# Understanding Farmers' Preference for Traits of Chickens in Rural Ethiopia

Zelalem G. Terfa, S. Garikipati, Girma T. Kassie, Tadelle Dessie and R.M. Christley

## **Background**



## Introduction

- Village poultry plays a key role in poverty alleviation, food security and in the promotion of gender equality in developing countries.
- For many, home grown chickens and eggs are their only source of highquality protein.
- Owners of poultry sometimes are the landless and the poorest.
- Village poultry production typically uses indigenous genetic resources, which are adapted to a specific harsh environment.
- Indigenous chickens in Ethiopia provide major opportunities for increased protein supply and income for smallholders.
- Indigenous chickens are well suited to the very limited input that poor producers can provide.

#### Introduction

- Like many other developing countries, development interventions to enhance poultry productivity in Ethiopia focused on introduction of exotic chicken.
- However, increased productivity of the village poultry subsector by using exotic breeds has failed to become sustainable.
- There is a significant danger of losing valuable adaptive and production traits of indigenous chickens.
- A possible intervention to improve village poultry production is to target indigenous breeds based on needs and preferences of smallholder farmers. (+ better management)
- This route to higher village poultry productivity requires diverse indigenous chicken gene pools.

#### Introduction

□ A recent study by Psifidi et al. (2016):

confirmed existence of genetic diversity and supports the feasibility of genetic improvement for enhanced antibody response, resistance to parasitism and productivity within and across indigenous chicken ecotypes in Ethiopia.

- Well-thought-out plans for management of this genetic resources and breeding program are also crucial to improve productivity.
- This requires many decisions that would be easier to make if information on the economic value of populations, traits and processes were available.
- Many of the benefits derived from the existence of traits of indigenous chicken genetic resources are, however, not discretely transacted in the market.
- Therefore, economic valuation of AnGR is essential to guide decision makers.

#### Methods

- Building on recent advancements in preference and valuation methodologies that are not yet applied in AnGR valuation studies.
- Used Stated preference approach- discrete choice experiment (DCE).
- DCE- theoretical foundation in Lancastrian consumer theory.
- DCE- has econometric base in random utility theory.
- DCE is applied in many applied researches.

## Attribute identification and DCE designing

- Designing a DCE requires careful definition of the attributes and attribute level determination as well as generation of statistically efficient and practically manageable DCE design.
- Attribute identification in this study involved a number of steps:
  - Previous research: (Dana et al., 2010).
  - PRA: with farmers in two villages.
  - Multiple discussions with experts (geneticists/breeders, microbiologists, veterinarian/epidemiologists, and economists).
- The final attributes considered in designing the DCE included traits with cultural significance, productive traits and adaptive traits.

# Attribute identification and DCE designing

| Attributes          | Attribute levels                  | Reference level    |
|---------------------|-----------------------------------|--------------------|
| Plumage color       | Predominantly white               |                    |
| _                   | Predominantly black               | Predominantly red  |
|                     | Predominantly red                 |                    |
| Eggs per clutch     | 12                                |                    |
|                     | 16                                | Used as continuous |
|                     | 20                                |                    |
| Body size           | Small                             |                    |
|                     | Medium                            | Medium             |
|                     | Big                               |                    |
| Mothering ability   | Poor: Hatch 4 and raise chicks    |                    |
|                     | from 12 eggs                      |                    |
|                     | Moderate: Hatch and raise 8       | Moderate           |
|                     | chicks from 12 eggs               |                    |
|                     | Good: Hatch and raise12 chicks    |                    |
|                     | from 12 eggs.                     |                    |
| Diseases resistance | Good: Rarely gets sick            |                    |
|                     | Poor: Often gets sick and may die | Poor               |
| Meat and egg taste  | Poor                              | Poor               |
|                     | Good                              |                    |
| Price               | ETB 40                            | Used as continuous |
|                     | ETB 55                            |                    |
|                     | ETB 70                            |                    |

## Attribute identification and DCE designing

- We used SAS software macros to combine identified attributes and attribute levels to generate generic chicken profiles.
- There are 972 (i.e.  $3^{5*}2^2$ ) possible ways to combine the selected attributes and attribute levels to generate profiles.
- However, full-factorial design like this is too tedious and cognitively demanding for respondents to make meaningful choice.
- Therefore, an orthogonal fractional-factorial experimental design was used.
- The design generated 36 chicken profiles.
- Again, these profiles were randomly grouped into 18 chicken choice sets, ( + opt-out).
- hence each respondent could be presented with six choice sets.

## The survey

- The formal survey was conducted in Horro district of Ethiopia as part CH4D.
- The survey was conducted by well-trained and experienced enumerators who were postgraduate students from HU & AAU.
- This DCE survey was administered on 450 farmers drawn by employing sampling with probability proportional to the population size of each Ganda.

## **Econometric** model

- The model was estimated using the preference space and WTP-space approach.
- The preference space with RPL:  $U_{njt} = \beta'_{n} x_{njt} + \epsilon_{njt}$
- $U_{njt} = [\sigma_n \beta + \gamma \eta_n + (1 \gamma) \sigma_n \eta_n] x_{njt} + \epsilon_{njt}$
- $\ \square$  The utility function as separable in price, P, and non-price, X , attribute can be written as:

$$U_{njt} = \sigma_n \left( -P + (\beta_n^{\prime *}) X_{njt} \right) + \left[ \gamma \eta_n + (1 - \gamma) \sigma_n \eta_n \right] X_{njt} + \epsilon_{njt}$$

## Results and discussion: Results in Preference Space

| MeanSEMeanSERandom parameters (RPs)Predominantly black plumage color<br>Predominantly white plumage color<br>0. 339*0. 149<br>0. 201<br>0. 472**-0.253*<br>0.129<br>0.194 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Predominantly black plumage color -0. 206 0. 149 -0.253* 0.129                                                                                                            |
| • • •                                                                                                                                                                     |
| Predominantly white plumage color 0. 339* 0. 201 0.472** 0.194                                                                                                            |
|                                                                                                                                                                           |
| Eggs per clutch 0. 113** 0. 053 0. 173*** 0.045                                                                                                                           |
| Small body size -0. 706*** 0. 238 -0.740*** 0. 175                                                                                                                        |
| Large body size 0. 335*** 0. 153 0. 388*** 0. 128                                                                                                                         |
| Good meat and egg taste 0. 331* 0. 181 0. 370** 0. 173                                                                                                                    |
| Disease resistance 0. 455** 0. 232 0. 425** 0. 214                                                                                                                        |
| Poor mothering ability -2. 133*** 0. 698 -2.219*** 0. 384                                                                                                                 |
| Good mothering ability 1. 274*** 0. 352 1.425*** 0. 240                                                                                                                   |
| Price -0. 031** 0. 013 -0.020*** 0.006                                                                                                                                    |
| Non-random parameters                                                                                                                                                     |
| Constant -4. 506*** 1. 675 -2.850*** 0. 625                                                                                                                               |
| Heterogeneity in mean parameters                                                                                                                                          |
| Predominantly white *Orthodox -0. 514** 0. 206 -0.588*** 0. 193                                                                                                           |
| Meat and egg taste * Education 0. 102 0. 068 0.106* 0.062                                                                                                                 |
| Disease resistance * Age 0. 008 0.003 0.009* 0. 005                                                                                                                       |
| Standard deviation of RPs                                                                                                                                                 |
| Predominantly black plumage color 0. 050 0. 419 0. 157 0.390                                                                                                              |
| Predominantly white plumage color 1. 075** 0. 488 1.336*** 0. 400                                                                                                         |
| Eggs per clutch 0. 065 0.076 0.038 0.060                                                                                                                                  |
| Small body size 0. 464 0. 702 0.361 0.454                                                                                                                                 |
| Large body size 1. 720*** 0. 622 1. 787*** 0. 387                                                                                                                         |
| Good meat and egg taste 0. 018 0. 293 0. 039 0. 259                                                                                                                       |
| Disease resistance 0. 318 0. 546 0. 191 0. 356                                                                                                                            |
| Poor mothering ability 1. 711** 0. 740 1.323*** 0. 409                                                                                                                    |
| Good mothering ability 1. 009 0. 744 0. 729 0. 448                                                                                                                        |
| Price 0.008 011 0.009 0.008                                                                                                                                               |
| Tau $(\tau)$ 0.5 (fixed)                                                                                                                                                  |
| Gamma (γ) 0.375 0. 289                                                                                                                                                    |

# Results and discussion: Results in WTP - Space

|                                   | G-MNL: WTP-space |         |
|-----------------------------------|------------------|---------|
|                                   | Mean             | SE      |
| Parameters                        |                  |         |
| Predominantly black plumage color | -2.459**         | 1.202   |
| Predominantly white plumage color | 2.255*           | 1.186   |
| Eggs per clutch                   | 6.004***         | 1. 414  |
| Small body size                   | -18.714***       | 4. 545  |
| Large body size                   | 9.530***         | 2. 424  |
| Good meat and egg taste           | 15.338***        | 0. 181  |
| Disease resistance                | 22.044***        | 4. 901  |
| Poor mothering ability            | - 50.489***      | 11.174  |
| Good mothering ability            | 38.831***        | 8. 686  |
| Price                             | 1                | (fixed) |
| Constant                          | - 1.815***       | 0. 178  |
| Heterogeneity in mean parameters  |                  |         |
| Predominantly white *Orthodox     | - 2.784***       | 1. 073  |
| Meat and egg taste * Education    | 0. 225           | 0. 368  |
| Disease resistance * Age          | .099***          | 0.03    |
| Tau (τ)                           | 1                | (fixed) |
| Gamma (γ)                         | 0                | (fixed) |
| Sigma(i)                          | 3.258            | 14.275  |
| Standard deviation of parameters  |                  |         |
| Predominantly black plumage color | 0. 007           | 1.521   |
| Predominantly white plumage color | 0. 017           | 1. 268  |
| Eggs per clutch                   | 0. 421           | 0. 493  |
| Small body size                   | 0. 042           | 2.507   |
| Large body size                   | 0.069            | 1.474   |
| Good meat and egg taste           | 0. 069           | 1.739   |
| Disease resistance                | 0. 056           | 1. 626  |
| Poor mothering ability            | 0. 042           | 3. 015  |
| Good mothering ability            | 0. 058           | 1. 910  |
| Price                             | 0                | (fixed) |

#### Conclusion

- The government of Ethiopia and international research systems run different programs to improve village poultry productivity, mostly by introducing improved chickens.
- It is important to understand if the aims of these programs are in line with farmers' preferences in the prevailing production and market system.
- This is especially so as the programs could lead to loss of indigenous genetic resources that are valuable to farmers.

#### Conclusion

- The results of the study revealed that in this semi-subsistent farming system, where chickens are kept for multiple purposes under low/no input, adaptive traits are of considerable importance to farmers.
- Diseases resistance attracted the highest mean WTP implying the economic importance of adaptive traits of chickens.
- In Ethiopia, there exists diverse indigenous chicken gene pool.
- Therefore, an alternative way to improve village poultry productivity is to target locally adaptable genetic resources that farmers value the most.
- This approach could potentially provide improved chickens that are readily acceptable by farmers and facilitates conservation of locally adaptable chicken genetic resources.

## Acknowledgement

We would like to thank the UK BBSRC and DFID for funding this research work.

- Farmers and development agents in Horro district of Ethiopia
  are highly appreciated for their assistance during survey work.
- We would also like to thank the Chicken Health for Development (CH4D) project team members and enumerators for their cooperation.

Thank you for your attention.