Skip to main content
Log in

Genome-wide association studies revealed novel stripe rust resistance QTL in barley at seedling and adult-plant stages

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Barley stripe rust, Puccinia striiformis f. sp. hordei, (PSH) occurs worldwide and is one of the major barley diseases of South Asia and North Africa. The aim of this study was to identify and map rust resistance loci at the seedling and the adult plant stages in 336 barley genotypes assembled at ICARDA as AM-2014. The seedling resistance to PSH was evaluated in the greenhouse individually for six virulent races originated from India. The adult stage resistance to PSH was evaluated in field located at Durgapura, Rajasthan, India. The AM-2014 panel was genotyped with infinium iSelect 9K barley SNP markers and genome-wide association studies were carried out using mixed linear model accounting for population structure (PCA) and kinship (K) as covariates. Eleven barley genotypes were identified resistant to all six PSH races at the seedling stage while these genotypes were also resistant at adult plant stage in the field. The most effective SNP markers (at least one for each QTL) associated with rust resistance was also identified using stepwise regression. A total of 17 and 25 resistance QTL to six races of PSH were identified in two- and six-rowed barley at the seedling stage, respectively. While, six and seven resistance QTL to PSH were detected at the adult stage in two- and six-rowed barley, respectively. The novel PSH resistant QTL detected at the seedling and adult stages are important for barley breeding programs globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amezrou R, Gyawali S, Belqadi L, Chao S, Arbaoui M, Mamidi S, Rehman S, Sreedasyam A, Verma RPS (2017) Molecular and phenotypic diversity of a worldwide ICARDA spring barley collection. Genetic resources and crop evolution. Genet Resour Crop Evol 65:255–269. https://doi.org/10.1007/s10722-017-0527-z

    Article  CAS  Google Scholar 

  • Amezrou R, Verma RPS, Chao S, Brueggeman RS, Belqadi L, Arbaoui M, Rehman S, Gyawali S (2018) Genome-wide association studies of net form of net blotch resistance at seedling and adult plant stages in spring barley collection. Mol Breed 38:58. https://doi.org/10.1007/s11032-018-0813-2

    Article  Google Scholar 

  • Bahl PN, Bakshi JS (1963) Genetics of rust resistance in barley-II. The inheritance of seedling resistance to four races of yellow rust. Indian J Genet Plant Breed 23:150–154

    Google Scholar 

  • Bakshi JS, Bahl PN, Kohli SP (1964) Inheritance of seedling resistance to some Indian races of yellow rust in the crosses of rust resistant barley variety E.B. 410. Indian J Genet 24:72–77

    Google Scholar 

  • Belcher AR, Cuesta-Marcos A, Smith KP, Mundt CC, Chen X, Hayes PM (2018) TCAP FAC-WIN6 elite barley GWAS panel, Q.T.L.I. Barley stripe rust resistance QTL in facultative and winter six-rowed malt barley breeding programs identified via GWAS. Crop Sci 58:103–119. doi:https://doi.org/10.2135/cropsci2017.03.0206

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  Google Scholar 

  • Broers LHM, Jacobs T (1989) The inheritance of host plant effect on latency of wheat leaf rust in spring wheat. II: Number of segregating factors and evidence for transgressive segregation in F3 and F5 generations. Euphytica 44:207–214. https://doi.org/10.1007/BF00037527

    Article  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, HAN F, Chen J et al (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  CAS  Google Scholar 

  • Chen XM, Line RF (2002) Identification of genes for resistance to Puccinia striiformis f. sp. hordei in 18 barley genotypes. Euphytica 129:127–145

    Article  Google Scholar 

  • Chen XM, Line RF, Leung H (1995) Virulence and polymorphic DNA relationships of Puccinia striiformis f. sp. hordei to other rusts. Phytopathology 85:1335–1342

    Article  CAS  Google Scholar 

  • Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582

    Article  Google Scholar 

  • Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, PowellW, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16

    Article  Google Scholar 

  • Comadran J, Thomas WT, van Eeuwijk FA, Ceccarelli S, Grando S, Stanca AM, Pecchioni N, Akar T, Al-Yassin A, Benbelkacem A, Ouabbou H, Bort J, Romagosa I, Hackett CA, Russell JR (2009) Patterns of genetic diversity and linkage disequilibrium in a highly structured Hordeum vulgare association-mapping population for the Mediterranean basin. Theor Appl Genet 119:175–187

    Article  CAS  Google Scholar 

  • Dracatos PM, Khatkar MS, Singh D, Stefanato F, Park RF, Boyd LA (2016) Resistance in Australian barley (Hordeum vulgare) germplasm to the exotic pathogen Puccinia striiformis f. sp. hordei, causal agent of stripe rust. Plant pathology 65(5):734–743. doi:https://doi.org/10.1111/ppa.12448

    Article  CAS  Google Scholar 

  • Dubin HJ, Stubbs RW (1986) Epidemic spread of barley stripe rust in South America. Plant Dis 70:141–144

    Article  Google Scholar 

  • Ellis JG, Lagudah ES, Spielmeyer W, Dodds PN (2014) The past, present and future of breeding rust resistant wheat. Front Plant Sci 5:641. doi:https://doi.org/10.3389/fpls.2014.00641

    Article  PubMed  PubMed Central  Google Scholar 

  • FAOSTAT (2017) Crops/regions/world list/production quantity for barley. http://www.fao.org/faostat/en/#data/QC. Accessed August 2019

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  Google Scholar 

  • Gangwar OP, Kumar S, Prasad P, Bhardwaj SC, Khan H, Verma H (2016) Virulence pattern and emergence of new pathotypes in Puccinia striiformis f. sp. tritici during 2011-15 in India. Indian Phytopathol 69(4 s):178–185

    Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-guedira G et al (2014) Genome-wide association study several novel quantitative trait loci associated with plant immunity against major leaf spot diseases of spring wheat. PLoS One 9:e108179. https://doi.org/10.1371/journal.pone.0108179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutiérrez L, Germán S, Pereyra S, Hayes PM, Pérez CA, Capettini F, Locatelli A, Berberian NM, Falconi EE, Estrada R, Fros D, Gonza V, Altamirano H, Huerta-Espino J, Neyra E, Orjeda G, Sandoval-Islas S, Singh R, Turkington K, Castro AJ (2015) Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America. Theor Appl Genet 128:501. https://doi.org/10.1007/s00122-014-2448-y

    Article  CAS  PubMed  Google Scholar 

  • Gyawali S (2010) Association mapping of resistance to common root rot and spot blotch in barley and population genetics of Cochliobolus sativus. Ph.D. dissertation, North Dakota State University, Fargo

  • Gyawali S, Harrington M, Durkin J et al (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36:72. https://doi.org/10.1007/s11032-016-0496-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gyawali S, Verma RPS, Kumar S, Bhardwaj SC, Gangwar OP, Selvakumar R, Shekhawat PS, Rehman S, Sharma-Poudyal D (2017a) Seedling and adult-plant stage resistance of a world collection of barley genotypes to stripe rust. J Phytopathol 166:18–27. https://doi.org/10.1111/jph.12655

    Article  CAS  Google Scholar 

  • Gyawali S, Otte ML, Chao S, Jilal A, Jacob DL, Amezrou R, Verma RPS (2017b) Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J Cereal Sci 77:266–274. https://doi.org/10.1016/j.jcs.2017.08.019

    Article  CAS  Google Scholar 

  • Gyawali S, Chao S, Vaish SS et al (2018) Genome wide association studies (GWAS) of spot blotch resistance at the seedling and the adult plant stages in a collection of spring barley. Mol Breed 38:62. https://doi.org/10.1007/s11032-018-0815-0

    Article  CAS  Google Scholar 

  • Hasan M, Friedt W, Pons-Kuhnemann J, Freitag NM, Link K, Snowdon RJ (2008) Association of gene-linked SSR markers to seed glucosinolate content in oilseed rape (Brassica napus ssp. napus). Theor Appl Genet 116:1035–1049

    Article  CAS  Google Scholar 

  • Hovmøller MS, Yahyaoui AH, Milus EA, Justesen AF (2008) Rapid global spread of two aggressive strains of a wheat rust fungus. Mole Ecol 17:3818–3826

    Article  Google Scholar 

  • Jestin C, Lode´ M, Vallee P, Domin C, Falentin C, Horvais R, Coedel S, Manzanares-Dauleux MJ, Delourme R (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27:271–287

    Article  Google Scholar 

  • Kertho A, Mamidi S, Bonman JM, McClean PE, Acevedo M (2015) Genome-wide association mapping for resistance to leaf and stripe rust in winter-habit hexaploid wheat landraces. PLoS ONE 10(6):e0129580. https://doi.org/10.1371/journal.pone.0129580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klos KE, Gordon T, Bregitzer P, Hayes P, Chen XM, del Blanco IA, Fisk S, Bonman JM (2016) Barley stripe rust resistance QTL: development and validation of SNP markers for resistance to Puccinia striiformis f. sp. hordei. Pyhtopathology 106:1344–1351. https://doi.org/10.1094/PHYTO-09-15-0225-R

    Article  Google Scholar 

  • Luthra JK, Chopra VL (1990) Genetics of stripe rust resistance in barley. Indian J Genet 50:390–395

    Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Roder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6

    Article  Google Scholar 

  • Mamidi S, Chikara S, Goos RJ, Hyten DL, Annam D, Moghaddam SM, Lee RK, Cregan, PB McLean PE (2011) Genome-wide association analysis identifies candidate genes associated with iron deficiency chlorosis in soybean. Plant Genome 4:154–160

    Article  CAS  Google Scholar 

  • Mamidi S, Lee RK, Goos RJ, McClean PE (2014) Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS One 9(9):e107469. https://doi.org/10.1371/journal.pone.0107469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755. doi:https://doi.org/10.1111/j.1469-8137.2007.02298.x

    Article  PubMed  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate SM, Dill-Macky R, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • McIntosh RA, Brown GN (1997) Anticipatory breeding for resistance to rust diseases inwheat. Annu Rev Phytopathol 35:311–326

    Article  CAS  Google Scholar 

  • McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. USDA Agricultural Research Service, pp 34–121

  • Munoz-Amatriaın M, Cuesta-Marcos A, Endelman JB, Comadran J, Bonman JM, Bockelman HE, Chao S, Russel J, Waugh R, Hayes PM, Muehlbauer GJ (2014) The USDA barley core collection: genetic diversity, population structure, and potential for genome-wide association studies. PLoS ONE 9(4):e94688

    Article  Google Scholar 

  • Murty SS (1942) Segregation and correlated inheritance of rust resistance and epidermal characters in a barley cross. Indian J Genet 2:73–75

    Google Scholar 

  • Nagarajan S, Nayar SK, Bahadur P (1983) The proposed brown rust of wheat (Puccinia recondita tritici) virulence analysis. Curr Sci 52:413–416

    Google Scholar 

  • Nayar SK, Prashar M, Bhardwaj SC (1997) Manual of current techniques in wheat rust. Research Bulletin 2. Regional Station, Directorate of Wheat Research, Flowerdale, Shimla, pp 1–32

  • Parlevliet JE (1983) Race-specific resistance and cultivar-specific virulence in the barley-leaf rust pathosystem and their consequences for the breeding of leaf rust resistant barley. Euphytica 32:367–375

    Article  Google Scholar 

  • Park RF, McIntosh RA (1994) Adult plant resistances to Puccinia recondita f. sp. tritici in wheat. N Z J Crop Hortic Sci 22:151–158

    Article  Google Scholar 

  • Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D (2015) Leaf rust of cultivated barley: pathology and control. Annu Rev Phytopathol 53:565–589

    Article  CAS  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a worldwide spring barley collection. BMC Plant Biol 12:16. https://doi.org/10.1186/1471-2229-12-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust severity on leaves and stems of cereals. Can J Res 26c:496–500

    Article  Google Scholar 

  • Price A, Zaitlen N, Reich D, Patterson N (2010) New approaches to population stratification in genome wide association studies. Nat Rev Genet 11:459–463. doi:https://doi.org/10.1038/nrg2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezaeizad A, Wittkop B, Snowdon R, Hasan M, Mohammadi V, Zali A, Friedt W (2011) Identification of QTLs for phenolic compounds in oilseed rape (Brassica napus L.) by association mapping using SSR markers. Euphytica 177:335–342

    Article  CAS  Google Scholar 

  • Roelfs AP, Singh RP, Saari RE (1992) Rust diseases of wheat, concepts and methods of disease management. CIMMYT, Mexico

    Google Scholar 

  • Roelfs AP, Huerta-Espino J (1994) Seedling resistance in Hordeum to barley stripe rust from Texas. Plant Dis 78:1046–1049

    Article  Google Scholar 

  • Rimbaud L, Papaix J, Rey JF, Barrett LG, Thrall PH (2018) Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens. PLoS Comput Biol 14(4):e1006067. https://doi.org/10.1371/journal

    Article  PubMed  PubMed Central  Google Scholar 

  • SAS Institute (1988) Users guide: statistics, 6th edn. SAS Inst, Cary

    Google Scholar 

  • Savadi S, Prasad P, Bhardwaj SC, Gangwar OP, Khan H, Kumar S (2017) Management of rust diseases in wheat and barley: next generation tools. In: Singh DP (ed) Management of wheat and barley diseases. Apple Academic Press, New York, pp 39–82

    Chapter  Google Scholar 

  • Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644. PMID: 16532393

    Article  CAS  Google Scholar 

  • Slotta TAB, Brady L, Chao S (2008) High throughput tissue preparation for large-scale genotyping experiments. Mol Ecol Resour 8:83–87. https://doi.org/10.1111/j.1471-8286.2007.01907.x

    Article  CAS  PubMed  Google Scholar 

  • Stakman EC, Stewart DM, Loegering WQ (1962) Identification of physiologic races of Puccinia graminis var. tritici. US Dept. Agriculture. Agric Res Serv E-617

  • Stubbs RW (1985) Stripe rust. In: Roelfs AP, Bushnell WR (eds) Cereal rusts. II; Diseases, distribution, epidemiology, and control. Academic, Orlando, pp 61–101

    Chapter  Google Scholar 

  • Stubbs RW, Prescott JM, Saari EE, Dubin HJ (1986) Cereal disease methodology manual III. CIMMYT, Mexico

    Google Scholar 

  • Tamang P, Neupane A, Mamidi S, Friesen T, Brueggeman R (2015) Association mapping of seedling resistance to spot form of net blotch in a worldwide collection of barley. Phytopathology 105:500–508

    Article  CAS  Google Scholar 

  • Turuspekov Y, Ormanbekova D, Rsaliev A, Abugalieva S (2016) Genome-wide association study on stem rust resistance in Kazakh spring barley lines. BMC Plant Biol 16(1):6. doi:https://doi.org/10.1186/s12870-015-0686-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vatter T, Maurer A, Perovic D, Kopahnke D, Pillen K, Ordon F (2018) Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). PLoS ONE 13(1):e0191666. https://doi.org/10.1371/journal.pone.0191666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoeven EC, Bonman JM, Bregitzer P, Brunick B, Cooper B, Corey AE, Cuesta-Marcos A, Filichkina T, Mundt CC, Obert D, Rossnagel B, Richardson K, Hayes PM (2011) Registration of the BISON genetic stocks in L. J Plant Regist 5(1):135–140. https://doi.org/10.3198/jpr2010.05.0269crgs

    Article  Google Scholar 

  • Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML (2003) In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol 131(4):1580–1590. doi:https://doi.org/10.1104/pp.102.013417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visioni A, Gyawali S, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, Al-Abdallat AM, Kehel Z, Verma RPS (2018) Genome wide association mapping of seedling and adult plant resistance to barley stripe rust (Puccinia striiformis f. sp. hordei) in India. Front Plant Sci 9:520. doi:https://doi.org/10.3389/fpls.2018.00520

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma RPS, Selvakumar R, Gangwar OP, Shekhawat PS, Bhardwaj SC, Rehman S, Poudyal DS, Gyawali S (2018) Identification of additional sources of resistance to Puccinia striiformis f. sp. hordei (PSH) in a collection of barley genotypes adapted to the high input condition. J Phytopathol 1:10. https://doi.org/10.1111/jph.12693

    Article  CAS  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9(4):203–209. https://doi.org/10.1016/j.tplants.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  • Wellings CR (2007) Puccinia striiformis in Australia: a review of the incursion, evolution, and adaptation of stripe rust in the period 1979–2006. Aust J Agric Res 58:567–575

    Article  Google Scholar 

  • Wellings CR, Read BJ, Moody DB (2000) Stripe rust affecting barley in Australia current and potential threats. In: Logue S (ed) Proceedings of the 8th international barley genetics symposium Adelaide Convention Centre, Adelaide, pp 197–199

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M et al (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  Google Scholar 

  • Zadok JC, Chang TT, Konzak FC (1974) A decimal code for growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly funded by CRP Dryland Cereals program of ICARDA, USAID linkage program (small grants) for CG centers, and ICARDA-ICAR/India collaboration project. Authors are also thankful to research staffs of ICAR-IIWBR at Shimla and Karnal, and RARI, Durgapura, Rajasthan.

Author information

Authors and Affiliations

Authors

Contributions

SG and RPSV conceived and coordinated the study; SC genotyped AM-2014 panel; SCB, RS, OG, PS, and RA collected phenotypic data on rust resistance; SM and SG analyzed data; SG and SM drafted the manuscript; all co-authors contributed equally reviewing the manuscript.

Corresponding author

Correspondence to Sanjaya Gyawali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Supplementary material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyawali, S., Mamidi, S., Chao, S. et al. Genome-wide association studies revealed novel stripe rust resistance QTL in barley at seedling and adult-plant stages. Euphytica 217, 3 (2021). https://doi.org/10.1007/s10681-020-02728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-020-02728-1

Keywords

Navigation