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How (Agro)Ecosystems in the DryArc Behave under CC?
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http://public.ornl.gov/fluxnet/index.cfm

Some Thoughts on Dealing with CC issue in the DryArc

How is the Climate Changing in the Dry Regions?

Which meteorological parameters are changing and how?
(Ta, RH, ET, Windspeed, Radiation...."?)

What are the hotspots of CC for each meteorological
parameters?

What are the spatio-temporal patterns in the Dry Region?
How to use this information in our models (biophysical and
socioeconomics) to understand the effect of CC on various

processes in the DryArc countries.

Identify efficient and robust methodologies to downscale
coarse climate data to field (fine) scales.




Hot spots of CC: Spatial Distribution of Statistically significant (p<0.05) Trends (Slope of Linear
Regression) of Temperature and Precipitation over MENA (1980-2100)
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Take Home Messages

« Temperature is more dynamic than Precipitation under Climate Change.

* Hot Spots of Temperature Increase: Turkish and Iranian highlands, Niger, Chad, South Egypt

« Hot Spots of Ppt Increase: Ethiopian highlands, Niger, Chad, South Somalia and parts of Turkey
* Hot Spots of Ppt Decline: Highlands of Maghreb region (NW Africa)..Morocco, Algeria, Tunisia

« Why Mali, Niger, Chad show increased Ppt trends?

Plausible Explanation: Northwardly shift of the ITCZ under a changing Climate (LP systems develop on the Tibetian and Iranian highlands

pulling ITCZ more northwards) . Our previous work show greening of Sahel and its links to increasing rainfall due to northwardly
shifting of ITCZ
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Inter Tropical Convergence Zone (ITCZ)-The Thermal Equator
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Regional scale
Modeling and Synthesis

Need for a Collective Intelligence

A schematic representation of a centrally-
coordinated, multi-disciplinary, multi-locational , multi- T ) \
scale, observational strategy having a standardized- L oF T

protocol. P

Field / Landscape scale Satellite Remote Sensing

Enrich a database on meteorological, hydrological, SRl S Sy

agronomic, livestock, edaphic, socioeconomic
parameters in different ecosystems in the DryArc. b yerometesrology
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It is also a strategy to enter into partnerships and
engaging various actors in the region.



\ CARBOAFRICA

Quantification, understanding and prediction of carbon
cycle and other GHG gases in Sub-Saharan Africa

A stations for atmnalhTﬁt: rmeasurerm ents

Eddy covariance sites already
A available in Africa

Eddy covariance sites that will
£ be established by CARBOAFRICA



Possible Research Topics in DryArc (CC-focused)

1.CC-induced Water Scarcity in DryArc regions: Ag Productivity

2.GHG Fluxes across various (agro) ecosystems under CC and Management (crop, livestock,
pristine, urban)

3. Alternative cropping system (Food system) design in DryArc
4.CC-inspired Plant breeding (in a true ecophysiological sense)-phytotrons, models
5. Achieving and degradation neutrality and optimal land use planning under CC

6. Capacity building in multiscale ecohydrological modeling

% 1cARDA

Science for resilient livelihoods in dry areas



Example of a CC-focused research program in DryArc
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Key areas to support climate change research identified by ICARDA in its
agenda along with its partners:

1. Development of Collective Intelligence to Support Climate Change Research in the MENA.

2.Spatio-temporal downscaling and analysis of regional climate datasets under different
projections and assimilate it into various models to evaluate the effects of CC on
agroecosystems.

3. Towards Resilient societies: transformative policy for stabilization and reconstruction under
Climate Change.

4.Foresight advice on resilient food systems under Climate Change.
5. Sustainability of Agri-food Systems in the Food Baskets of MENA under Climate Change.

6. Livelihood approaches towards sustainable agriculture in marginal rangelands of MENA under

Climate Change. ’ ICARDA

Science for resilient livelihoods in dry areas
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ICARDA’s vision and spirit for climate change research activities is through close collaboration with its in-country partners and
programs, the corner stones that collectively contribute to enhancing livelihoods in the MENA Region with a focus on all the
three (agro) ecosystems viz. Irrigated, Rainfed and Agropastoral



Things we are (or Plan to) doing.

1. Development of Collective Intelligence to Support Climate Change Research in the MENA.
2.Iraq Climate Change Program (UNEP-UNFCC), Impact and Assesment

3. CCAFS-led Special Climate Change Initiative

4.CC-induced Water Scarcity and Ag Productivity (ArabFund)

5.Plans to collaborate with ICAR-India (CC and Land Degredation)

6. MENA-scale GHG fluxes under CC (a PhD student project).
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The STEPS model

STEPS- Simulator of Terrestrial

Ecohydrological Processes and Systems

Surface/Subsurface Flow
Redistribution to/from
Neighboring Pixels

« Spatially- Explicit
« Spatial resolution is flexible
« Daily model

* Process-based

* Feed-back mechanisms addressed

« BGCs (C,W,N cycles) are tightly coupled
» Agroecosystems (C3 and C4 plants)

« DOC, DON etc

» Fate of N Fertilizer transformations

* Forest / Agroecosystem Management

\ pest

Biotic Stresses- Population Dynamics of an endemic
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Govind et al. [2009b], J of Geophysical Res.

Govind et al. [2015 ], Ecological Modeling



Validation of Simulated Evapotranspiration with EC-Measurements
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Some of the Key Spatial Inputs Used Gridded Meteorological Forcing
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Govind et al. [2015 ], Ecological Modeling




Spatial variation of annual ET and GPP over the Leyre Watershed

Govind et al. [2015 ], Ecological Modeling
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Geophysical Impications of Irrigation-induced Greening of the Earth’s Surface

My HypothES|S Abundantlncoﬁiﬁg‘SW Radiation Increased Latent Heat flux “ -
This is opposite of Charney’s Hypothesis l (y Perturbed Monsoon Dynamics

Increased Evapotranspiration

4%

Charney, J.G. (1975). Dynamics of deserts and .,,c,eased Net Radiation
drought in Sahel. Quart. J. Royal Meteor. Soc
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Stomatal Physiology

With added Root-zone Moisture

Increased Cropping Intensny Increased Fertilizer use
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THANKS!!



