1.56, respectively (Table 3). The distribution of CaCO3 is
influenced by various factors including the soil formation process, mineralogy, and climate
of a particular region. Additionally, irrigation water quality, soil texture, and the parent
material of an area also play significant roles in determining the distribution of calcium
carbonate in soil [68].

Overall, the results presented in (Table 3) indicate that the samples exhibited a very low
CEC capacity, falling within the range of 1.34 to 3.11 cmol/kg, according to the classification
by Hazelton and Murphy [69]. The mean, standard deviation, and CV% values for CEC
were calculated to be 2.09 cmol/kg, 0.52, and 0.24, respectively.

3.2.2. Soil Macronutrients

The results indicate considerable variability in Av. N content within the studied
area. The available N levels ranged from 65.56 to 193.53 mg/kg, with a mean value of
107.72 mg/kg (Table 3). This mean falls within the low category of nitrogen content as
per the classification proposed by Baruah and Barthakur [47]. The standard deviation of
38.1 indicates the degree of dispersion of Av. N values around the mean, suggesting a
moderate level of variability. The coefficient of variation (CV%) of 0.35 further confirms
this variability relative to the mean, indicating that the data dispersion is relatively low
compared to the mean. The highest Av. N values were observed in samples S5 and S6,
while the lowest value was recorded in sample S20. The presence of higher nitrogen
levels in samples S5 and S7 may be attributed to factors such as organic matter content,
or proximity to nitrogen sources like fertilizers or organic residues. Conversely, the lower
nitrogen content in sample S20 may be due to factors such as soil leaching or nitrogen
uptake by vegetation.

The results demonstrate a wide range of Av. P concentrations within the studied
area (Table 3). The available P levels varied from 0.82 to 103.47 mg/kg, with a mean of
25.81 mg/kg. The standard deviation of 25.56 indicates moderate variability in available p
values around the mean. The coefficient of variation (CV%) of 0.99 suggests a relatively high
degree of variability in Av. P concentrations relative to the mean. Sample S7 exhibited the
highest Av. P concentration, while sample S2 displayed the lowest. The factors contributing
to these variations may include soil properties, proximity to phosphorus sources such as
fertilizers. The classification based on Baruah and Barthakur [47] revealed that 46.66%
of the samples were categorized as having low p content, indicating a deficiency that
could potentially limit plant growth and productivity. Conversely, 20% of the samples
were classified as having medium p concentrations. Notably, 33% of the samples were
classified as having high p content, suggesting optimal p levels for plant growth and
agricultural productivity.

Exchangeable K levels ranged from 65 to 362.5 mg/kg, with a mean of 177.5 mg/kg
(Table 3). The standard deviation of 98.59 indicates a moderate level of variability in Ex. K
values around the mean. A coefficient of variation (CV%) of 0.55 suggests that the variability
in Ex. K concentrations relative to the mean is moderate. Sample S4 exhibited the highest
Av. K concentration, while sample S25 displayed the lowest. This variability in Ex. K
concentrations may be influenced by factors such as soil texture, mineral composition, land
management practices, and proximity to potassium sources such as fertilizers. Classification
based on Baruah and Barthakur [47] indicated that 56.66% of the samples were classified as
having high K concentrations, suggesting an ample supply of potassium for plant growth
and agricultural productivity. Additionally, 43.33% of the samples was classified as having
medium K content, indicating satisfactory levels for plant growth. It has been observed that
heavy soils containing more clay tend to have large reserves of potassium [66]. Clay-rich
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soils typically exhibit higher soil K indices on analysis, contributing to the availability of
potassium to crops.

The analysis of Na, Ca, and Mg concentrations in the soil revealed distinct patterns of
variability across the studied area. The concentrations of Na ranged from 2.83 to 6.54 mg/kg,
with a mean of 4.78 mg/kg and a standard deviation of 0.62, resulting in a coefficient of
variation (CV%) of 0.13 (Table 3). The concentrations of Ca ranged from 3 to 34.5 mg/kg,
with a mean of 14.9 mg/kg and a standard deviation of 10.2, resulting in a CV% of 0.68.
The concentrations of Mg ranged from 0 to 9.5 mg/kg, with a mean of 3.51 mg/kg and a
standard deviation of 2.67, resulting in a CV% of 0.76. Sample S25 exhibited the highest
Na concentration, while sample S5 displayed the highest Ca concentration, and sample
S22 showed the highest Mg concentration. Conversely, sample S4 exhibited the lowest Na
concentration, sample S30 displayed the lowest Ca concentration, and samples S15, S23,
S25, and S26 showed the lowest Mg concentrations. These variations in Na, Ca, and Mg
concentrations may be influenced by several factors, including soil mineralogy, weathering
processes, and land management practices. The higher variability observed in Ca and Mg
concentrations, as indicated by higher CV% values, suggests greater heterogeneity in these
elements compared to Na.

3.2.3. Soil Micronutrients

The analysis of Fe, Zn, Cu, and Mn concentrations in the soil revealed significant
variability across the studied samples (Table 3). The concentrations of Fe ranged from 1.77
to 13.82 mg/kg, with a mean of 5.44 mg/kg and a standard deviation of 3.05, resulting
in a coefficient of variation (CV%) of 0.56. The concentrations of Zn ranged from 2.49 to
120.8 mg/kg, with a mean of 17.75 mg/kg and a standard deviation of 22.06, resulting
in a CV% of 1.24. Cu concentrations varied only in some samples, ranged from 0 to
18.85 mg/kg, 1.72 with a mean of 1.72 mg/kg and a standard deviation of 4.1, resulting
in a CV% of 2.38. Mn concentrations ranged from 0.28 to 8.87 mg/kg, with a mean of
3.47 mg/kg and a standard deviation of 2.63, resulting in a CV% of 0.75. Sample S28
exhibited the highest Fe and Zn concentrations, while sample S14 showed the highest Mn
concentration. Conversely, sample S24 displayed the lowest Fe concentration, sample S25
exhibited the lowest Zn concentration, and sample S1 had the lowest Mn concentration.
Additionally, 56.66% of the samples were classified as having high Fe concentrations, and
all samples had high Zn concentrations. Moreover, 56% of the samples were classified
as having high Mn concentrations, as mentioned by Reddy [70]. Cu concentrations were
only detected in samples S1 to S8, with the highest concentration observed in sample S3.
The micronutrient distribution can vary due to parent material, climatic conditions, and
anthropogenic activities [71].

3.3. Relationships between Soil Properties
3.3.1. The Correlation Studies between Various Physicochemical Parameters

A Pearson correlation matrix was generated using the actual values of the 21 soil
properties selected for statistical analysis, as listed in (Table 4). These properties include
pH, EC, OM, CEC, Av. N, Av. P, Ex. K, Na, Ca, Mg, Fe, Zn, Cu, Mn, sand, silt, clay, moisture,
BD, porosity, and CaCO3.

In interpreting the correlation matrix, correlation coefficients (r) close to +1 or −1
indicate strong positive or negative correlations, respectively, between two variables. Con-
versely, an r-value near zero suggests a weak or nonexistent correlation [72]. Generally,
correlations with r-values exceeding 0.7 are considered high, while those falling between
0.5 and 0.7 indicate moderate correlations [73].
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Table 4. Correlations coefficients among soil physicochemical properties.

Variables pH EC OM CEC Av. N Av. P Ex. K Na Ca Mg Fe Zn Cu Mn Sand Silt Clay Moisture BD Porosity CaCO3
pH 1
EC 0.358 1
OM 0.248 0.166 1
CEC 0.318 0.434 0.421 1

Av. N 0.297 0.290 0.670 0.571 1
Av. P −0.148 −0.062 0.509 0.187 −0.028 1
Ex. K 0.267 0.282 0.449 0.528 0.394 0.019 1

Na 0.017 −0.206 0.070 −0.296 −0.198 0.200 −0.293 1
Ca 0.487 0.413 0.263 0.585 0.728 −0.142 0.529 −0.303 1
Mg 0.038 0.174 0.082 0.214 0.149 0.034 0.102 −0.331 0.004 1
Fe −0.013 0.131 0.631 0.456 0.364 0.541 0.278 −0.028 0.407 −0.033 1
Zn −0.174 0.013 0.664 −0.024 −0.264 0.457 −0.043 0.030 −0.009 −0.122 0.466 1
Cu 0.303 0.319 0.059 0.441 0.619 −0.222 0.291 −0.003 0.666 0.232 0.223 −0.196 1
Mn −0.373 0.147 −0.175 0.118 −0.247 −0.037 −0.001 −0.167 −0.305 0.204 0.024 −0.029 −0.052 1

Sand −0.518 −0.278 −0.276 −0.742 −0.819 0.113 −0.476 0.186 −0.802 −0.187 −0.326 0.266 −0.675 0.229 1
Silt 0.512 0.254 0.213 0.697 0.777 −0.203 0.466 −0.192 0.799 0.191 0.317 −0.310 0.714 −0.200 −0.978 1

Clay 0.472 0.290 0.357 0.739 0.804 0.059 0.442 −0.155 0.718 0.159 0.306 −0.160 0.531 −0.255 −0.929 0.830 1
Moisture 0.266 −0.070 0.472 0.307 0.240 0.447 0.153 0.275 0.211 0.069 0.595 0.051 0.294 −0.101 −0.399 0.414 0.328 1

BD −0.491 −0.159 −0.436 −0.685 −0.685 −0.005 −0.383 0.059 −0.620 −0.126 −0.359 0.070 −0.560 0.288 0.882 −0.819 −0.896 −0.508 1
Porosity −0.457 −0.260 −0.406 −0.622 −0.594 −0.095 −0.355 0.064 −0.558 −0.153 −0.213 −0.065 −0.402 0.223 0.774 −0.672 −0.868 −0.273 0.834 1
CaCO3 0.466 0.439 0.205 0.665 0.787 −0.051 0.498 −0.229 0.815 0.155 0.299 −0.173 0.608 −0.118 −0.873 0.829 0.855 0.209 −0.668 −0.757 1
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The analysis revealed several significant correlations among the soil properties. The
pH exhibited significant positive correlations with Ca (r = 0.487), silt (r = 0.512), clay
(r = 0.472), and CaCO3 (r = 0.466), while its correlations with EC, OM, CEC, Av. N, Ex. K,
Na, Mg, Cu, and moisture were positive but not significant. Soil EC showed significant
positive correlations with CEC (r = 0.434), Ca (r = 0.413), and CaCO3 (r = 0.439). Additionally,
its correlations with OM, Av. N, Ex. K, Mg, Fe, Zn, Cu, Mn, silt, and clay were positive but
not significant. Soil organic matter (OM) exhibited significant positive correlations with
CEC, Av. N, Av. P, Ex. K, Fe, Zn, and moisture (r = 0.421, 0.670, 0.509, 0.449, 0.631, 0.664, and
0.472, respectively), but it showed non-significant positive correlations with Na, Ca, Mg,
Cu, silt, clay, and CaCO3. Soil OM plays a crucial role in influencing soil chemical, physical,
and biological properties, thereby affecting nutrient and water availability to crops [35].
CEC exhibited significant positive correlations with available Av. N, Ex. K, Ca, Fe, Cu, silt,
clay, and CaCO3. Av. N showed significant positive correlations with Ex. K, Ca, Mg, Fe,
Cu, silt, clay, and CaCO3. In addition, other significant correlations were observed, such
as sand being significantly negatively correlated with silt and clay, while sand exhibited
significant positive correlations with soil BD and porosity.

3.3.2. Principal Component Analysis

The PCA of various soil variables described the overall sensitivity pattern of the soil
parameters and revealed the correlation between the soil variables based on the factor
loadings from each principal component (PC). High eigenvalue PCs were considered to
represent the maximum variations among different soil properties. The PCA loading for
21 variables allows the extraction of five principal components, explaining 76.21% of the
overall variance of the data (Table 5).

Table 5. Principal component analysis results of selected soil variables.

Variables
Components

PC1 PC2 PC3 PC4 PC5

pH

Factor loadings

0.554 −0.124 −0.315 −0.312 0.375
EC 0.402 −0.116 0.441 −0.344 0.148
OM 0.403 0.779 0.051 −0.198 0.222
CEC 0.795 0.123 0.342 0.070 0.031

Av. N 0.830 −0.143 −0.032 0.083 −0.196
Av. P 0.014 0.818 0.087 0.150 0.077
Ex. K 0.555 −0.037 0.303 −0.133 −0.227

Na −0.203 0.288 −0.651 0.212 0.013
Ca 0.848 −0.100 0.026 −0.278 −0.288
Mg 0.199 −0.121 0.458 0.385 0.594
Fe 0.441 0.705 0.199 0.111 −0.376
Zn −0.111 0.763 0.206 −0.424 −0.008
Cu 0.684 −0.220 −0.031 0.231 −0.172
Mn −0.224 −0.065 0.680 0.409 −0.055

Sand −0.968 0.136 0.095 −0.098 0.011
Silt 0.927 −0.193 −0.094 0.144 −0.074

Clay 0.932 −0.020 −0.086 0.006 0.101
Moisture 0.431 0.535 −0.263 0.488 −0.004

BD −0.884 −0.091 0.214 −0.094 −0.126
Porosity −0.807 −0.085 0.100 0.105 −0.289
CaCO3 0.894 −0.159 0.076 −0.073 −0.059

Eigenvalue 8.869 2.965 1.849 1.284 1.038
Variability (%) 42.235 14.117 8.805 6.115 4.940

Cumulative (%) 42.235 56.352 65.157 71.272 76.213

The axes PC1, PC2, and PC3 represents more than 65.15% of the data (Figure 5).
Based on these percentages, the processes governing the physicochemical properties of the
selected soils are essentially contained in these five components.
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The PC1 accounts for 42.23% of the total variation, with large positive loadings of
pH, CEC, Av. N, Ex. K, Ca, Cu, silt, clay, and CaCO3. Additionally, PC1 is negatively
correlated with sand, indicating an inverse relationship between sand content and the
variables loading positively on PC1. In other words, as sand content decreases, the levels of
pH, CEC, Av. N, Ex. K, Ca, Cu, silt, clay, and CaCO3 tend to increase, contributing to higher
values of PC1. This component captures the combined variation of several important soil
properties related to fertility, nutrient availability, and soil texture. Higher values of PC1
may correspond to soils with higher fertility, greater nutrient availability, and finer texture
characterized by higher silt and clay content.

With high positive loadings of OM, Av. P, Fe, Zn and moisture, the PC2 explains
14.11% of the overall variance. Soils with higher values of PC2 may have higher organic
matter content, improved phosphorus availability, and better micronutrient status, along
with increased moisture levels.

The PC3 accounts for 8.80% of the total variability in the dataset. It is characterized
by significant positive loadings of EC and Mn. Soils with higher values of PC3 may have
higher levels of EC, reflecting greater soil salinity or ion concentration, and higher Mn
content, which can influence various biochemical processes in soil and affect plant growth.
In addition, PC3 is negatively correlated with sodium Na.

The PC5 explained approximately 4.94% of the total variance in the dataset. It is
primarily characterized by a significant positive loading value for Mg of 0.59. It underscores
the significance of Mg in soil composition and its potential implications for soil fertility,
plant nutrition, and overall soil health.

3.4. Assessment of SQI According to PCA

The SQI was derived from the results of PCA using Equation (4) with the CSC obtained
from (Table 6).

Subsequently, the CSQI was calculated using z-scores and transformed into a standard
normal distribution utilizing Equation (6). The outcomes of CSQI are depicted in (Figure 6)
and (Table 7).

In this study, the SQI ranged from 0.48 to 0.74 across the sampled soils, with a mean
value of 0.60. The classification of the SQI into two categories, Good (Green) and Fair
(Yellow), provides insights into the overall soil quality of the studied area (Figure 6).
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Approximately 46.66% of the sampled soils were classified as “Good”, with SQI values
ranging from 0.8 to 1. This category includes samples S2, S3, S4, S5, S6, S7, S8, S12, S24,
S25, S26, S27, S28, and S30. On the other hand, the remaining 53.33% of sampled soils were
classified as “Fair”, indicating slightly lower soil quality. These samples, including S1, S9,
S1, S11, S13, S14, S15, S16, S17, S18, S19, S20, S21, S22, S23, and S29, fell within a lower
SQI range. The identification of specific samples with the highest and lowest SQI values
further emphasizes the spatial variability in soil quality within the study area. Sample
S5 and S7 exhibited the highest SQI values, indicating relatively superior soil health and
fertility characteristics. Conversely, sample S18 recorded the lowest SQI value, suggesting
potential soil degradation or lower fertility levels in that particular area.

Table 6. Supplementary data indicating the component score coefficient matrix values and contribu-
tion of variables in the principal component analysis.

Variables
Component

PC1 PC2 PC3 PC4 PC5

pH

Component
Score Coefficient

Matrix (CSC)

0.186 −0.072 −0.232 −0.275 0.368
EC 0.135 −0.067 0.324 −0.304 0.145
OM 0.135 0.452 0.037 −0.174 0.218
CEC 0.267 0.072 0.251 0.062 0.030

Av. N 0.279 −0.083 −0.023 0.073 −0.192
Av. P 0.005 0.475 0.064 0.133 0.076
Ex. K 0.186 −0.021 0.223 −0.118 −0.222

Na −0.068 0.167 −0.479 0.188 0.013
Ca 0.285 −0.058 0.019 −0.245 −0.283
Mg 0.067 −0.070 0.337 0.340 0.584
Fe 0.148 0.409 0.147 0.098 −0.370
Zn −0.037 0.443 0.151 −0.374 −0.008
Cu 0.230 −0.128 −0.023 0.204 −0.169
Mn −0.075 −0.038 0.500 0.361 −0.054

Sand −0.325 0.079 0.070 −0.086 0.011
Silt 0.311 −0.112 −0.069 0.127 −0.072

Clay 0.313 −0.012 −0.063 0.005 0.099
Moisture 0.145 0.311 −0.194 0.430 −0.004

BD −0.297 −0.053 0.157 −0.083 −0.124
Porosity −0.271 −0.050 0.074 0.092 −0.283
CaCO3 0.300 −0.092 0.056 −0.064 −0.058

Eigenvalue 8.869 2.965 1.849 1.284 1.038
Variability (%) 42.235 14.117 8.805 6.115 4.940

Cumulative (%) 42.235 56.352 65.157 71.272 76.213
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Table 7. CSQI calculation based on studied soil properties using PCA.
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S1 1.12 0.95 0.38 1.06 1.35 0.42 0.33 0.60 1.38 0.94 1.23 0.16 0.71 1.21 0.59 0.55 0.59 1.27 1.17 1.81 0.38 1.40 0.76 1.31 0.87 −0.77 0.83 0.59
S2 0.86 0.11 0.41 1.75 0.70 0.98 1.88 0.51 1.63 0.57 0.69 0.54 0.28 0.92 1.52 1.52 1.35 1.06 0.83 1.37 0.89 1.99 1.08 1.36 0.40 −0.99 1.09 0.67
S3 0.96 0.04 0.07 1.08 0.90 0.86 0.63 0.37 1.48 1.30 0.16 0.49 4.18 0.27 1.64 2.00 0.83 1.21 1.67 0.60 0.64 2.34 0.08 0.70 1.33 −0.74 1.11 0.63
S4 1.06 0.16 0.13 0.89 1.43 0.94 1.88 3.10 1.67 0.74 0.01 0.59 0.25 0.85 1.71 1.67 1.59 0.33 1.17 1.06 2.10 2.02 0.62 0.00 0.34 −0.76 0.92 0.65
S5 0.16 1.99 0.44 1.22 2.25 0.70 1.12 049 1.92 0.55 0.54 0.56 2.34 1.30 1.82 1.65 1.92 0.07 1.00 2.23 3.37 3.22 −0.20 2.31 0.08 −1.89 1.45 0.74
S6 2.26 2.62 0.13 1.89 1.52 0.47 0.96 0.15 1.72 0.94 0.54 0.52 0.97 0.74 2.08 2.07 1.88 0.06 1.83 1.42 1.84 2.86 −0.32 2.17 −1.04 −0.19 1.28 0.73
S7 0.10 0.50 1.33 0.96 2.25 3.04 0.33 0.20 0.55 1.30 1.32 0.47 0.32 0.90 1.80 1.11 2.81 1.55 2.17 2.16 1.49 1.99 2.64 2.11 1.52 −0.56 1.46 0.74
S8 1.04 0.53 1.50 0.66 1.06 0.77 0.18 0.39 1.28 0.18 2.28 0.41 0.76 0.08 1.77 2.17 0.88 3.22 2.00 0.29 0.55 2.15 2.60 0.19 0.90 −1.04 1.30 0.69
S9 1.09 0.65 0.90 0.24 0.41 0.34 0.74 0.67 0.92 0.01 0.37 0.47 0.42 1.92 0.66 0.52 0.83 0.88 1.17 1.12 0.64 0.81 0.79 1.10 0.25 −0.53 0.54 0.52
S10 0.05 0.83 0.90 0.98 0.12 0.52 0.43 0.34 0.87 1.49 0.59 0.46 0.42 0.64 0.57 0.48 0.68 0.59 0.67 0.00 0.64 1.32 0.98 1.47 0.40 050 0.87 0.59
S11 0.03 0.62 0.02 1.46 0.49 0.59 0.58 1.06 0.45 0.18 0.85 1.69 0.42 005 0.64 0.73 0.41 1.01 0.83 0.14 0.22 1.03 1.68 0.60 0.05 −0.61 0.70 0.57
S12 1.12 3.15 0.93 0.66 0.86 0.08 0.89 1.06 0.87 1.86 0.85 0.30 0.42 1.23 0.59 0.61 0.49 0.24 0.67 0.00 0.35 1.85 0.48 2.10 −0.24 1.04 1.07 0.64
S13 0.99 0.21 0.16 0.43 0.86 0.30 0.48 0.58 0.58 0.37 0.67 0.35 0.42 1.22 0.66 0.73 0.46 1.10 1.00 1.25 0.64 0.79 0.58 0.70 0.76 −0.66 0.49 0.50
S14 1.84 0.11 0.33 0.24 0.94 0.20 0.79 0.13 0.92 1.30 0.49 0.09 0.42 2.04 0.65 0.46 0.92 0.29 1.00 1.25 0.64 1.04 −0.08 1.52 0.62 0.12 0.61 0.54
S15 0.03 0.38 0.78 0.43 0.57 0.15 1.80 0.51 0.14 1.31 0.31 0.24 0.42 0.96 0.58 0.86 0.03 0.07 033 0.00 0.64 1.11 0.37 1.46 0.52 0.11 0.69 0.57
S16 1.06 0.65 0.90 0.22 0.66 0.96 0.99 1.48 0.58 0.18 0.66 0.41 0.42 0.10 0.64 0.59 0.65 1.27 0.17 0.41 0.64 1.48 1.56 −0.31 0.21 −0.10 0.82 0.58
S17 0.26 0.04 0.13 0.52 1.02 1.03 1.50 0.36 0.48 0.37 0.47 0.10 0.42 0.09 0.70 0.59 0.80 0.12 1.33 1.00 0.13 0.67 0.51 0.77 0.20 −0.88 0.39 0.50
S18 0.03 0.62 0.02 0.52 0.37 0.91 0.66 0.03 0.48 0.75 0.46 0.25 0.42 1.02 0.73 0.61 0.87 0.01 1.33 1.00 0.38 0.40 0.35 1.64 0.43 −0.44 0.36 0.48
S19 0.73 0.76 0.55 0.56 0.74 0.45 1.06 0.75 0.68 0.94 0.02 0.25 0.42 1.34 0.42 0.25 0.67 0.59 0.50 0.13 0.38 1.23 0.46 1.12 0.47 0.31 0.73 0.56
S20 2.21 0.74 0.67 0.60 1.11 0.37 0.81 0.42 0.87 0.57 0.08 0.02 0.42 0.73 0.33 0.40 0.19 0.39 0.33 0.27 0.64 1.68 0.16 0.48 −0.32 0.51 0.78 0.58
S21 0.23 0.64 0.70 0.81 0.08 0.50 0.79 2.78 0.92 0.75 0.72 0.25 0.42 0.92 0.29 0.47 0.05 0.36 0.33 0.00 0.64 1.07 1.21 0.13 0.72 −0.08 0.67 0.54
S22 0.60 0.37 0.33 0.94 0.66 0.20 0.76 0.44 0.48 2.23 0.83 0.15 0.42 0.95 0.36 0.42 0.22 0.04 0.33 0.27 0.64 1.29 0.28 1.64 0.88 0.68 0.81 0.59
S23 0.65 0.53 0.36 0.94 0.74 0.55 0.53 1.20 0.14 1.31 0.82 0.09 0.42 1.02 0.65 0.57 0.72 0.59 1.17 1.12 0.13 0.65 0.75 1.03 1.13 0.08 0.54 0.51
S24 0.57 0.69 1.07 1.23 1.02 0.65 0.99 0.36 0.30 0.57 1.20 0.38 0.42 1.20 0.58 0.50 0.67 0.50 0.67 0.00 0.12 1.50 1.34 1.51 0.42 −0.18 0.97 0.62
S25 1.61 0.64 0.92 0,75 0.94 0.84 1.14 1.08 0.72 1.31 0.47 0.69 0.42 0.09 0.51 0.58 0.33 0.28 0.17 0.41 0.64 1.73 1.07 0.50 −0.19 0.68 0.95 0.61
S26 0.81 0.73 0.78 1.02 0.57 0.66 1.09 0.27 0.97 1.31 0.83 0.27 0.42 1.06 0.52 0.48 0.52 0.68 0.67 0.00 0.64 1.70 0.93 1.60 0.41 0.26 1.03 0.62
S27 0.34 0.45 0.04 0.57 0.04 2.08 0.99 0.32 0.06 0.19 1.60 0.57 0.42 0.62 0.56 0.34 0.89 1.83 0.83 0.65 0.38 0.92 2.29 0.91 1.08 −0.70 0.82 0.62
S28 0.16 0.01 4.00 0.93 0.66 2.23 0.10 0.51 0.30 0.57 2.74 4.67 0.42 0.27 0.34 0.63 0.21 0.57 0.83 1.37 0.13 1.09 6.03 1.78 −1.09 −0.42 1.38 0.67
S29 0.18 0.35 0.13 0.92 0.25 0.17 0.91 0.41 0.97 0.19 0.79 0.09 0.42 0.60 0.36 0.60 0.12 0.47 0.50 0.28 0.64 1.15 0.42 0.84 0.25 −0.82 0.60 0.54
S30 0.88 0.73 0.67 1.08 0.16 0.42 0.99 0.56 1.17 0.18 0.98 0.56 0.42 0.97 0.42 0.22 0.72 1.10 0.33 0.27 0.64 1.66 1.26 0.95 0.07 −0.42 0.95 0.61
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Previous investigations utilizing the Soil Quality Index (SQI) to assess soil quality
yielded comparable findings. Aggag and Alharbi [7] indicated that the SQI outcomes
delineate the study area into three distinct zones: very good, good, and fair soil quality.
Specifically, regions classified as very good and good quality collectively encompass ap-
proximately 14.48% and 50.77% of the total surveyed area, while fair soil quality, primarily
attributed to salinity and low soil nutrients, accounts for about 34.75%.

3.5. Geostatistical Analysis and Spatial Distribution of Soil Properties
3.5.1. Spatial Variability of Soil Properties

In the pursuit of maintaining soil and plant sustainability, precision agriculture relies
heavily on insights garnered from assessing and mapping the spatial variability of soil
characteristics [74]. To this end, OK was employed to evaluate the spatial variability of
18 soil variables, encompassing pH, EC, OM, CEC, Av. N, Av. P, Ex. K, Na, Ca, Mg, Fe, Zn,
Cu, Mn, sand, silt, clay, and porosity, in order to estimate and map the unknown values
of these soil properties. Various semivariogram models were tested for each soil attribute
dataset, and the best-fitted models, along with their prediction errors, were identified, as
detailed in (Table 8).

The accuracy of the models was assessed based on metrics such as ME, RMSE, MSE,
and RMSSE. After cross-validating the performance of eleven semivariogram models,
nine models emerged as the most suitable for mapping the spatial variability of the
selected properties.

The analysis identified the best-fit model for various soil properties, with Pentaspheri-
cal emerging as the optimal model for soil pH, EC, and silt. Exponential best-fit models
were found to be suitable for OM and CEC, while a rational quadratic model best fit Av.
N, Av. P, sand, and clay. Spherical models were determined as the most appropriate for
soil Ex. K and Na, while K-Bessel fit Ca and Cu data well, and the circular model was
suitable for Mg. Porosity and Fe exhibited a J-Bessel best-fit model, whereas Gaussian
proved optimal for Zn and stable for Mn. These findings align with prior research that
observed the prevalence of exponential, stable, K-Bessel, and spherical models for soil
chemical properties [75]. Notably, the results indicate RMSSE proximity to one and MSE
proximity to zero across the selected soil properties, suggesting that the chosen models
effectively fit the data and are well-suited for predicting unsampled soil properties.

The analysis revealed that all soil properties exhibited varying degrees of spatial
dependence (SD), ranging from moderate to weak and strong (Table 8). Notably, Av. N, Na,
and clay demonstrated strong spatial dependence, attributed primarily to geomorpholog-
ical and soil structural factors, including parent material, depth to bedrock, topography,
and soil texture [76]. Conversely, EC, OM, CEC, Av. P, Ex. K, Ca, Mg, Zn, Cu, Mn, sand, silt,
and porosity exhibited moderate spatial dependence, likely influenced by a combination of
soil structural and extrinsic factors, including leaching processes [35]. Additionally, pH and
Fe showed weak spatial dependence, suggesting lesser influence from extrinsic random
factors such as climatic conditions, land use changes, and soil management practices like
fertilization and irrigation system uniformity [27].

The spatial distribution maps generated through OK interpolation showed that the
soil pH ranges from 6.61 to 8.33, with higher values observed in the southeast portion
(Figure 7a).

Similarly, EC ranges from 0.16 to 3.05 dS/m, with higher values concentrated in the
eastern part (Figure 7b). Soil OM values range from 2.84 to 4.5%, with higher concentrations
in the southern region (Figure 7c). Elevated levels of Av. N, Av. P, and Ex. K are primarily
found in the southeast, northeast, east, and northwest fields, with values ranging from
158.36 to 193.54 mg/kg for Av. N, 47.14 to 69.95 mg/kg for Av. P, and 306.23 to 362.5 mg/kg
for Ex. K, respectively (Figure 8).

Soil CEC, Na, Ca, Mg, Fe, Zn, Cu, Mn and porosity also exhibit varying distribution
patterns across the area, with higher values generally observed in the east, southeast, and
northeast fields compared to the west and southwest fields (Figures 8–10).
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Table 8. Semivariogram parameters of the selected soil properties.

Soil
Properties Best-Fitted Model Nugget Partial Sill Sill Nugget/Sill SDC

Prediction Errors

ME RMSE MSE RMSSE ASE

pH Pentaspherical 14.00 0.01 14.01 1.00 Weak 0.0002 0.4121 0.0001 1.0040 0.4124
EC Pentaspherical 0.21 0.31 0.52 0.40 Moderate 0.0001 0.6436 −0.0121 1.0279 0.6294
OM Exponential 2.23 0.86 3.09 072 Moderate −0.0491 1.8557 −0.0308 1.1149 1.6535
CEC Exponential 0.20 0.20 0.40 0.50 Moderate 0.0064 0.4698 0.0061 0.9902 0.4774

Av. N Rational Quadratic 134.36 1569.66 1704.02 0.08 Strong 0.0227 20.4236 −0.0074 0.8568 25.7317
Av. P Rational Quadratic 482.63 198.86 681.49 0.71 Moderate −0.3996 25.6871 −0.0168 1.0083 25.4855
Ex. K Spherical 3848.17 8340.20 12,188.37 0.32 Moderate 0.0218 96.2504 −0.0131 1.0418 91.4128

Na Spherical 0.00 0.45 0.45 0.00 Strong 0.0001 0.5846 −0.0105 1.0390 0.5285
Ca K-Bessel 52.22 85.12 137.34 0.38 Moderate 0.1509 7.6766 0.0114 0.9176 8.1934
Mg Circular 2.63 5.11 7.74 0.34 Moderate −0.0325 2.8651 0.0044 1.0653 2.6544
Fe J-Bessel 7.46 2.15 9.61 0.78 Weak −0.0835 3.2337 −0.0272 1.0882 2.9493
Zn Gaussian 293.68 498.12 791.80 0.37 Moderate −0.2277 23.5815 −0.0053 1.2340 18.4944
Cu K-Bessel 9.53 13.19 22.72 0.42 Moderate 0.0000 3.1222 −0.0008 0.9045 3.5267
Mn Stable 3.41 3.41 6.82 0.50 Moderate −0.0051 2.0940 −0.0030 0.9645 2.1785

Sand Rational Quadratic 313.16 580.08 893.24 0.35 Moderate −0.5418 21.7406 −0.0104 0.8659 25.7928
Silt Pentaspherical 141.53 294.18 435.71 0.32 Moderate 0.4637 14.6749 0.0210 0.9392 15.7000

Clay Rational Quadratic 8.72 100.29 109.01 0.08 Strong 0.2189 9.4223 0.0117 1.0640 8.7242
Porosity J-Bessel 5.47 2.81 8.28 0.66 Moderate 0.0182 2.7933 0.0037 1.0681 2.6031
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3.5.2. Spatial Analysis of SQI

The spatial variability of soil quality in the study area, interpolated using OK (Figure 11),
reveals a range of SQI values from 0.48 to 0.73.
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Areas with higher soil quality values are predominantly located in the south, south-
east, and southwest sections of the field, characterized by a very good quality index and
adequate values across all soil characteristics. Conversely, the middle and northwest
portions exhibit lower SQI values, indicating poorer soil quality. Factors such as clay
composition, organic matter content, EC, Av. N, Av. P, Ex. K, and CEC are identified as
the most influential contributors to SQI [77]. Low values of these parameters negatively
impact SQI, while physical indicators like depth, bulk density, porosity, aggregate stability,
and compaction affect soil structure and root growth, influencing water infiltration and
plant emergence speed [78]. Soil texture plays a pivotal role in water-holding capacity, soil
structure, and nutrient availability, with particle size surface area identified as a critical
determinant [79,80]. Additionally, soil texture has a significant influence on the distribution
and retention of soil OM. Soils with finer textures, such as clay, tend to have higher surface
areas and greater capacity to retain organic matter compared to sandy soils [32,42]. To
improve soil quality and productivity and prevent land degradation in the northwest and
central fields, enhancing soil organic matter through organic manure application and con-
servation agriculture practices is recommended. Soil organic matter significantly influences
soil function and is pivotal in enhancing various soil properties, as indicated by numerous
previous studies [81–84].
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4. Conclusions

This research aimed to characterize the physical and chemical attributes of soil in
order to evaluate the SQI within the agricultural landscape of the Mnasra region, nestled
within Morocco’s Gharb Plain, employing an integrated methodology that incorporates
multivariate and geostatistical analyses. To achieve this objective, thirty soil samples were
collected from the surface layers (0–20 cm) across thirty designated sites.

The study unveiled considerable disparities in soil attributes including pH, EC, OM,
CEC, and nutrient content (Av. N, Av. P, and Av. K), each displaying distinct spatial distribu-
tions influenced by factors like soil texture, parent material, and agricultural practices. Sta-
tistical analyses, encompassing Pearson correlation and PCA, unveiled inter-relationships
among these soil properties, facilitating the computation of the SQI. PCA revealed five PCs,
collectively explaining 76.21% of the overall variance in soil properties. Additionally, SQI
calculations offered a comprehensive evaluation of soil health, indicating variations in soil
quality across distinct zones within the study area. SQI values ranged from 0.48 to 0.74
among sampled soils, with a mean value of 0.60. Approximately 46.66% of sampled soils
were classified as “Good”, while 53.33% were categorized as “Fair”, suggesting a slightly
lower overall soil quality. The geostatistical analysis uncovered distinct spatial patterns
for various soil properties, with different semivariogram models proving optimal based
on the specific property. For instance, the Pentaspherical model was ideal for pH, EC, and
silt, while exponential models suited OM and CEC. Rational quadratic models provided
the best fit for Av. N, Av. P, sand, and clay. Spherical models were appropriate for Av. K
and Na, with K-Bessel fitting well for Ca and Cu, and the circular model for Mg. Porosity
and Fe displayed a J-Bessel best-fit model, while Gaussian and stable models were optimal
for Zn and Mn, respectively. Moreover, the analysis highlighted varying degrees of spatial
dependence across soil properties, influenced by both intrinsic soil factors and extrinsic
environmental factors.

The study identifies varying soil quality across the landscape, influenced by factors
such as organic matter, clay content, and nutrient availability. It emphasizes the im-portance
of integrated methodologies involving field assessments, statistical analyses, and geospatial
techniques for comprehensive soil quality evaluation. These findings offer valuable insights
for decision-makers in agricultural land management, facilitating sustainable development
in Morocco’s Gharb region. Proposed actions include enhancing organic matter, optimizing
nutrient levels, improving soil structure, implementing erosion control measures, and pro-
moting sustainable land use practices like agroforestry and crop rotation. These strategies
aim to address soil degradation, enhance agricultural productivity, and contribute to global
efforts in environmental conservation and sustainable land management. It is essential to
incorporate additional analyses such as heavy metals and pesticides assessments to develop
comprehensive control strategies aimed at mitigating the adverse impacts of agricultural
practices and safeguarding soil quality for future generations.
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