

Background information

Badia

Land degradation

Water scarcity

Agriculture

Water harvesting

<u>Introduction</u> Study area Methods Results Discussion Conclusion

Vallerani micro water harvesting

Relatively new

Automated ploughs

<u>Introduction</u> Study area Methods Results Discussion Conclusio

<u>Introduction</u> Study area Methods Results Discussion Conclusion

Study objectives

- To quantify the soil moisture dynamics in the field in and around the Vallerani structures
- Model the soil moisture dynamics using Hydrus-2D
- Evaluate the water retention capacity of the Vallerani structures throughout different climate change scenarios

<u>Introduction</u> Study area Methods Results Discussion Conclusio

Study area

Jordanian Badia

Watershed

Sparsely inhabited

Barley & grazing animals

Introduction <u>Study area</u> Methods Results Discussion Conclusion

Study area

30 hectares

Atriplex Halimus

Rainy season: September - May

Crusted soil

ntroduction <u>Study area</u> Methods Results Discussion Conclusior

Methods

HYDRUS 2D

Subsurface flow

Van Genuchten – Mualem model

Rosetta parameter estimation

Water level

Infiltration

Filled to maximum capacity

Monitored over time

Two Vallerani RWH structures

Photogrammetry

Close-range photogrammetry

Markers

373 photos

Soil moisture

Decagon 5TE

10 sensors

Rebuilding structure

TRIME-PICO

Climate scenarios

Three scenarios

Based on literature

Scenario	Rainfall amount	Temperature change	Intensity changes
		°C	
	%		
1	-10	+1.2	None
2	-20	+2.5	Smallest events
			combined into more
			intense events
3	-30	+3.5	Smallest events
			removed. small
			events made into
			heavy events.

Results

Infiltration rates

260 liters

~2.5 hours

No preferential flow

Poor results

Unrealistic values

Realistic pattern

Lowest values

Soil moisture upstream

Chaotic pattern

Impossible values

Soil moisture

Settling time

TRIME-PICO

1/3/1111

Precipitation

Measured (10 cm depth)

213/1111 2014/1111 3014/1111 2015/1111

Soil moisture: Upstream at a depth of 10 cm

Introduction Study area Methods <u>Results</u> Discussion Conclusio

0.25

0.2

0.15

0.05

Water content (m3/m3)

Model evaluation

5 model runs

Clear winner

Parameter set	Correlation (-)	Bias (%)	Kling-Gupta Efficiency (-)
1	0.5	18.2	0.42
2	0.49	14	0.4
3	0.44	10.2	0.34
4	0.46	8.9	0.35
5	0.73	-2	0.55

Modelled soil moisture

Water stress

Depth dependent

Significant increase

Intensity

Annual days of water stress

Depth	Present	Scenario	Scenario	Scenario
		1	2	3
10 cm	83	97	125	101
20 cm	80	95	125	103
30 cm	62	89	121	106

Discussion & Recommendations

Software

Seedling vs Shrub

Rainfall intensity

Climate change mitigation

Conclusion

Rejuvenation

More research

Introduction Study area Methods Results Discussion <u>Conclusion</u>