

Optimizing for a variety of issues can advance genetic gain and lower emission intensity in the community-based breeding programs

T. Getachew, J. Mueller, M. Rekik, B. Rischkowsky, D. Solomon, B. Belay, A. Haile

All Africa Congress, 26 to 29 Sep 2023, Travelodge, Gaborone, Botswana icarda.org

International Center for Agricultural Research in the Dry Areas

A CGIAR Research Center

cgiar.or

Community-based breeding program

Asrat Tera¹ • Tesfaye Getachew² • Aberra Melesse³ • Mourad Rekik² • Barbara Rischkowsky² • Joram M. Mwacharo² • Zelalem Abate⁴ • Aynalem Haile² ⊚

Girma <mark>Tesfahun</mark> Kassie ^{1*}, Woinishet Asnake², Aynalem Haile², Tesfaye Getachew Mengistu², Solomon Gizaw³ end Berthere Dischkowsky²

Optimization issues

Traditional data capture

Fixed time for sire usage

Selling of lamb/kid before selection age

Lower selection intensity

Unknown sire

Single trait selection

Practical solutions

Digitize data capture and feedback

Selection in stage

Sire age structure

Uncertain sire

Multi-trait selection

Optimized male to female ratio

Received: 29 June 2020 Revised: 24 May 2021
DOI: 10.1111/ibe.12639

ORIGINAL ARTICLE

Animal Breeding and Genetics WILEY

Three easy fixes for sire use can enhance genetic progress in community-based breeding programmes

Joaquín P. Mueller¹ [©] | Tesfaye Getachew² [©] | Mourad Rekik³ [©] | Barbara Rischkowsky² [©] | Zelalem Abate⁴ [©] | Shenkute Goshme⁵ [©] | Yeshiwas Wale⁶ | Aynalem Haile²

Converting multi-trait breeding objectives into operative selection indexes to ensure genetic gains in low-input sheep and goat breeding programmes

J.P. Mueller^{a,*}, T. Getachew^b, M. Rekik^c, B. Rischkowsky^b, Z. Abate^d, B. Wondim^e, A. Haile^b

Optimizing breeding structures and related management in community-based goat breeding programs in the Borana pastoral system of Ethiopia

Tesfaye Getachew^{a,*}, Barbara Rischkowsky^a, Mourad Rekik^b, Joaquin Mueller^c,

Digital genetic database - DTREO

Online https://dtreo.io/

Username:

Password:

Dtreo events – for data capture

🐁 Dtreo	Home						🈭 Hello, Tesfaye Log off		2:20 € 🖬 🖬 •	
CEBPLIVE	Events / Select event									
Home	Add Animal	Add Owner	Add Sire Group)treo
Modifications	Add new animal data	Add new owner data	Create new sire group						Uninst	1
Reporting	Animal Update	Owner Update	Sire Group Update						What's new Last updated 10	
Show recorded animals Show recorded animals Show recorded animal data	Import	Import	Import						Layout change Time recorded data capture	
Show recorded owners Help Files	Characteristics Record Characteristics recording data	Mating Record	Milk Record	Selection Round	Weight Record	Add new EBV records	Sire Certification Record Add new Sire Certification Record		Rate this ap	P
Help Files	Feeding and Intake	Import	Import	Import	Import	Import	Import			
	Add new feeding and intake data Import								Write a review	
	Disposal Record									
	Import									

Analytic tab – Graphical and spreadsheet reports

- Input files for other programs like WOMBAT
- Ultimate goal Calculating EBV with just one click

Selection in stages

- Two CBBPs in Menz (Molale and Sinamba) were considered
- Two-stage selection at 3 months and 6 months
- 600 lamb produced annually and 200 left for final selection at six months and 60 required for breeding
- q1 (200 = 0.33) = proportion of lambs left for breeding at stage 1 - after 400 which is 1-q1 sold
- Among q1 second selection approved 60 (q2 = 0.3) proportion for breeding at stage 2
- Final proportion required for breeding is q1 * q2 = 0.33 * 0.3 = 0.1
- Actual selection pressure is 0.3 while the potential is 60/600 = 0.1
- Different q1 were tested to identify designs which achieves 80% of genetic selection differential for males (Gs - Gp)

FIGURE 1 Genetic selection differential on six-month weight (SMWT) in units of σ_A obtained in two selection stages with different proportions of candidates selected in a first stage (q_1) on three-month weight (TMWT) of a reference sheep community-based breeding programme described in the text. For example, farmers selling 80% of their lambs on high TMWT in a first stage (equivalent of leaving for final selection a proportion $q_1 = 0.2$) would impede genetic improvement on SMWT, whereas farmers retaining 20% of their heavier lambs can obtain 80% of maximum selection differential (indicated with the broken line) when selecting on high SMWT in a second stage

Sire age structure

- Aim: to calculate optimum age structure
- Annual response to selection R = (SM + SF)/(LM + LF) was evaluated with different age structure
- The above reference system (nM = 60, n = 200, s = 0.8)
- Larger number of selection candidates (n = 600) and higher survival (s = 1.0), representing breeds and locations with higher reproduction rate and/or with improved management.
- Two methods: Method A indicates an optimum structure by selecting 20 sires to remain for 3 years whereas Method B indicates an optimum by selecting 29 sires to serve one year and retaining the top 17, 9 and 5 sires for 2, 3 and 4 years, respectively

FIGURE 4 Response to selection in units of $h^2 \times \sigma_p / year$ with different number of sire age groups for given sire selection pressures (a = nM/n) and sire adult survival rates (s)

TABLE 1 Optimum number of sires per age group (n_j) in programmes with different selection pressures on males and females calculated with two methods: Method A equal n_j per age group; Method B flexible n_j per age group. Response to selection (R) in units of $r_{LA}\sigma_A/year$. Assumptions: no mortality (s = 1.0), average age of females 3.5 years ($L_F = 3.5$), age at first progeny 1.5 years (afp = 1.5)

Method	<i>n</i> ₁	<i>n</i> ₂	<i>n</i> ₃	n_4	R	R_B/R_A
А	20	20	20	0	0.290	
В	29	17	9	5	0.317	1.093
А	30	30	0	0	0.373	
В	37	17	6	2	0.393	1.054
А	20	20	20	0	0.357	
В	32	17	8	3	0.383	1.073
А	30	30	0	0	0.446	
В	40	15	4	1	0.465	1.043
	Method A B A B A B A A B A B B	Method n1 A 20 B 29 A 30 B 37 A 20 B 32 A 30 B 32 A 30 B 40	Method n1 n2 A 20 20 B 29 17 A 30 30 B 37 17 A 20 20 B 37 17 A 20 20 B 37 17 A 20 20 B 32 17 A 30 30 B 40 15	Method n1 n2 n3 A 20 20 20 B 29 17 9 A 30 30 0 B 37 17 6 A 20 20 20 B 37 17 6 A 20 20 20 B 32 17 8 A 30 30 0 B 40 15 4	Method n1 n2 n3 n4 A 20 20 20 0 B 29 17 9 5 A 30 30 0 0 B 37 17 6 2 A 20 20 20 0 B 37 17 6 3 A 20 20 00 3 A 30 30 0 0 B 32 17 8 3 A 30 30 0 0 B 40 15 4 1	Method n1 n2 n3 n4 R A 20 20 20 0 0.290 B 29 17 9 5 0.317 A 30 30 0 0 0.373 B 37 17 6 2 0.393 A 20 20 20 0 0.357 B 32 17 8 3 0.383 A 30 30 0 0 0.446 B 40 15 4 1 0.465

Note: n_{M} : total sites, n: total selection candidates, S_F : female selection differential in $r_{LA}\sigma_A$, R_A : response to selection using Method A, R_B : response to selection using Method B.

Uncertain sire

- Aim: to study the benefit from considering uncertain sires rather than unknown sires in BLUP analysis
- Data base from the Abergelle goat CBBP were used
- Four pedigree files with different sire information were prepared
 - "Known" pedigree file: one uncertain sire set as true sire
 - "Uncertain" pedigree file: up to three uncertain sires
 - "Unknown" pedigree file: all sires set to unknown
 - "Usual" pedigree file: uncertain sires set to unknown

TABLE 3Least squares means of six months weight breeding values with their standard errors (SE) and accuracies using different simepedigree information of the Bilaque Abergelle goat community-based breeding programme (goats born 2013–2017)

Pedigree file	No. kids with records	No. kids with known dam	No. kids with known sire	Breeding value, kg	SE of breeding value, kg	Accuracy of breeding value
Known	965	964	632	0.090 a	0.649 d	0.693 a
Uncertain	965	964	284 + 273 + 75 ^a	0.086 a	0.661 c	0.678 b
Usual	965	964	284	0.051 ab	0.668 b	0.670 c
Unknown	965	964	0	0.023 b	0.683 a	0.652 d

Note: Least squares means followed by different letters are significantly different (p < .05).

^aNo. of kids with one, two and three possible sires.

Selection index and mating ratio

- Different systems were considered
- Alternatives were evaluated
 - Sires for meat sheep programs should be selected on own early live weight and desirably also on their dam's number of offspring born

Fig. 1. Total discounted profit (US\$) in the breeding program for different breeding schemes (A) and varied base population size (B). MY = lactation milk yield only included in the index, SM+MY = a combination of SM and MY included in the index. For SM, My, SM+MY traditional male to female ratio of 1:9 and kid survival of 60 percent considered. Imp_mat_R = improved mating ratio in which male to female ratio of 1:25 and SM and MY traits considered, and Imp_Surv = improved survival rate in which 90 percent of pre weaning kid survival considered over Imp_mat_R.

 In dual-purpose goat CBBPs, sires should be selected on indexes including at least own early live weight and their dams average milk production records

Genetic improvement and climate

- Genetic improvements can lead to healthier, more robust animals that are less susceptible to diseases and environmental stresses – Climate smart
 - Improved survival less replacement and lower emission
 - Reduced time to market reduce emission associated with breeding and feed production
 - Enhanced growth rates often correlate with improved feed efficiency – fewer resources to produce
- Multi-Trait Selection approaches that consider both productivity and GHG emissions

