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Abstract

Heat and drought are among the leading environmental stresses which have a major
impact on plant development. In our research, identification and characterization of dif-
ferentially expressed genes (DEGs) regulating the response of wheat to drought, heat and
combined stress was carried out. We analyzed data from the Gene Expression Omnibus
database (GEO) microarrays containing 24 samples of wheat, which were categorized by
different treatments (control: ctrl, drought: D, heat: H, and mixed: HD). Significant DEGs
were examined for gene annotation, gene ontology, co-expression, protein-protein inter-
action (PPI) and their heterogeneity and consistency through drought, heat and combined
stress was also studied. Genes such as gyrB, C6orf132 homolog, PYRI were highly asso-
ciated with wheat response to drought with P-value (-log10) of 9.3, 7.3, 6.4, and logFC
of -3.9, 2.0, 1.6, respectively. DEGs associated with drought tolerance were highly re-
lated to the protein domains of lipid-transfer (LTP). Wheat response to heat stress was
strongly associated with genes such as RuBisCO activase B, small heat shock, LTP3,
YLS3, At2g33490, PETH with p-values (-log10) ranging from 9.3 to 12.3. In addition,
a relatively high number of protein interactions involved the SDH, PEPCK, and G6PD
genes under heat stress.

Keywords: Wheat, Drought, Heat, Combined stress, Gene expression.

Cereals are by far the most commonly cultivated crops in the globe and the foundation of food
security stability. Maize, rice and wheat are the single most important food item in the human diet,
accounting for approximately 42.5% of the global food calorie consumption [1]. Recent climate
change models expect significant declines in worldwide crop production based on changing ecosys-
tems [2]. The significant losses in wheat production are more driven by abiotic stresses including
drought, heat and salinity. A reported meta-analysis forecasts a significant wheat yield decline in
tropical regions with every 1 °C increase [3].

Drought and heat are among the leading environmental stresses which have a major impact
on plant development and growth. Drought occurs in almost all climatic zones, causing losses in
crop production that are classified as one of the largest losses in agriculture [4]. It dramatically
limits crop production and the period of drought cycles is rising due to climate change, and water
scarcity in most grain cropping regions in the world [5]. In addition, Trenberth et al. [6] recorded
extreme precipitation events with changes in global temperatures. This would increase the demand
for accessible land and water sources, leading to more severe droughts in a number of areas. In
particular, high temperature stress cause permanent enzyme denaturation and membrane fluidity
problems [7]. Also heat stress increases plant senescence and decreases the duration of growth,
resulting in reduced yield [8]. Wheat was the first crop to be domesticated within these crops and is
the main staple food in the world[9]. Wheat dominates the land area harvested (38.8%) and delivers
considerably more protein per gram (12—15%) than rice or corn (2-3%) [10], it provides 19% of
calories and 21% of proteins [11]. Moreover, with world population expected to grow to 9.6 billion
by 2050, demand for wheat will expand [12].
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During the wheat reproductive growth stage, flowering is
highly subjected to heat stress, affecting daytime flowering and
grain production [13, 14] . During heat stress photosynthesis is
reduced due to decreased of chlorophyll content and increased
oxidative stress [15]. Additionally, the combination of increased
temperature and drought has a destructive, additive effect on
crop physiology and phenology, i.e. chlorophyll content, pho-
tosynthesis of the leaf, growth, spikelet fertility, grain number,
grain filling and therefore grain yield [16, 17]. Combined drought
and heat stress, in particular, decreases the chlorophyll content
of the leaf by 49%, whereas drought or heat alone reduces it by
9% or 27%, respectively [18].

Maintaining crop productivity levels is a major challenge
in modern agriculture, and thus studying the effects of these
stresses becomes essential for wheat enhancement that have pri-
marily relied on the genetic changes found in the wheat genome
throughout traditional breeding [10]. The transcriptome has been
extensively studied after the development of next generation se-
quencing (NGS) technology, in order to understand the molec-
ular mechanisms through which plant species evolve to their
ecosystem. Transcriptome data analysis of plants are effectively
carried out in different organisms under various conditions, in-
cluding susceptibility to abiotic stresses [19]. Microarray tech-
nology is one of the major applications of transcriptome data
analysis that has allowed the expression levels of thousands of
genes to be tracked simultaneously. Such technologies have
been successfully used in the study of crop response to drought,
heat and combined stress in crops, and thousands of stress- re-
sponsive genes enriched with various biological functions, such
as: Heat Shock Proteins (HSPs), Heat Shock Factors (HSFs),
and Drought Responsive Element Binding Factors (DREBs) were
described [20, 21].

Consequently, the production of wheat varieties with high
and stable yields under these environmental stresses is one of the
most important breeding objective [22]. The aim of our investi-
gation is to study the wheat genetic profile response to drought
(DS), heat stress (HS), and combined stress (heat and drought)
(HD). We aim to use comprehensivly bioinformatics techniques
tools to identify (a) differentially regulated genes commonly ex-
pressed in wheat response to DS, HS, and HD stress; (b) to study
gene families, gene networks, ontologies, pathways, and protein-
protein interactions controlling wheat tolerance to these stresses;
(c) to determine whether there were significant interactions be-
tween the effects of DS, HS, and HD.

Materials and Methods

Dataset

The available GEO GSE45563 dataset was downloaded from
the Gene Expression Omnibus database (GEO). This data is based
on genome chip sets of Affymetrix wheat genome uncovering
the gene expression profiles of two durum wheat varieties (Ofanto
and Cappelli) (using 24 samples). Categorized by different wa-
ter use efficiency (WUE), grown to a booting stage and exposed

to a mixture of drought and heat stress, a scenario similar to
the experience of a crop grown in Mediterranean conditions and
subjected to terminal drought / heat stress [23].

Differential gene expression analysis

The recognition of differentially expressed genes (DEGs) in
the transcription profiles was analyzed through default parame-
ters of GEO2R. The data on the gene expression profile consists
of 24 different samples of wheat which have been classified by
different treatments (control, drought, heat, and mixed). In order
to create a more efficient analysis, these samples were compared
as follow: (1) Drought samples were compared to control sam-
ples (Dctrl); (2) Heat samples were compared to control samples
(Hctrl); (3) Mixed condition samples were compared to control
samples (Mctrl); (4) combined data of heat and drought samples
were compared to control (HDctrl); (5) combined data of heat
and drought samples were compared to mixed samples (HD.M).
The GEO2R analysis results for these groups were used for fur-
ther analysis, where DEGs with significance p-value of < 0.001
were used.

Heatmap and hierarchical clustering analysis

The heatmap allows the general expression of the DEGs to
be compared under abiotic stress conditions. Hierarchical clus-
tering can be used to combine related elements into a binary tree,
and is commonly used in microarray data analysis. R program-
ming language was used to plot the heatmap and perform the
hierarchical clustering analysis.

GO enrichment and PPI network analysis

The local BLAST tool [24] was used to identify gene anno-
tation of unknown DEGs genes for durum wheat using the avail-
ableAegilops tauschii proteome on NCBI. The BLAST gene an-
notation and protein sequences have been used for further anal-
ysis. Evaluation of the network and gene ontology (GO) en-
richment of protein-protein interaction (PPI) was conducted in
accordance with the STRING repository framework [25]. Cy-
toscape program was used to simulate protein-protein networks
[26]. Venn online software (http://bioinformatics.psb.ugent.be/
webtools/Venn/ ) was utilized to obtain the intersection of Dctrl,
Hctrl, Mctrl, HDctrl, HD.M profiles.

Results and Discussion

We studied wheat response to drought (DS), heat (HS), and
combined stress (HD) (heat and drought). The available GEO
GSE45563 data set was used to investigate these stresses im-
pact on wheat genomic content using bioinformatics analysis.
Compared to the previous research used the same data [23], we
performed gene annotation of DEGs, conducted a detailed PPI
analysis and performed a more detailed gene enrichment analy-
sis. In addition, we analyzed wheat response to drought, heat,
and combined stress through further molecular analysis.
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Differentially expressed genes among wheat samples

In order to conduct more comprehensive and productive anal-
ysis, the gene expression profiles of control, drought, heat and
mixed treatments were compared. Table 1 shows the number of
DEGs revealed in every comparison group as conducted through
GEOZ2R tool. Additionally, detailed information have been shown
in Figure 1 and Table S1.

Table 1. The DEGS analysis significance scores for the different analysis
groups as revealed by GEO2R software.

Group Count HEAD Min Min. count ~ Max Max. count
D.ctrl 292.00 logpvalue  9.30 1.00 0.00 1.00
logFC -3.94 1.00 3.77 1.00
H.ctrl 3443.00  logpvalue 12.30 1.00 0.00 12.00
logFC -8.93 1.00 10.57  1.00
M.ctr] 5483.00  logpvalue  13.41 1.00 0.00 9.00
logFC -10.98  1.00 11.67  1.00
HD.M 1005.00  logpvalue  6.51 1.00 0.00 2.00
logFC -5.64 1.00 5.70 1.00
HD.ctrl | 568.00 logpvalue  9.63 1.00 0.00 1.00
logFC -4.09 1.00 4.44 1.00

Among the DEGs genes revealed in D.ctrl group, DNA gy-
rase subunit B (gyrB),C6orf132homolog, and abscisic acid re-
ceptor (PYRI) were the highest, with P-value (-logl0) of 9.3,
7.3, 6.4, and logFC of -3.9, 2.0, 1.6, respectively (Figure 1 and
Table S1). ThegyrBgene plays a crucial role in the partition-
ing of chloroplast nucleoid by regulating the topology of DNA
[27].DNA gyrase is special among topoisomerases because it
is the only enzyme that actively uses the energy of ATP hy-
drolysis to supercoil DNA [28].The association between topoi-
somerases proteins and the ability of plants to maintain plant
biological system under drought stress was previously reported
[29].The pyrabactin resistance 1 (PYRI) is essential for ABA-
mediated responses including stomatal closure and inhibition of
plant growth [30].ABA levels were shown to boost in the plant
under abiotic stress, such as drought and high salinity, triggering
adaptive responses featuring inhibition of type 2C protein phos-
phatases (PP2C), and stimulation of non-fermenting kinases 2
related protein sucrose (SnRK2) [31].

In this analysis, gene expression fold change was high in
genes such as zinc finger MYM-type 1 (ZMYM]1), ricin B lectin
R40G3 (R40G3), berberine bridge enzyme 27 (BBE27), with
approximately 3.5 logFC (Figure 1 and Table S1). Significant
expression of theZMYM1,R40G3, andBBE27genes in plant re-
sponse to drought could assign new functions to these genes
and provide more insight into their role.Carbohydrate-binding
proteins or lectins such as Ricin B lectin are a particular class
of entomotoxic proteins that have an important role in plant di-
rect defense responses, in addition such proteins regulation have
been reported in plant response to cold stress [32] and drought
[33]. Moreover, although a significant number of genes encod-
ing BBE-like proteins have been detected in plants and bacte-

ria in recent years, the role of BBE homologs in plant growth
remains mysterious. These molecules have been linked to the
plant response to osmotic stress and the pathogen attack has been
shown to induce up-regulation of some of these family members
[34, 35]. Additionally, the overexpression of ZMYM1 has been
reported in various plant stress resistance researchers through
gene expression analysis such as peanut [36] and wheat [37].

In the H.ctrl group, genes with a known role in plant heat tol-
erance and genes with a potential role in other biotic and abiotic
stresses had the highest significance and logFC values. Genes
such as ribulose bisphosphate carboxylase/oxygenase activase B
(RuBisCO activase), small heat shock, non-specific lipid-transfer
3 (LTP3), YLS3, At2g33490, ferredoxin-NADP reductase (PETH)
were among the highest significance DEGs with p-values (-log10)
ranged from 9.3 to 12.3. Additionally, proteins labeled with
“heat shock” have the highest p-values and logFC values indi-
cating its priority in maintaining plant tolerance to heat stress
(Figure 1 and Table S1).

The association between RuBisCo activase and the plant re-
sponse to heat could be due to the involvement of RuBisCo acti-
vase in the regulation of different cellular processes as a catalytic
chaperone and its ability to modulate the activity of RuBisCo
and to protect the nascent proteins from aggregation during heat
stress. RuBisCo is deactivated through heat stress due to cat-
alytic misfiring as well as a higher rate of dead-end product pro-
duction, thus inhibiting the process of photosynthesis [38, 39].
Non-specific lipid transfer proteins (nsLTPs) comprise small, sim-
ple proteins with an eight-cysteine patterns. The biological roles
of these proteins were stated to include plant reproduction and
response to biotic or abiotic stress [40]. Additionally, it was
speculated thatLTP3play an important role in wheat tolerance to
heat and drought [41, 42] . It was suggested that, due to heat
stress, key proteins that regulate electron transport activity have
a potential role to play in plant response, such observations have
been observed in soybean [43]. This could explain the high-fold
change inPETHand LHCII due to the fact that both proteins play
a crucial role in the plant photosystem. PETH is the last enzyme
in the transition of photosynthesis electrons from Photosystem I
to NADPH in the Calvin cycle reactions, whileLHCoperates as
a light receptor that encapsulates and provides excitation energy
to photosystems I and II with which it is closely connected [43,
44].

The effect of heat stress on gene expression fold change
of the peroxidase gene is of interest in our analysis. Genes
such as peroxidase 1 (APX1/), cysteine-rich repeat secretory 55
(CRRSP55), WIRIA, chlorophyll a-b binding of LHCII type 1
have a high negative fold change ranged from -7 to -8 (Figure
1 and Table S1). Peroxidases cause the transformation of hy-
drogen peroxide to water and oxygen are component of the en-
zymatic defense of plant cells. The relationship between perox-
idase activities and heat tolerance have been reported in straw-
berry [45]. Additionally, studying the effect of response of Ara-
bidopsis thaliana to stress combination of heat and drought re-
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Figure 1. The gene expression and significance scores of DEGs of wheat genome. The gene expression (LogFC) and the significance (logpvalue) wheat genes (A)

in D-ctrl (B), H-ctrl (C), HD-ctrl (D), HD-M (E), M-ctrl (F) gene profiles. The chart high and color stand for gene significance and expression, respectively.
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vealed that, APX1-deficient mutant produced more hydrogen
peroxide and was considerably more sensitive to the combina-
tion of stress than wild-type [46].

In our analysis gene expression profiles of M.ctrl provides
more insight about the mixed stresses effect on wheat. The
M.ctrl gene expression profile provided 2,236 genes with p-values
(-log10) ranges from 3 (LOC109775146) to 12.3 (RuBisCO)
and fold change (logFC) reaches -8.3 (CRRSP55) and 11 (16.9
kDa class I heat shock 1: HSP16.9A) (Figure 1 and Table S1).
Among these genes about 25 were labeled as heat shock pro-
teins. The high number of significant genes could infer the high
effect of mixed stress on the biological system of plants, which
is rationally expected [47].

On the other hand, 174 genes were differentially expressed
in HD.ctrl sample set, among which the p-values (-log10) ranges
from 3 (LOC109732491) to 9.6 (gyrB). The fold change (logFC)
reaches from -4 (S-linalool synthase:LIS) and 4.5 (gyrB) (Figure
1 and Table S1). While comparing HD profile to M (HD.M)
provided p-values (-log10) ranges from 3 (probable amino acid
permease 7 AAP7) to 5.3 probable purine permease 11 (PUPI1).
The fold change (logFC) reaches from -5.6 (acyl transferase 15
AT15) and 4.3 (group 3 late embryogenesis abundantLEA). The
PUPI1 overexpression in plant response to heat stress have been
reported in wheat [48]. This gene belongs to the PUP gene
family, which is responsible for the transportation of nucleoside-
type Natural Cytokinins (CKs) in some plant species, thereby
playing an important role in plant growth and development, in-
cluding tolerance for drought [49].

Additionally, expression of LEA gene in barley has been re-
ported to confer tolerance to water deficit and salt stress . This
could be due to some LEA interacting with a receptor like cy-
toplasmic kinase and controlling the responses to environmental
stress, in addition to initiating plant repair under various abiotic
stress conditions [50, 51, 52].

We investigated the fold change difference in plant responses
against drought, heat, and combination stresses. About 68, 117,
and 57 and genes were shared between H.ctrl and D.ctrl, HD.ctr]
and M.ctrl, H.ctrl , M.ctrl and D.ctrl across DEGs profiles (Figure
2 and Table S2). Comparing DEGs profiles of H.ctrl to D.ctrl
highlighted the extreme fold change in some DEGs belong to
genes such as LIS, Light-inducible protein CPRF2, and two-
component response regulator ORR6 between H.ctrl (down reg-
ulated) and D.ctrl (up regulated) (Figure 2A and Table S2).

In addition, we can see that there is some contrast between
heat and drought gene expression. In rice the /LS gene is respon-
sible for linalool production, which control antibacterial activity
and is essential for resistance to blight pathogen [53]. Interest-
ingly, transcriptome and metabolite profiling have been reported
to reveal that severe drought modulates the pathway of phenyl-
propanoid and terpenoid in white grapes, including the produc-
tion of linalool [54].

The CPRF2 protein which is a member of bZIP TF fam-
ily is related to the regulation system controlling chalcone syn-

thase through hormone control or light-induction. The over-
expression of such gene under drought stress have been reported
in Sesame [55], which could be due it is known relation in flower
development [56]. The ORR6 gene is related to cytokinin sig-
naling, and recently it has been reported that it could be down-
regulated in some salt-tolerant maize inbred line [57]. We can
also see a slight difference in the expression of the berberine
bridge enzyme (BBE) between heat and drought. It was reported
that BBE is highly important in plant adaptation to phosphorus
deficiency [58], which is more related to drought [59].

Generally, according to shared DEGs, there is no notice-
able difference between HD.ctrl and M.ctrl in gene expression,
which could infer the collective impact of mixed drought and
heat stress (Figure 2B and Table S2). In addition, the compari-
son between D.ctrl, H.ctrl and M.ctrl revealed a high similarity
between M.ctrl and H.ctrl compared to D.ctrl, which could infer
the prevalence impact of heat stress on the wheat biological sys-
tem under mixed stress (Figure 2C and Table S2). Such a result
supports previous reports that revealed that DS transcriptomes
have a distinct connection to HS and HD, implying a significant
shift in expression of genes in DS responsive transcriptome rela-
tive to HS and HD [21].

The Venn analysis was used to infer shared and unique genes
between different gene expression profiles (Figure 3 and Table
S3). The Venn analysis revealed only 5 genes shared between
all profiles (H.ctrl, D.ctrl, HD.ctrl, M.ctrl, and HD.M) (Figure
3 and Table S3). These genes include heat stress transcription
factor A-2e (HSFA2E), PUPI11, (+)-neomenthol dehydrogenase
(SDR1), mechanosensitive ion channel 6, and Fructokinase-2
(FRK2). In this regard, correlation between plant response to
heat stress and the expression of FRK2 was reported in soybean
[60]. The highest number of genes shared is between M.ctrl and
H.ctrl (478 genes), which confirm the high prevalence of heat in
combination stress. There are nine genes between D.ctrl, H.ctrl
and M.ctrl that are shared and unique in comparison to other
profiles. These genes include LTP3, ORR6, BBE27, ankyrin re-
peat domain-containing protein 2A (AKR2A), amino acid per-
mease 6 (AAP6), S-adenosylmethionine synthase 3 (SAM3), or-
ganic cation/carnitine transporter 7 (OCT7) (Figure 3 and Table
S3). Interestingly, AKR2A displays chaperone activity towards
mitochondrion outer membrane, endoplasmic reticulum mem-
brane, chloroplast outer envelope membrane, and peroxisomal
proteins.

Additionally, it is important for chloroplast biogenesis, and
increases plant biological system capacity for abiotic stresses
[61, 62]. On the other hand, AAP6 is correlated with plant
drought tolerance [63]. In human, the transcriptional activity
of OCT7 is correlated with osmotic stress in epididymal cells,
which could explain its correlation with both drought and heat
stresses in plant [64]. The intersections of M.ctrl and HD.ctrl,
and HD.M profiles do not share unique genes, while M.ctrl and
HD.M contain, respectively, 1,156 and 246 unique genes that
are not shared with other profiles. We could assume that the
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Figure 2. Heatmap and hierarchical clustering of differential gene expression. The gene expression of shared genes between (A) H.ctrl and D.ctrl, (B) HD.ctrl and

M.ctrl, and (C) H.ctrl, D.ctrl and M.ctrl.
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Figure 3. Venn diagram analysis between gene profiles of shared and unique genes.

high number of unique DEG genes belonging to the M.ctrl and
HD.M profiles could infer the high effect of mixed stress on the
wheat biological system. The pathway analysis of such genes
revealed high abundance of metabolic pathways in M.ctrl and
carbon metabolism in HD.M (Figure S4).

Gene enrichment ontology analysis

We used gene ontology enrichment analysis to study the tar-
geted biological pathways of DEGs (Figure 4). The DEGs genes
of D.ctrl were highly related to the protein domains of lipid-
transfer (LTP) (Figure 4A). In this regard, several lipid-transfer
proteins have been reported to modulate plant response to biotic
stress, where loss-of-function mutant LTPs may have a high sen-
sitivity to drought stress [65]. Additionally, metabolic pathways
and biosynthesis of secondary metabolites were highly corre-
lated with H.ctrl, M.ctrl and HD.ctrl (Figure 4B, 4D and 4E).
Furthermore, M.ctrl revealed high number of glycosyl hydro-
lases family 17 proteins (Figure 4D). The association between
such family and heat stress have been reported in switchgrass
[66], and rice [67]. The analysis of HD.M gene profile dis-
played high number of PCI (proteasome/CSN/elF3) domains.
The translation regulation plays an important role in plant species
at all development stages and during the response to stresses.

The significance of the eIF3 complex lies not only in the global
initiation event stage but also in the precise translation regula-
tion of unique transcripts, thus maintaining the ability of plants
to resolve environmental stresses [68].

Protein-protein interaction analysis

The STRING database is a highly respected tool for protein-
protein interaction networks and could provide very comprehen-
sive and fruitful information that provides a valuable result ( Fig-
ures 5, 6, 7, and 8). Both delta-1-pyrroline-5-carboxylat (P5C)
and putative aconitate hydratase show high number of interac-
tion activity in D.ctrl profile (Figure 6A). The over-expression
of P5C improves the production of proline and provides osmo-
tolerance in transgenic plants and catalyzes the biosynthesis of
proline in plants [69]. High number of H.ctrl interactions involve
Succinate dehydrogenase (SDH), Phosphoenolpyruvate carboxyk-
inase (PEPCK), Glucose-6-phosphate dehydrogenase (G6PD)
(Figure 7). The gene of PEPCK have an essential role in or-
ganic acid metabolism. The overexpression of PEPCK in heat,
drought, and salinity have been reported in some plants [70, 71].
Similar to D.ctrl, the P5C have the highest number of protein
interactions followed by ATP synthase gamma subunit in M.ctrl
and (Figures 6B and 8). The ATPase activity has a very es-
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(A)

number of nodes: 66
number of edges: 14
average node degree: 0.424
avg. local clustering coefficient: 0.184

expected number of edges: 4
PPI enrichment p-value: 0.00014

PFAM Protein Domains

domain description countin gene set  false discovery rate
PF14368 Probable lipid transfer 50f 71 3.89e-05
PF00234 Protease inhibitor/seed storage/LTP family 50f 85 4.53e-05
SMART Protein Domains
domain description count in gene set  false discovery rate
SMO00499  Plant lipid transfer protein / seed storage protein / trypsin-alph... 6 of 130 6.57e-06
number of nodes: 237 expected number of edges: 158
number of edges: 212 PPI enrichment p-value: 2.73e-05
average node degree: 1.79
avg. local clustering coefficient: 0.312
KEGG Pathways
pathway  description count in gene set  false discovery rate
ats01100 Metabolic pathways 53 of 1598 3.24e19
ats01110 Biosynthesis of secondary metabolites 22 0f 1011 0.00013
ats00520 Amino sugar and nucleotide sugar metabolism 7 of 106 0.00036
ats00280 Valine, leucine and isoleucine degradation 40f 26 0.00099
ats00053 Ascorbate and aldarate metabolism 40f 32 0.0017
ats00480 Glutathione metabolism 6 0f 109 0.0019
ats01230 Biosynthesis of amino acids 7 of 165 0.0022
ats04626 Plant-pathogen interaction 7 of 176 0.0028
ats01200 Carbon metabolism 70f 185 0.0034
ats00330 Arginine and proline metabolism 4 0of 50 0.0040
ats00010  Glycolysis / Gluconeogenesis 50f 102 0.0062
ats04146 Peroxisome 40f 67 0.0094

(C)

number of nodes: 140
number of edges: 111

average node degree: 1.59
avg. local clustering coefficient: 0.318

expected number of edges: 81
PPl enrichment p-value: 0.000804

KEGG Pathways

pathway  description count in gene set  false discovery rate
ats01200 Carbon metabolism 90f 185 5.90e-06
ats01100 Metabolic pathways 23 of 1598 5.90e-06
ats00520 Amino sugar and nucleotide sugar metabolism 6 of 106 0.00012
ats01230 Biosynthesis of amino acids 6 of 165 0.00097
PFAM Protein Domains
domain description countin gene set  false discovery rate
PF01399  PCl domain 30f24
PF12515 Ca2+-ATPase N terminal autoinhibitory domain 20f 6 0.0441
PF05770 Inositol 1, 3, 4-trisphosphate 5/6-kinase 20f6 0.0441
PF01590  GAF domain 20f8 0.0441
PF00512 His Kinase A (phospho-acceptor) domain 20of 11 0.0485
SMART Protein Domains
domain description count in gene set  false discovery rate
SM00088 motif in proteasome subunits, Int-6, Nip-1 and TRIP-15 3of22 0.0072

(D)

number of nodes: 555
number of edges: 1320
average node degree: 4.76

expected number of edges: 1001
PPl enrichment p-value: <1.0e-16

avg. local clustering coefficient: 0.313
KEGG Pathways
pathway  description count in gene set  false discovery rate
ats01100 Metabolic pathways 115 of 1598 8.48e-38
ats01110 Biosynthesis of secondary metabolites 550f 1011 1.83e-12
ats01200 Carbon metabolism 20 of 185 5.01e-09
ats00195 Photosynthesis 9 of 36 8.09e-07
ats00520 Amino sugar and nucleotide sugar metabolism 12 of 106 8.78e-06
ats00280 Valine, leucine and isoleucine degradation 7 of 26 1.20e-05
ats00710 Carbon fixation in photosynthetic organisms 9 of 57 1.43e-05
ats00053 Ascorbate and aldarate metabolism 7 of 32 2.98e-05
ats00260 Glycine, serine and threonine metabolism 8 of 48 3.08e-05
ats00480  Glutathione metabolism 11 0f 109 3.66e-05
ats01230 Biosynthesis of amino acids 13 0f 165 5.71e-05
ats04146 Peroxisome 8 of 67 0.00021
ats00190 Oxidative phosphorylation 80f73 0.00034
ats00010 Glycolysis / Gluconeogenesis 9 of 102 0.00052
ats00030 Pentose phosphate pathway 6 of 42 0.00070
PFAM Protein Domains

domain  description count in gene set  false discovery rate
PF00332  Glycosyl hydrolases family 17 8of 58 0.0060
PF00175 Oxidoreductase NAD-binding domain 50f 17 0.0062

(E)

number of nodes: 56
number of edges: 10

average node degree: 0.357

avg. local clustering coefficient: 0.15

expected number of edges: 7
PPl enrichment p-value: 0.175

Reference publications

publication (year) title
PMID:26982202 (2016) Transcriptome Analysis for Abnormal Spike Develo...

count in gene set false discovery rate
2of 41 0.0300

KEGG Pathways
pathway description count in gene set false discovery rate
ats01230 Biosynthesis of amino acids 30f 165 0.0376
ats01210 2-Oxocarboxylic acid metabolism 20of 37 0.0376
ats01100 Metabolic pathways 9 of 1598 0.0376
ats00330 Arginine and proline metabolism 2 of 50 0.0376
PFAM Protein Domains
domain description count in gene set false discovery rate
PF00234 Protease inhibitor/seed storage/LTP family 40f 85 0.0013
SMART Protein Domains
domain description count in gene set false discovery rate
SM00499 Plant lipid transfer protein / seed storage protein / trypsin-... 40f 130 0.0012

Figure 4. The gene ontology enrichment analysis for DEGs genes of (A) D.ctrl , (B) H.ctrl, (C) HD.M, (D) M.ctrl, and (E) HD.ctrl profiles.

sential role in maintaining plant biological performance under
some abiotic stresses [72]. Additionally, in HD.M the protein
of malate dehydrogenase (NADP+) have the highest number of
interactions. Malate dehydrogenase is critical throughout expo-
sure to abiotic stresses which at cellular level are known to in-
duce oxidative stress such as salt stress [73].

Conclusions

In conclusion we found that in silico analysis of GEO GSE45
5 63 data, reveal differences in gene expression profile under
normal and stressed conditions. Compared to previous reports,
which studied the interaction of drought and heat stress in the
plant biological system, we compared the expression of plant
genes by multiple stages of abiotic stress and added a more com-
prehensive analysis. We studied the heat and drought regulation
gene PPI, providing a blueprint for how these genes influence
the ability of wheat to control drought and/or heat tolerance.

We found specific genes differentially expressed under different
treatment. Thus the use of in silico gene mining strategies pro-
vides an excellent framework for the initial identification of key
genes whose expression is altered under abiotic stress. The data
generated in these study provide a starting point for investiga-
tions aimed to elucidate the molecular basis of abiotic stress tol-
erance in wheat. and can be useful for breeding and and crop
improvement.

Supplementary

Table S1: The information of DEGs genes through studied pro-
files. Table S2: The information of DEGs genes shared be-
tween (A) D.ctrl and H.ctrl, (B) H.ctrl, D.ctrl, and M.ctrl, and
(C) HD.ctrl and M.ctrl. Table S3: The information of DEGs
genes that are shared and unique among gene profiles accord-
ing to Venn diagram analysis. Figure S4: the gene enrichment
analysis of unique DEGs genes in M.ctrl and HD.M profiles.
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