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Research

In crop variety trials and other experiments, suitable experi-
mental designs are chosen to segregate the observed variability 

in the trait of interest, such as grain yield, into those due to 
systematic patterns in the experimental units, varieties or treat-
ments, and (uncontrollable) experimental errors. The basics of 
experimental design and analysis of data are detailed in several 
standard texts (Cochran and Cox, 1957; Kempthorne, 1983; 
Fisher, 1990; Hinkelmann and Kempthorne, 2005). A number 
of standard statistical software packages such as Genstat (Payne, 
2013), SAS (SAS Institute, 2011), and CycDesigN (Whitaker et 
al., 2009) and websites such as Design Resource Server (Parsad 
and Gupta, 2007) can generate the randomized plans for various 
experimental designs and carry out statistical analysis using linear 
models under the frequentist approach. Variety trials are gener-
ally conducted in complete or incomplete block designs such as 
an  design (Patterson and Williams, 1976; John and Williams, 
1995). Experimental designs for elimination of heterogeneity in 
two dimensions are also frequently used, such as resolvable row–
column designs known as lattice squares and lattice rectangles 
(Federer, 1955; Cochran and Cox, 1957; Hinkelmann and Kemp-
thorne, 2005). The p-rep designs with variable replications on 
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ABSTRACT
Block designs are normally used in evaluation 
of crop varieties. The responses or yield data 
arising from designed trials in a crop variety 
improvement program are generally analyzed 
using linear mixed models under the frequentist 
paradigm. Such analysis ignores information on 
the genotypic parameters available from previ-
ous similar trials. Another approach with a rela-
tively wider inferential framework is Bayesian, 
which integrates the prior information with the 
likelihood of current data. While the Bayesian 
approach has been implemented in numerous 
situations, stepwise presentation of its appli-
cation in routine crop variety trials is not avail-
able. Illustrated with a dataset from a resolvable 
incomplete block design, this study provides a 
working tool for Bayesian analysis based on pri-
ors available from a series of crop variety trials. 
The posterior estimates of predicted values of 
mean of genotypes and precision, coefficient 
of variation, heritability, and genetic gain due to 
selection were obtained. The a posteriori mean 
of experimental error variance, coefficient of 
variation, and genotypic variance were lower for 
the Bayesian than the frequentist approach. The 
precision of a posteriori means was higher than 
that of predicted means under the frequentist 
approach. Accounting for incomplete blocks, 
rather than ignoring them, using a Bayesian 
approach showed a large reduction in esti-
mates of error variance components and large 
increases in heritability and genetic gain. The 
current a posteriori distributions also serve as 
updated priors for future analysis. The step-
by-step procedure presented here is recom-
mended for routine analysis of variety trials.
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rectangular layouts were developed for spatially correlated 
errors (Cullis et al., 2006) and can be generated using the 
DiGGer package (Coombes, 2009). Augmented p-rep 
designs based on one-way incomplete blocks and suitable 
for multienvironment trials (Williams et al., 2011) can 
be generated by the CycDesigN software (Whitaker et 
al., 2009). Because the crop improvement process is long, 
varieties are evaluated in a series of trials over multiple 
locations and years, where in a current year only some 
varieties from previous years are retained and some new 
varieties are included in the trials. Considered over the 
multiple environments, suitably chosen mixed models are 
used to analyze the resulting unbalanced datasets. Smith 
et al. (2005) gives a detailed description on handling such 
trials using a frequentist approach.

In well-established crop improvement programs, 
information on genotypic and environmental variability 
is available from the statistical analysis of routinely con-
ducted variety trials. The frequentist paradigm does not 
focus on using such prior information gathered from pre-
vious or other trials on similar genotypic material. How-
ever, the Bayesian paradigm is oriented to use such prior 
information to further empower the statistical inference 
that could be drawn from the current trial. For instance, 
data on the same genotypes evaluated on earlier occa-
sions and or along with other genotypes drawn from a 
germplasm pool or population can be used. Commonly 
used prior information, in terms of statistical distribution 
of the various parameters associated with experimen-
tal design and genetic material, can be obtained using a 
Bayesian method. The parameters of a priori distributions 
may be known or may themselves follow distributions 
with known parameters and so on along a hierarchy of 
parameters. The series of already-conducted trials may 
provide information on mean and variance components 
of the random factors involved in an experimental design 
to evaluate the set of genotypes. In this context, the dis-
tributions of estimates of variance components of various 
effects available from a set of 20 trials provided a basis for 
Bayesian analysis. Although the Bayesian approach makes 
use of prior information, in the form of statistical distribu-
tion of the parameters while the frequentist approach does 
not, a question arises as to what degree of difference can 
be seen. The answer depends on the choice of priors and 
the dataset. Illustrative examples (Lindley, 1971; Gelman 
et al., 2004 [page 47]) show that the Bayesian estimate 
or posterior expectation of the parameter of interest is 
derived as a weighted estimate that lies between the fre-
quentist estimate and the prior and thus, shows the use-
fulness of the Bayesian approach (see also Leonard, 1975; 
Edwards and Jannink, 2006).

The Bayesian approach is well described in the lit-
erature and standard texts (Gelman et al., 2004; Carlin 
and Louis, 2009). In short, it is an integration of prior 

information with current data to obtain posterior infor-
mation in terms of statistical distribution and can be 
described as follows. Let a single parameter   be inferred 
using an observed data vector , and probabil-
ity distribution or the likelihood of observing  based 
on a value of  be denoted by ( | )f y  as a function of 
. The prior information on   that might result from a 
series of already-observed datasets serves as a degree of 
belief in   and is described in terms of its probability 
distribution function, for example g(), called an a priori 
distribution of  or simply a prior for . The inference on 
 is obtained in terms of the probability distribution of  
given the data  and is expressed as ( | )f y   ( ) ( | )g f y , 
called the a posteriori or simply a posterior density func-
tion of , obtainable from the famous Bayes’ Theorem 
available in standard texts (Gelman et al., 2004). Thus, the 
a posteriori distribution is an integration of prior informa-
tion with likelihood of the current data. This integration 
distinguishes the Bayesian from the frequentist approach. 
This a posteriori density is used to obtain the conditional 
expected value of  as an estimate of , standard error, and 
its confidence intervals. Powerful computing algorithms 
easily extend this approach to more than one parameter.

Furthermore, there might be more than one source of 
prior information in a breeding program, including classes 
of priors recommended for variance or standard deviation 
components. A question naturally arises as to which is the 
best prior among the set of priors considered and a suit-
able criterion is required for the selection. As the crop 
improvement process is normally long, prior information 
for a future investigation could be enhanced by the cur-
rent posterior distribution and thus, in an ongoing breed-
ing program, the Bayesian priors would continue going 
through regular and possibly more informative updates.

Theobald et al. (2002) implemented a Bayesian 
approach to predict regional and local-area yields from 
crop variety trials. Theobald and Talbot (2002) intro-
duced a full Bayesian formulation for choosing the crop 
variety and fertilizer level using the enhanced knowledge 
of the crop and soil conditions. Recent trends in quanti-
tative genetic data analysis have been to incorporate the 
Bayesian paradigm. Based on local factors in the field-
adjusted means of wheat (Triticum aestivum L.) genotypes 
from an experimental design, de los Campos et al. (2009) 
and Crossa et al. (2010) applied a Bayesian approach 
involving independent priors for linear effects and asso-
ciated variance components parameters to predict the 
genetic value using pedigree and molecular marker infor-
mation in a high dimension. Edwards and Jannink (2006) 
applied the Bayesian approach to model heterogeneity of 
error variances and genotype  environment interaction 
variances, since, in a frequentist approach for exploring 
multienvironment trials data, the true variances would be 
generally unknown and replacing them by their estimates 
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of the best priors from chosen candidate priors. It also aims 
to provide a working example for Bayesian analysis of data 
from an IBD and a RCBD to estimate the experimental 
error variance, coefficient of variation, predicted means 
of genotypes (with standard errors and confidence inter-
vals), broad-sense heritability on mean basis, genetic gain 
due to selection, realized gain due to selection, and rank-
ing of genotypes for selection. The necessary codes of the 
WinBUGS (Spiegelhalter et al., 2003) and R-package (R 
Development Core Team, 2009) are provided.

MATERIALS AND METHODS
We used the following dataset on grain yield.

Dataset (Incomplete Block Designs)
A set of 30 barley (Hordeum vulgare L.) genotypes, including two 
common checks, were evaluated in an  design in six blocks 
of size five each and with three replications. The experiment 
was planted on 1 November 2011 at Tel Hadya, northern Syria. 
Seeds were sown to germinate approximately 250 plants per m2 
in eight-row plots of 7.5-m length and interrow distance of 0.2 
m. Only the six central rows were harvested, and data on grain 
yield was recorded in kg ha−1.

Data for A Priori Information
A series of 20 trials with similar experimental designs was avail-
able, which provided the prior information. These datasets were 
analyzed using the restricted maximum likelihood (REML) 
method, a frequentist approach. The dataset on trial means, 
estimates of variance components for replication, blocks within 
replications, genotype, and experimental errors were obtained. 
Since we also wanted to illustrate the example for RCBD, the 
same 20 sets were reanalyzed by ignoring the incomplete blocks 
and estimates of variance components were tabulated.

Data Analysis
A Priori Distributions
With the availability of 20 sets of values on trial mean and vari-
ance components, statistical distributions were fitted to them. 
For the square root of the variance components, that is, standard 
deviation components (SDC), a normal distribution was fitted 
in Genstat software (Payne, 2013). The goodness-of-fit statis-
tics derived as chi-square statistics were obtained from observed 
frequencies and normal distribution-based fitted frequencies 
available in the DISTRIBUTION directive of Genstat software 
and p-values for deviance as shown in Table 1. The distribu-
tion of each SDC was normal (p > 0.01) except for the SDC for 
replication effects in IBD data. These resulted in deciding on 
the a priori distributions. Since SDCs are positive, we assigned 
the positive part of the normal distributions as the a priori dis-
tribution for all SDCs with respective variances or precision 
estimated from the IBD data and for RCB data obtained by 
ignoring incomplete blocks. Further, since a priori information 
may arise from several sources, and one may be interested in 
selecting the most suited prior, we also included a number of 
priors explored or recommended in Gelman (2006). A number 
of such priors evaluated in this study are also included in Table 2.

introduces errors of estimation in the parameters. The 
logarithms of interaction variances were first expressed as 
an additive model of random effects of the classifications, 
genotype, and environment, and the variances of these 
effects were assigned suitable priors. For data from small 
complete block designs, Forkman and Piepho (2012) found 
that Bayesian analysis resulted in the smallest root mean-
square error and more accurate coverage of prediction 
intervals for means compared with best linear unbiased 
estimators and empirical best linear unbiased predictors 
(BLUPs). For relatively more complicated situations, using 
decomposition of a multivariate normal distribution in 
terms of univariate conditional distributions, Hallander et 
al. (2010) developed a Bayesian tool and estimated genetic 
parameters of complex pedigrees of Scots pine (Pinus syl-
vestris L.) with additive and dominance polygenic relation-
ships and simulated pedigree with genomic relationships 
calculated from a dense marker map. Mathew et al. (2012) 
proposed a fast adaptive Markov chain Monte Carlo sam-
pling algorithm for the estimation of genetic parameters 
using a linear mixed model with several random effects 
and illustrated with simulated data.

The major points in genotypic evaluation are the 
estimation of predicted values of genotypic mean, broad-
sense heritability on a mean basis, and genetic advance 
(GA) or gain due to selection. The expression of herita-
bility for randomized complete block designs (RCBDs) 
was adopted for incomplete block designs (IBDs) by Singh 
et al. (2012, 2013) in terms of genotypic variance, plot-
error variance, and number of replications. The bias of 
such an estimator on a plot basis was studied by Singh 
and Ceccarelli (1995). Piepho and Möhring (2007) noted 
that the heritability expression of Singh et al. (2013) was 
overestimated for IBDs and suggested using an alternative 
expression given by Cullis et al. (2006) in terms of geno-
typic variance and average pair-wise variance of BLUPs. 
However, the properties of such an estimator have not 
been studied. Genetic advance is obtained by the same 
expression in terms of heritability and selection intensity. 
Piepho and Möhring (2007) also studied the realized gain 
through simulation. Since the distribution of parameters 
of interest is obtained in terms of simulated values of the 
parameters, these expressions are included in the Bayesian 
model section and the R-codes section of the appendix 
(A.7 and A.9, respectively).

While there are many applications of Bayesian 
approaches in crop improvement trials, we believe there are 
limited worked examples available for the Bayesian version 
of data analysis from routinely implemented block designs. 
The objectives of this study is to systematically present, 
along with an extraction of prior information based on an 
observed series of crop variety trials other than the current 
trial, the methodology of analyzing data from experiments 
designed in RCBDs and one-way IBDs, including selection 
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In the following, we describe the main steps of the Bayes-
ian analysis for data from an IBD. The related statistical models 
and choice of parameters, Win2BUGS, and R-language codes 
are detailed in the appendix.

Step 1. Identify the model for analysis of data. For IBD data, a 
linear model was described in terms of general mean, effects 
of replications, effects of incomplete blocks within repli-
cations, genotype effects, and experimental errors. These 
effects and errors were assumed to be random variables and 
thus had variance or standard deviation components.

Step 2. Identify the parameters of interest. The parameters 
studied were two expressions of heritability, three param-
eters measuring GA, or gain at 20% selection intensity 
(Singh et al., 2013, Cullis et al., 2006), and realized gain as 
per Piepho and Möhring (2007).

Step 3. Begin with a prior set given for the mean and standard 
distributions, for example from Table 1.

Step 4. Prepare a text file, with extension ‘bug,’ containing 
the codes for data model, priors, and parameters to be eval-
uated (Steps 1–3). These are shown in Appendix, A.7.

Step 5. Prepare another file with R-codes including (i) access 
to the required libraries for running the Win2BUGS model 
file, (ii) reading the vectors on replications, incomplete 
blocks, genotypes and response vectors from IBD data file, 
(iii) set the initial values of random numbers generated, (iv) 
set up parameters, and (v) set up ‘bugs()’ function using 
data, initial values, parameters, the model file ‘IBD.bug,’ 

number of chains, number of iterations, and simulations 
in the R-package. These lines are shown in Appendix A.9.

Step 6. Run Steps 4 and 5 for each set of priors (see Appendix 
A.8) and note the deviance information criterion (DIC) 
values for selecting the best prior. Select the prior set with 
the lowest DIC value.

Step 7: For the prior set selected, modify the ‘bug’ extension 
file (Step 4) and again run Step 5 to save the simulated 
values of various parameters (e.g., predicted means, heri-
tability, and GA) and to carry out calculations on ranks 
and heritability using simulated values (Cullis et al., 2006). 
The R-package (boot) with 1000 bootstrap replications 
was used to generate standard errors of heritability and GA 
using the method of Cullis et al. (2006).

For RCBDs, the effects and variance components for 
incomplete blocks can be ignored in the above steps.

RESULTS
Selection of Priors
The frequentist (non-Bayesian) approach was followed 
using the REML method for analysis of the IBD dataset. 
By ignoring the effects of incomplete blocks within repli-
cations, the results for RCBD were obtained. The various 
statistics computed are presented along with the statistics 
using the Bayesian approach.

The choice of priors for Bayesian analysis was made 
from the statistics for the IBD and RCBD models (Table 2). 
For the IBD, of the six prior sets, P0 through P5, the DIC 
value was smallest for P0 (49.68), the prior set based on the 
means, and variances from data of the 20 trials of winter 
barley. The prior set derived from past data was more suit-
able to assign belief for the parameters than the priors based 
on large variances (Gelman, 2006). When the incomplete 
blocks were ignored (i.e., the RCBD data was modeled), 
the prior set based on previously collected data also gave the 
smallest DIC value (99.05), although in this case, DIC values 
for the other prior sets were very close. Therefore, the prior 
set P0 for IBD and Q0 for RCB were used to predict per-
formance of genotypes and to estimate genetic parameters.

Error Variability Using Selected Priors
For the prior set P0 for the IBD model accounting for 
the effects of the incomplete blocks and Q0 for the RCB 
model obtained by ignoring the incomplete blocks from 
IBD model. Table 3 gives estimates of error variances, trial 
means, and coefficients of variation measuring the field het-
erogeneity under the Bayesian and frequentist approaches. 
Table 3 also gives estimates of genotypic variance and heri-
tability on mean basis using expressions h2 or , GA due 
to selection of the top 20% of genotypes using each of the 
two heritability estimates, as well as based on simulations. 
For the IBD data, the Bayesian estimate of experimental 
error variance, that is, a posteriori expected value of the 

Table 1. Fitting of normal distribution to means and standard 
deviation (SD) components of genotype, blocks within repli-
cations, replication, and experimental error estimated from a 
series of 20 winter barley trials using a frequentist approach.

(a) Incomplete block design†

Trial 
mean 

Replica-
tion r

Geno-
typic  
SD g

Experi-
mental 

error S e

Incomplete 
blocks 

within repli-
cations b

Mean 2.26 0.1812 0.1205 0.4061 0.4037

SD 0.3585 0.2199 0.1152 0.0729 0.1914

Chi-square‡ 2.05 42.78 4.72 1.32 3.04

p-value§ 0.152 <0.001 0.030 0.251 0.081

(b) Complete block designs (ignoring incomplete blocks 
in the trials used in case a)†

Trial 
mean 

Replica-
tion r

Geno-
typic SD 

g

Experi-
mental 

error SD
e

Mean 2.26 0.1431 0.1455 0.5605

SD 0.3585 0.1266 0.1331 0.1533

Chi-square‡ 2.05 0.69 1.06 4.57

p-value§ 0.152 0.406 0.303 0.033
†  = trial mean; r = standard deviation component for replication effects; g = 
standard deviation component for genotype effects; e = standard deviation com-
ponent for experimental errors; b = standard deviation component for incomplete 
blocks within replications effects.

‡ Chi-square with one degree of freedom. 
§ p-value for normality.
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were very small, indicating reliable numerical approxima-
tion based on 1 million iterations. The genotypic variance, 
heritability estimates and GA estimates of the Bayesian 
approach were lower than for the frequentist approach. 
Since the Bayesian concept allows inferring soundly in 

error variance given the plot-wise response data under the 
assumed linear model and a priori distributions set P0, was 
lower (0.0628  0.0125) than the frequentist error vari-
ance estimate (0.0704  0.0153). The Monte Carlo errors 
in all parameters of Table 3 (and also other tables to follow) 

Table 2. Priors chosen for mean and standard deviation component and discrepancy statistics for selection of the priors for 
IBD and RCB datasets.

Prior 
sets

Parameters† Discrepancy statistics‡

 r 
g

 
e 

b D D̂ pD DIC

(a) Priors used for parameters of IBD

  P0 N(2.26, 7.78)+ N(0, 20.67)+ N(0, 75.35)+ N(0, 188.17)+ N(0, 27.29)+ 15.39 −18.90 34.29 49.68
  P1 N(0, .00001) Uniform(0, 10) Uniform(0, 10) Uniform(0,10) Uniform(0, 10) 25.49 −7.28 32.77 58.27
  P2 N(0, .00001) N(0, 0.01)+ N(0, 0.01)+ N(0, 0.01)+ N(0, 0.005)+ 25.60 −7.24 32.84 58.44

  P3 N(0, .00001) t(0, 5,2)+ t(0, 5,2)+ t(0, 5,2)+ t(0, 5, 2)+ 26.25 −6.17 32.42 58.67

  P4 N(0, .00001) t(0, 2, 4)+ t(0, 2, 4)+ t(0, 2, 4)+ t(0, 2, 4)+ 25.90 −6.82 32.72 58.62

  P5 N(0, .00001) Gamma(.5, .5) Gamma(.5, .5) Gamma(.5, .5) Gamma(.5. 5) 22.25 −17.43 39.67 61.92

(b) Priors used for parameters of RCB (ignoring blocks)

  Q0 N(2.26, 7.78)+ N(0, 62.4)+ N(0, 56.4)+ N(0, 42.6)+ 86.25 73.44 12.81 99.05

  Q1 N(0, .00001) Uniform(0, 10) Uniform(0, 10) Uniform(0, 10) 85.32 70.81 14.50 99.82

  Q2 N(0, .00001) N(0, 0.005)+ N(0, 0.01)+ N(0, 0.01)+ 85.14 70.69 14.45 99.59

  Q3 N(0, .00001) t(0, 5,2)+ t(0, 5,2)+ t(0, 5,2)+ 85.18 70.93 14.25 99.43

  Q4 N(0, .00001) t(0, 2, 4)+ t(0, 2, 4)+ t(0, 2, 4)+ 85.07 70.50 14.57 99.63

  Q5 N(0, .00001) Gamma(.5, .5) Gamma(.5, .5) Gamma(.5, .5) 76.00 51.66 24.35 100.35
†  = trial mean; r = standard deviation component for replication effects; g = standard deviation component for genotype effects; e = standard deviation component for 
experimental errors; b = standard deviation component for incomplete blocks within replications effects; N( )+ stands for the positive part of the normal distribution with 
mean  and precision parameter  where  = variance−1 (see Gelman et al. (2004) for notation); t(0,c,)+

 
stands for positive part of t-distribution with noncentrality parameter 

c and the degree of freedom .
‡  = the a posteriori mean of (−2  log-likelihood);  = −2  log-likelihood at the a posteriori means of parameters; pD = effective number of parameters; DIC, deviance 
information criterion, smallest DIC values shown in bold.

Table 3. A posteriori means, credible intervals (CI), estimates of variance components, heritability, and genetic advance due 
to selection.

Incomplete 
blocks effects Parameters†

Bayesian approach Frequentist approach

Posterior 
mean

Standard 
error Median

95% CI‡

lower
95% CI‡ 
upper Estimate

Standard 
error

A�ccounted 
(incomplete 
block design)

Error variance,  0.0628 0.0125 0.0614 0.0428 0.0914 0.0704 0.0153

Trial mean,  1.98 0.026 1.98 1.93 2.04 1.98

CV%§ 12.6 1.23 12.5 10.4 15.2 13.4

Genotypic variance, 0.0404 0.0166 0.0387 0.0127 0.0782 0.0463 0.0203

Heritability, h2 0.635 0.1275 0.657 0.323 0.817 0.664 0.1215

Heritability, 0.627 0.0018 0.627 0.623 0.630 0.620

GA(0.2)% (h2) 11.2 3.32 11.3 4.6 17.8 12.4

GA(0.2)% ( ) 11.7 0.032 11.7 11.6 11.8 12.0

GA(0.2)% (Simulation) 13.9 2.75 14.0 8.1 19.0

Ig�nored 
(randomized 
complete  
block design)

0.1459 0.0265 0.1432 0.1014 0.2042 0.1380 0.0256
 1.99 0.040 1.99 1.91 2.07 1.98

CV% 19.2 1.73 19.1 16.1 22.8 18.7

0.0216 0.0189 0.0179 0.0001 0.0668 0.0373 0.0235

h2 0.274 0.1907 0.272 0.001 0.626 0.449 0.1774

0.281 0.0048 0.280 0.271 0.290 0.449

GA(0.2)% (h2) 5.4 4.18 4.9 0.0 14.4 9.1

GA(0.2)% ( ) 5.6 0.061 5.6 5.5 5.7 9.1

GA(0.2)% (Simulation) 9.1 4.68 9.4 0.6 17.5
† Broad-sense heritability on mean-basis: 2 2 2 2

g g g/ ( / )h r=    and 2
BLUPC

2
g/ (2 )1h v = -  where BLUPv  is the average variance of pair-wise differences between the best linear 

unbiased predictors (BLUP) and r is replications. Mean and quantiles of 2
Ch  are based on bootstrap replications. Genetic advance (GA(0.2)%) is based on the heritability 

shown in parenthesis. 
‡ CI, credible interval.
§ CV, coefficient of variation.
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terms of probability statements on the parameters of inter-
est, their 95% Bayesian confidence intervals, called cred-
ible intervals, are also given. The two a posteriori estimates 
of broad-sense heritability on mean basis, h2 and , were 
very close to each other (0.64 vs. 0.63, respectively), while 
in the frequentist approach, h2 was slightly higher than  
(0.66 vs. 0.62, respectively). The GAs based on h2 and  
were close (11.2 vs. 11.7%, respectively), but the simulated 
value was considerably higher (14%).

One advantage of a resolvable design—where a set of 
incomplete blocks can be physically grouped to form a full 
replication, for example a lattice design or an  design—is 
that one can assess role of the incomplete blocks by analyz-
ing the data after ignoring the incomplete blocks. There 
was a considerable reduction in error variance ( ) and 
increase in genetic variance ( ) when the incomplete 
blocks were accounted for (i.e., the IBD model) compared 
to when they were ignored (i.e., the RCBD model). As 
a result, there was a substantial increase in estimates of 
heritability of grain yield (27 or 28 to 64% for the two 
expressions, respectively) and the GA (5.4–9.1 to 13.9% for 
the three estimates of GA), reflecting the effectiveness of 
conducting experiments with incomplete blocks (Table 3).

Predicted Values and Ranks of the Entries
For the IBD dataset, the a posteriori means of the geno-
types, 95% credible intervals, and their a posteriori ranks 
from alternative methods are presented in Table 4, along 
with the predicted means for the frequentist approach 
as well as the RCB model. The precision of the means 
was higher for the Bayesian than the frequentist approach 
(average standard error of 0.128 vs. 0.160 for IBD and 0.130 
vs. 0.168 for RCBD). Correlation between the predicted 
values under the two approaches was 0.994 (p < 0.001) 
for the IBD model, while the maximum difference in the 
predicted means was up to 4.6%. Correlation between 
the means of the Bayesian approach for IBD and RCBD 
data was 0.817 (p < 0.001), reflecting the substantial dif-
ference in predicted values by accounting for the incom-
plete block differences. The performance of the geno-
types for the Bayesian approach was also given in terms 
of percentiles of the predicted values and of their ranks. 
This was possible due to availability of a large number of 
simulated values under the Bayesian model (see Appendix 
A-9 for the R-codes). Denoting the genotypes numbered 
1 through 30 by G1 through G30, the top six genotypes 
were G14, G19, G18, G5, G20, and G2 (G2 and G20 had 
equal means) using the Bayesian approach on IBD, which 
were also selected under the frequentist approach. Selec-
tion based on quantiles of ranks of the genotypes appeared 
quite desirable, instead of using only means, which is pos-
sible due to the availability of distribution of ranks from 
the computation process. When selecting the genotypes 
based on distribution of ranks, the top six genotypes using 

the a posteriori mean ranks or median of the ranks were 
also G14, G19, G18, G5, G2, and G20. While the selection 
of genotypes would be based on a posteriori mean rank 
or mean value, the distribution of ranks at the extreme 
quantiles could also be useful. Those genotypes that did 
not reach a high rank (toward one), near 2.5 or 5% per-
centiles, such as G10, G22, G29, or even G30, may not be 
selected. The ranks at percentiles 95 or 97.5% show how 
poor a good genotype, selected on average, could be—for 
example, G14’s rank could go down to eight (95% percen-
tile) or 11 (97.5% percentile), and similarly, G19 could, at 
worst, be ranked 12 (95% percentile) or 15 (97.5% percen-
tile). Such a rank perspective assessment of genotypes is 
not possible in the frequentist approach as distributions of 
genotypes ranks are not applicable.

Updating the Priors
Current trial estimates of variance components can be 
used along with prior trials to develop prior distributions 
of the SDCs for similar future trials; however, the a poste-
riori distributions of the parameters naturally provide an 
update of the a priori distributions in the light of current 
datasets. The a posteriori means and precision (variance–1) 
of SDCs (Table 5) compare with their a priori versions 
(Table 2). The precision parameters of the SDCs were 
considerably increased in the a posteriori distributions for 
the IBD as well as for RCBD datasets. This update, when 
implemented as a priori information for analysis of data 
collected in future trials on winter barley, may be expected 
to provide an even more realistic assessment of the barley 
genotypes. While the a posteriori distribution variance for 
the trial mean  will also be available from the Bayesian 
computation, such an estimate would not be an appropri-
ate prior for variance of mean  for a new trial, which, in 
reality, would have no possibility of being implemented in 
exactly the same location and year. However, a reasonable 
prior variance on the mean of a new trial (e.g., the 22nd 
trial) would be the variance among means of the trials 
available so far (e.g., the first 21 trials in this case).

DISCUSSION
Germplasm improvement programs routinely conduct 
field experiments to estimate the performance of fixed 
genotypes or varieties and compare with a control or local 
check genotypes (comparative viewpoint) or to estimate 
parameters of the population such as heritability using a 
frequentist approach with a comparative or exploratory 
view (exploratory viewpoints). The data generations under 
these two views are based on assumed fixed effects for the 
genotypes and random effects, respectively (Hinkelmann, 
1975). Crop breeders and geneticists keep changing the gen-
otype base in their evaluation over time by including new 
or promising genotypes in evaluation and by discarding 
the poorly performing ones. The interest lies in prediction 
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of the performance of genotypes in future and from vari-
ous considerations the assumption of random effects of 
genotypes becomes more admissible. Using random effect 
models, the various linear effect parameters were assumed 
normally distributed with their own variances that were 
assigned prior distributions. The linear models are as 
described in standard approaches in textbooks (Cochran 
and Cox, 1957; Hinkelmann and Kempthorne, 2005). 
Singh et al. (2010, 2012, 2013) modeled the heterogeneity 
of error variances in field situations. The error variances 
are usually assumed constant, while in reality they may 

vary over the layout. This results in a distribution of indi-
ces measuring the heterogeneity of a field or even estimates 
of broad-sense heritability. In this light, it is more realistic 
to develop procedures to draw inferences when there is a 
distribution of error variances and the Bayesian approach 
is better suited to model such a reality of field experimen-
tation. The analysis of multienvironment trials is another 
area requiring the strong scope of a Bayesian approach. 
For example, in the combined analysis of trials, instead 
of using estimates of generally found heterogeneous error 
and interaction variances, Edwards and Jannink (2006) 

Table 4. Predicted values of the genotypes means and their ranks for a Bayesian approach and means for a frequentist 
approach for the dataset using incomplete block design (IBD) and randomized complete block design (RCBD) models.

Rank of a 
posteriori 

mean
Geno-
type

Bayesian analysis for IBD model†

Frequentist 
analysis, 

IBD model

Bayesian 
analysis, 

RCBD 
model

Frequentist 
analysis, 

RCBD 
model

A 
posteriori 

mean

95% credible 
interval

A 
posteriori 

mean-  
rank

A posteriori rank at quantile
BLUP‡ 
mean

A posteriori 
mean

BLUP‡ 
meanLower Upper 0.025 0.05 0.5 0.95 0.975

t ha−1  ——— t ha−1 ——— t ha−1 t ha−1 t ha−1

1 G14 2.34 2.05 2.61 2.7 1 1 2 8 11 2.35 2.12 2.19

2 G19 2.26 2.00 2.52 4.4 1 1 3 12 15 2.27 2.11 2.19

3 G18 2.19 1.93 2.45 6.7 1 1 5 17 19 2.19 2.00 2.01

4 G5 2.16 1.92 2.41 7.7 1 1.5 6.5 18 20 2.16 2.12 2.20

5 G20 2.14 1.90 2.39 8.4 1 2 7 19 21 2.14 2.06 2.10

6 G2 2.14 1.90 2.39 8.2 1 2 7 18 21 2.14 2.03 2.05

7 G11 2.09 1.84 2.34 10.6 2 2.5 10 22 24 2.08 1.93 1.89

8 G17 2.09 1.85 2.34 10.6 2 2 10 21 23 2.09 2.05 2.09

9 G21 2.08 1.84 2.33 10.9 2 3 10 21 24 2.09 2.05 2.08

10 G23 2.06 1.82 2.31 11.9 2 3 11 23 24.5 2.06 2.01 2.03

11 G16 2.06 1.83 2.31 11.7 2 3 11 22 24 2.07 2.05 2.08

12 G9 2.04 1.79 2.30 12.9 2 3 13 23 25 2.04 2.07 2.12

13 G28 2.05 1.81 2.29 12.4 2 3 12 23 25 2.05 2.03 2.04

14 G25 2.04 1.80 2.28 13.1 3 3.5 13 24 25 2.03 2.05 2.08

15 G8 2.03 1.79 2.27 13.5 3 4 13 24 26 2.02 1.94 1.90

16 G27 1.98 1.74 2.22 15.7 4 5.5 16 26 27 1.98 1.98 1.97

17 G26 1.97 1.72 2.21 16.4 4 6 17 26 27 1.96 1.93 1.89

18 G24 1.95 1.71 2.19 17.3 5 6.5 18 26 28 1.94 1.98 1.97

19 G1 1.94 1.70 2.18 17.8 5 7 18 27 28 1.93 1.92 1.87

20 G13 1.93 1.69 2.17 18.1 5 7 19 27 28 1.93 2.04 2.08

21 G3 1.91 1.67 2.15 19.1 6 8 20 27 28 1.90 1.95 1.93

22 G12 1.88 1.63 2.12 20.4 7 10 21 28 29 1.88 1.96 1.94

23 G15 1.87 1.62 2.10 21.2 8 11 22 28 29 1.85 1.92 1.88

24 G7 1.86 1.60 2.10 21.7 9 11 23 29 29 1.85 1.86 1.77

25 G6 1.85 1.59 2.10 21.8 9 11 23 29 29 1.84 2.01 2.02

26 G30 1.76 1.45 2.07 24.8 10 14 26 30 30 1.84 1.95 1.96

27 G4 1.79 1.54 2.04 24.0 12 15 25 30 30 1.78 1.92 1.88

28 G29 1.71 1.45 1.97 26.5 17 19 27.5 30 30 1.69 1.85 1.76

29 G22 1.68 1.41 1.96 27.2 18 20.5 28 30 30 1.66 1.89 1.82

30 G10 1.68 1.40 1.95 27.3 19 21 28 30 30 1.66 1.82 1.72

AvSE§ 0.128 0.160 0.130 0.168

AvSED¶ 0.181 0.188 0.180 0.203
† Monte Carlo (MC) error in the range 0.0011 to 0.0016. 
‡ BLUP, best linear unbiased predictor. 
§ AvSE, average standard error. 
¶ AvSED, average standard error of difference.
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modeled heterogeneity using an exponential of an additive 
model followed by assigning suitable priors to the variance 
components of the effects terms of the model.

The choice of priors suited for variance parameters is 
discussed in Gelman (2006). The inverse  distributions 
were used as priors for variance parameters but the R2Win-
BUGS-generated computational errors in several of the 
fixed values of the hyperparameters in the hierarchy. Fur-
ther, Gelman (2006) also recommended that  priors not be 
used for variances. Polson and Scott (2011) recommended 
that half-Cauchy should replace an inverse- distribution 
as a default prior for scale parameters. The performance of 
the  priors varied over the two designs in the present study 
and was not the best. With some lower values of  distribu-
tion parameters than considered in the present study, Win-
BUGS could not proceed with the sampling of parameters. 
The set of priors used in the present study did vary in distri-
bution form and parameters; however, the DIC values were 
not very different. Thus, in effect, any other priors could be 
used for a posteriori estimation purposes. However, priors 
derived from the series of already conducted trials were best 
to strengthen our belief in the seen SDCs or variance com-
ponents. This study clearly demonstrates the steps involved 
in using the data collected from previous trials, which adds 
a new value to past investment.

In the Bayesian approach, due to its computational nature 
in every situation, simple or complex, the whole distribu-
tion is available in a well-established tool such as R2Win-
BUGS, and the summary statistics are conveniently avail-
able for the parameters of interest including derived ones in 
terms of model parameters. Such statistics often required are 
estimates, standard errors, and confidence intervals or quan-
tiles. In many cases, variance components showed substantial 
differences in their respective means and medians, indicat-
ing their skewed distributions. The derived expressions for 

standard errors under the frequentist approach generally hold 
good for large samples while we obtain exact values in the 
Bayesian method, of course with known degree of accuracy 
depending on the parameters set for convergence. The poste-
rior distributions of the parameters (e.g., SDCs) could be used 
as priors for analyzing the data that would become available 
after the next season of the trial. Therefore, these steps pro-
vide a successive way of updating the priors with availability 
of future trial datasets. Since the posteriors use the models 
describing the plot-wise data, the updated priors based on 
these posteriors provide a better alternative to priors obtained 
by fitting the distributions for SDCs, which are based only 
on the variance component estimates from the trials used for 
the (current) priors and the current dataset. However, the 
prior for the trial mean may be evaluated by fitting the distri-
bution to the set of trial means when available.

The rich suites of R-codes facilitate assessing genotypes 
for their relative performances in terms of ranks and their 
distributions. While one would like to select the high-rank-
ing genotypes using predicted means, one would also like 
to see the merit in retaining high ranks in all occurrences 
or samplings. For the IBD dataset (Table 4), while there 
were high correlations between the ranks of frequentist and 
Bayesian approaches, more datasets are needed to evaluate 
how the selection of high-yielding genotypes is affected.

CONCLUSIONS
Crop improvement is a continuous process involving regular 
evaluation of varieties in designed field trials and generating 
data on responses of the varieties. Thus, valuable informa-
tion on the varieties’ effects and variance components of 
error and factors with random effects is gathered. Fitting 
of linear models in crop variety trials evaluated under IBD 
or RCBD conditions is normally by ANOVA or REML. 
The frequentist approach is too restrictive in the sense that 
it is based on the likelihood of the current dataset and uses 
models where linear parameters and variance parameters 
are treated as fixed constants and ignores any prior infor-
mation concerning these parameters. However, the Bayes-
ian approach integrates the prior information available from 
previous trials with that of the current dataset and provides 
a more realistic and wider coverage for statistical inference. 
It also provides an update on the prior information for use 
in future trials. The illustrative step-by-step procedure pre-
sented here is recommended for routine use in statistical 
analysis of crop genotype evaluations.

APPENDIX

A.1 �Models and Priors for Bayesian Analysis 
of Data from Incomplete Block Design

Let yijk be the response, that is, grain yield, from the ith 
genotype in the kth incomplete block of the jth replication. 
It can be modeled as:

Table 5. Current a posteriori estimates of standard deviation 
components for using as priors in analysis of a future trial.

Parameters†

A posteriori  
distribution‡

A priori distribution 
(Table 2)‡

Mean
Precision

 Mean
Precision


Incomplete block design

r 0.15 143.7 0 20.7
g 0.20 557.6 0 75.4
e 0.25 1675.5 0 188.2
b 0.28 296.2 0 27.3

Randomized complete block design
r 0.11 302.5 0 62.4
g 0.38 846.5 0 56.4
e 0.13 206.4 0 42.6

† r = standard deviation component for replication effects; g = standard deviation 
component for genotype effects; e = standard deviation component for experi-
mental errors; b = standard deviation component for incomplete blocks within 
replications effects. 

‡ Mean and Precision () are parameters of N(Mean,)+, with  = variance–1 (see Gel-
man et al. [2004] for notation).
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=m  b  ijk j jk i ijky g  [1]

where the parameter  is general mean,  j is the effect of jth 
replication, jk is the effect of kth block in jth replication, 
and gi the effect of ith genotypes. The indices j = 1… r , k 
= 1…K, and i = 1…v, where r is number of replications, v 
is number of genotypes, and K is the number of blocks in 
each replication. The quantity ijk is random error for the 
plot under ith genotype, kth block of the jth replication. 
The block effects jk  and ijk  are assumed independent 
and normally distributed with means zero and variances 

b
2  and 

2 , respectively. In the classical analysis model the 
unknown parameters, , j ( j = 1…r),gi (i = 1…), b

2 , and 


2  are assumed fixed and are estimated using either least 

squares method for fixed effects of a normal linear model 
or maximum likelihood method for all parameters (see 
Cochran and Cox, 1957; Hinkelmann and Kempthorne, 
2005). Using matrix notation, where ‘~’ under a symbol 
denotes a matrix and an underscore a vector, the model (1) 
can be written as:

=m   b  g  
  

1 2 3y J D D D  [2]

where the vector  is vector of observations (yijk); vectors 
 , b , and g  are vectors of replication effects, block effects 
within replications, and genotype effects, respectively; 
vector  is a vector of all 1s; and matrices , , and 

 are incidence matrices of replication, block, and geno-
type effects, respectively. For estimation of heritability and 
genetic gain due to selection, we assume that vector g  has 
a multivariate normal distribution, 



2
gMN( , )0 I , where  is 

an identity matrix of appropriate order, in this case of order 
v. We further assume that the vector of replication effects, 
 , follows 



2
rMN( , )0 I . All sets of random variables used here 

are assumed independent. The variance–covariance matrix 
of  in (2) is b = =      

      

' 2 ' 2 ' 2 2
1 1 r 2 2 3 3 g( )VV y D D D D D D I . The 

likelihood function of b m    2 2 2 2
r g, , , ,and  in terms of the 

observations is:

where 


MN( | , )x a b  stands for the probability density 
function of the normal random vector with mean vector 

 and variance covariance matrix  and evaluated at 
point vector . The expression of this density is available 
in standard texts (Gelman et al., 2004).

A.2 �Heritability and Genetic Advance Due  
to Selection

Expressing also the estimates of genotypic variance by 
2

g  and experimental error (environmental) variance 
by 2

e , the broad-sense heritability on a mean-basis is 
given by =    2 2 2 2

g g e/ ( / )h r , where r is the number 

of replications. Another expression for heritability was 
proposed by Cullis et al. (2006), which corrects for 
the bias better than h2 (Piepho and Möhring, 2007), is 

= -2
C BLUP

2
g/ (2 )1h , where BLUP  is the average variance 

of pair-wise differences between the best linear unbiased 
predictors (BLUPs). Thus for a chosen heritability, the 
GA based on mean over replications and for a selection 
intensity of p is g /C h Y , where C is a constant given by 

-=
p

2 /21

2
pzC e

p
 and zp is the upper p quantile of standard 

normal distribution, h* is the square root of the heritability, 
h2 or 2

Ch , and Y  is mean response (Kempthorne, 1983; 
Singh et al., 2012). The quantity C is 1.4 for 20% intensity 
of selection. We also obtained the realized gain without 
using any heritability expression (Piepho and Möhring, 
2007). While the standard error of heritability, h2, and 
associated genetic gain was obtained from Win2BUGS 
standard output, the standard errors of 2

Ch  and associated 
gain were obtained using bootstrap procedure in the 
R-package on the simulated values of BLUPs as the 2

Ch  
expression being complicated could not be included in the 
WinBUGS model file.

A.3 Priors
In this study, we pursue the Bayesian approach where all 
parameters are assumed to follow some joint marginal 
or independent statistical distributions known as priors. 
Gelman (2006) reviewed a number of options for 
noninformative priors for scale parameters in hierarchical 
models, and his recommendation included the use of 
uniform, half-t, half-Chauchy, and half-normal families 
of distributions. Crossa et al. (2010) used an inverse- 
distribution as a prior for variance components; however, 
Gelman (2006) suggested not using an inverse- family as 
priors due to the resulting sensitivity of results. To choose 
the best priors among a set of candidate priors, criteria given 
in the following have been presented in standard texts such 
as Gelman et al. (2004) and Carlin and Louis (2009).

There might be multiple sources of prior information 
including classes of priors recommended for variance or 
SDCs. A question naturally arises as to which would be 
the best priors among the set of priors considered.

A number of a priori distributions have been used for 
the variance components:

1. P0: the priors obtained from analysis of series of 20 
datasets (Table 1). The yield values and standard devi-
ation (or the variance) components were positive, so 
their distributions were constrained to the positive 
values of normal distributions. Thus, for r, the distri-
bution can be denoted by r ~ N(0,2 = 0.048356)+. 
In a Bayesian context, a precision parameter  is used, 
where  = −2 (inverse of variance), instead of variance 
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of normal distribution. This prior, using the Win-
BUGS code, is expressed as r ~ dnorm(0, 
where I(0,) restricts the generated values of r ~ 
N(0,2) in the positive range. Similarly the priors 
for other parameters were taken as positive parts of 
normal distributions: b ~ N(0,−1 = 0.036634)+, g ~ 
N(0,−1 = 0.013271)+, e ~ N(0,−1 = 0.005314)+, and 
 ~ N(2.26,−1 = 0.128522)+.

2. P1: the priors for the standard deviation components 
e, g, r, and b 

follow uniform (0,  = 50).
3. P2: the priors for the standard deviation components 

e, g, r, and b follow a normal distribution N(0,−1 
= 10,000)*I(0,) using notation of Gelman (2006).

4. P3: the priors for the standard deviation components 
e, g, r, and b follow the positive part of the t-dis-
tribution and denoted as t(0,c, or equivalently as 
dt(0,c,. Here, c is noncentrality parameter and 
 is the degree of freedom of the t-distribution. The 
values of c and  are set at 5 and 2, respectively.

5. P4: the priors of P3 with c = 2 and  = 4.
6. P5: the priors for precision parameters (i.e., inverse of 

the variances, e, g, r, and b) follow a  distribu-
tion (0.5, 0.5).

The sets of a priori distributions P0 through P5 were 
used for analysis of IBD data. For analysis of RCBD 
data, a priori distributions would be needed only for , 
e, g, and r, (Table 1, 2). The a priori distribution sets 
for , e, g, and r will be denoted by Q0 through Q5 
corresponding to P0 through P5 distributions.

A.4 A Posteriori Distribution
To express various terminologies in the Bayesian context, 
standard texts may be consulted (Gelman et al., 2004; 
Carlin and Louis, 2009). The joint prior, based on 
individual priors, will be assumed as:

where  0( | )x x xf  stands for the probability density 
function of hyperparameters assumed as random variable 
denoted by x and evaluated at x where 0x  is the associated 
scalar or vector of the parameters of known value. The 
joint a posteriori density of  can 
be written, given y, as:

For RCBD datasets, the above expressions can 
be modified by dropping the terms corresponding to 
incomplete blocks within replications.

A.5 Computations using R2WinBUGS
The R2WinBUGS software (Spiegelhalter et al., 2003) 
uses a text file containing the data model with parameters, 
and information on the parameters’ a priori distributions. 
It can also include derived parameters, such as, contrasts 
for comparisons of genotypic effects, genotypic variance 
components, heritability and genetic gain due to selection. 
Based on the derived a posteriori density of the parameters, 
R2WinBUGS provides various statistics: the goodness-of-fit 
or discrepancy statistics, deviance information criterion (DIC), 
effective number of parameters (pD), and the expected values 
(a posteriori estimates) of the parameters of interest, Monte 
Carlo (MC) error, and quantiles of their posterior distribution. 
The DIC, the smaller the better, was used to choose the prior. 
In the BUGS function, the iterations were set at 1 million, 
simulations at 10,000 and chains at three. These served the 
purpose of convergence. The R-codes (R Development Core 
Team, 2009) were used to carry out calculations of standard 
error of differences and the posterior average and quantiles 
of ranks distribution. For the IBD and RCBD datasets, the 
associated codes are given in the following.

A.6 Bayesian model under R2WinBUGS
The discrepancy statistics DIC and effective number of 
parameters pD are computed. The DIC, the smaller the 
better, was used to choose the prior.

The posterior distribution of the quantities of interest, 
including heritability, experimental error coefficient 
of variation and genetic gain, were obtained using the 
R2WinBUGS and R-package and the summary in terms of 
mean and confidence intervals. Selection of genotypes was 
based on mean predicted values, and the average rank of 
the genotypes. The models using WinBUGS notations and 
R-codes for an example dataset are given in the following.

A.7 �IBD Model File (‘Bug’ Extension) 
Contents

#################### IBD data analysis
model {
for (i in 1:N){
y[i] ~ dnorm(mu[i], tau.e)
mu[i]<- m + rho[rp[i]] + bet[rp[i],bl[i] ] + g[gn[i]]
}
# rho[1...NR-1] Rep effects result into rho[NR]
for (i in 1:(NR 1)) { rho[i] ~ dnorm(0, tau.r)}
rho[NR] <- - sum(rho[1:(NR-1)])
for (i in 1:NR) { for(j in 1: (NB-1)) { bet[i,j]~ dnorm(0,tau.b) } # except 

the last, block effects within repl.
bet[i,NB] <- -sum(bet[i,1:(NB-1)]) # last block in the replication
}
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# g[1....NG-1] Geno effects result into g[NG]
for (i in 1: (NG-1)) { g[i] ~ dnorm(0, tau.g) }
g[NG] <- -sum(g[1: (NG-1)])
#...........priors here
m ~ dnorm(2.26, 7.78)I(0,)
sig.r ~ dnorm(0, 20.67)I(0,)
sig.b ~ dnorm(0, 27.29)I(0,)
sig.g ~ dnorm(0, 75.35)I(0,)
sig.e ~ dnorm(0, 188.17)I(0,)
#———- Parameters of interest
tau.e <- 1/(sig.e*sig.e)
tau.b <- 1/(sig.b*sig.b)
tau.g <- 1/(sig.g*sig.g)
tau.r <- 1/(sig.r*sig.r)
sig2 g <- (sig.g*sig.g)
sig2e <- (sig.e*sig.e)
sig2b <- (sig.b*sig.b)
sig2r <- (sig.r*sig.r)
# Prediction of parameters of interest–means, heritability, SEs
for (i in 1: NG) { PredG[i]<- m + g[i] }
# this heritability is on mean-basis
h2<- tau.e/(tau.e + tau.g/NR)
# Genetic advance (GA) due to 20% selection & 10%, 5% selection 

K = 1.4, 1.755,2.063
GA20 <- 100*1.4/mn/sqrt(tau.g*(1+tau.g/NR/tau.e))
GA10 <- 100*1.755/mn/sqrt(tau.g*(1+tau.g/NR/tau.e))
GA5 <- 100*2.063/mn/sqrt(tau.g*(1+tau.g/NR/tau.e))
# Simulate realized gain simGA20
# NG = 30; 20% (of 30) = 6
# NLow20<- NG*(1–0.20)
for(i in 1:NLow20){low20[i]<- ranked(PredG[],i)}
simGA20<- 100*(NG/(NG-NLow20) 1)*(1- mean(low20[])/

mean(PredG[]))
# Simulate realized gain simGA10
# NG = 30; 10% (of 30) = 3
# NLow10<- NG*(1–0.10)
for(i in 1:NLow10){low10[i]<- ranked(PredG[],i)}
simGA10<- 100*(NG/(NG-NLow10) 1)*(1- mean(low10[])/

mean(PredG[]))
# Simulate realized gain simGA5
# NG = 30; 5% (of 30) = 2
# NLow5<- NG*(1–0.05)
for(i in 1:NLow5){low5[i]<- ranked(PredG[],i)}
simGA5<- 100*(NG/(NG-NLow5) 1)*(1- mean(low5[])/

mean(PredG[]))
# CV%
CVpc <- 100/sqrt(tau.e)/mn
}
# end of BUGS codes

For the RCB dataset, the top lines can be replaced, following the 

comment but without any incomplete block effects parameters ‘bet[]’ 

as follows:

for (i in 1:N){
y[i] ~ dnorm(mu[i], tau.e)
mu[i]<- m + rho[rp[i]] + g[gn[i]]
}

The lines or text sections involving parameters such as 
tau.g, sig.b, and sig2b should be removed.

A.8 Model terms used for the other priors
1.	Uniform distributions

sig.r ~ dunif(0, 50)
sig.b ~ dunif(0, 50)
sig.g ~ dunif(0, 50)
sig.e ~ dunif(0, 50)

2.	Half t-distributions
sig.r ~ dt(0, 5, 2)I(0,)
sig.b ~ dt(0, 5, 2)I(0,)
sig.g ~ dt(0, 5, 2)I(0,)
sig.e ~ dt(0, 5, 2)I(0,)

3.	Gamma distribution
tau.r ~ dgamma(.5,.5)
tau.b ~ dgamma(.5,.5)
tau.g ~ dgamma(.5,.5)
tau.e ~ dgamma(.5,.5)

A.9 R-Codes for Dataset on IBD
# =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  =  
#load packs
library(lattice)
library(coda)
library(R2WinBUGS)
# Read IBD (incomplete block design) data with columns of Repli-

cations [Rep], Blocks within replications [Blk], Genotypes[Geno] 
and responses [Yld]

#
Data<- read.table(“ExampleIBDData.txt”, header = TRUE)
y<- Data$Yld
rp<- Data$Repgn<- Data$Geno
bl<- Data$Blk
# The number of replications, genotypes, total number of observ-

tion. These can be computed using suitable functions also.
NR<- 3
NB<- 6
NG<- 30
N<- NR*NG
NBR1<- NR*(NB-1)
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print(cbind(NR,NB,NG, N))
mn<- mean(y)
mn
# Set the numbers of genotypes below top lines at the chosen 

selection intensity
NLow20<- NG*(1–0.20) #at 20% intensity
NLow10<- NG*(1–0.10) #at 10% intensity
NLow5<- 28 #NG*(1–0.05) #at 5% intensity
print(cbind(NLow20, NLow10, NLow5))
#———————————
#.......data
data<- list(“mn”, “y”,”rp”,”gn”,”bl”, “NR”,”NB”,”NG”, “N”, “NLow20”, 

“NLow10”, “NLow5”)
data
#.......initial values
inits1<- list(m = 2, rho = c(rep(.01,NR)), bet = c(rep(.02, NBR1)), g = 

c(rep(.01,NG)), sig.e = 1, sig.r = 1.0, sig.b = .53, sig.g = 1.22)
inits2<- list(m = 2, rho = c(rep(.1, NR)), bet = c(rep(.01, NBR1)), g = 

c(rep(.02,NG)), sig.e = 1.1, sig.r = 1.15, sig.b = .68, sig.g = 1.422)
inits3<- list(m = 2, rho = c(rep(.05,NR)), bet = c(rep(.02, NBR1)), g 

= c(rep(.01,NG)), sig.e = 1.05, sig.r = 1.25, sig.b = 1.35, sig.g = 
1.522)

inits <- list(inits1, inits2, inits3)
#.....parameters
parameters <- c(“m”,”sig.r”,”sig.g”,”sig.e”, “sig.b”, “sig2 g”, 

“sig2e”,”sig2b”,”sig2r”, “PredG”, “h2”, “GA20”, “GA10”, 
“GA5”,”simGA20”,”simGA10”, “simGA5”,”CVpc”)

#.....run BUGS
ibd.sim <- bugs(data, inits, parameters, “IBD.bug”, n.chains = 3, 

n.iter = 1000000, n.sims = 10000, debug = TRUE)
# Use the simulated values for developing inferential summaries
attach.bugs(ibd.sim)
# bootstrap heritability (h2C) and genetic advance (herit[1:2])
library(boot)
# function to obtain h2C
herit <- function(data, indices, mn = mn){
d<- data[indices,]
#............Calc Sigma2G
Sig2G<- mean(apply(d[,1:NG],1, var))
#............Calc var-cov and avSED
cov<- cov(d[indices,1:NG])
avSED<- (NG*sum(diag(cov))-sum(cov))/(NG*(NG-1)/2)
avSED<- sqrt(avSED)
h2C1<- 1- avSED^2/2/Sig2G
Gain20<- 100*1.4*sqrt(Sig2G*h2C1)/mn
herit<- c(h2C1, Gain20)
return(herit)
}
# bootstrapping with 1000 replications
NBoots<- 1000
Results <- boot(data = PredG[,], statistic = herit, R = NBoots, mn 

= mn)
results$t0
par(mfrow = c(2,2))
plot(results, index = 1) # h2
plot(results, index = 2) # gain
HG<- array(0, dim = c(NBoots,2))
HG<- results$t
print(quantile(HG[,1], c(0.025, 0.05,0.5, 0.95, 0.975)))

print(cbind(mean(HG[,1]), sd(HG[,1])))
print(quantile(HG[,2], c(0.025, 0.05,0.5, 0.95, 0.975)))
print(cbind(mean(HG[,2]), sd(HG[,2])))
# get 95%,90% confidence intervals
boot.ci(results, type = ”perc”, conf = 0.95, index = 1) # h2C
boot.ci(results, type = ”perc”, conf = 0.90, index = 1) # h2C
# get 95%,90% confidence intervals
boot.ci(results, type = ”perc”, conf = 0.95, index = 2) # GA20%
boot.ci(results, type = ”perc”, conf = 0.90, index = 2) # GA20%
#....................
# Compute ranks etc...
# Get predicted means: mnPred of length NG
mnPred<- array(0, dim = NG)
for(j in 1:NG) mnPred[j]<- mean(PredG[,j])
#........... RNK: Find rank (and assign Highest = 1). Thus, RNK() = 

n+1- rank()
# R-core gives: rank(x) asssigns 1 to the lowest value of x.
RNK<- function(A,i){
# rank of i-th (entries in i-th position) in A
rnkVec<- length(A)+1-rank(A)
rnkVec[i] }
mean(apply(PredG[,1:NG],1, function(A,i) RNK(A, i), i = 5))
#Means of ranks of the entries: Max values >  >  > rank 1
MnRnk<- array(0, dim = NG)
for(j in 1:NG) MnRnk[j]<- mean(apply(PredG[,1:NG],1, function(A,i) 

RNK(A, i), i = j))
# quantile of ranks of entries
Ranks<- array(0, dim = c(NG,5)) #here: 5 is length(c(0.025, 

0.05,0.5, 0.95, 0.975))
# distribution of ranks of each entries
for(j in 1:NG){
Ranks[j,]<- quantile(apply(PredG[,1:NG],1, function(A,i) RNK(A,i), i = 

j), c(0.025, 0.05,0.5, 0.95, 0.975))
}
print(cbind(1:NG,mnPred,NG+1-rank(mnPred), MnRnk, 

rank(MnRnk), Ranks))

For the RCBD dataset, the incomplete block term and 
associated terms can be removed (bet[], tau.b, sig.b, sig2b, 
NB). These are also available from the authors on request.
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