Skip to main content
Log in

Water-Saving Technologies and Total Factor Productivity Growth in Small Horticultural Farms in Algeria

  • Full-Length Research Article
  • Published:
Agricultural Research Aims and scope Submit manuscript

Abstract

Investment in water-saving technologies (WST) was always considered as a solution to manage water demand. Indeed, the adoption of these techniques allows the use of less water in the agricultural production process. Actually, the WST have been widely promoted in Algeria in the last two decades. However, little research exists to support popular claims about their effectiveness. This study aims first, to identify the inputs use differentials between farmers using WST and traditional techniques (gravity irrigation) and, second, to evaluate the impact of WST use on total factor productivity growth (TFP) and determine the contribution of the different inputs in the overall TFP growth of small-scale horticultural farms in the northeastern Algeria (Jijel region). The Tornqvist-Theil index was used for the computation and decomposition of TFP. The results show that the differences of water consumption, gross margin, water productivity and water value indicators between the two groups of farms are statistically significant at 5%. The output growth differential between WST users and non-users is on average 12.73%. It is composed of 6.65% from input growth and 6.08% from TFP growth. Alternatively, output could be increased by 6.08% in average when using the same amount of input. These findings indicate the potential impact of WST on TFP gain. These findings provide helpful information for policy makers to expand the use of these technologies for a better use of irrigation water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Acronym for “Plan National pour le Développement Agricole.”

  2. The local currency unit used with an exchange rate of 1 USD = 86.7 DZD (in 2018).

References

  1. Akli S, Bédrani S (2011) Produire de l’eau par le dessalement ou en l’économisant grâce à l’adoption de l’irrigation localisée? Les Cahiers du CREAD 96:50–70

    Google Scholar 

  2. Avila AFD, Evenson RE (2010) Total factor productivity growth in agriculture: the role of technological capital. In: Handbook of agricultural economics, vol 4, pp 3769–3822

  3. Ball V, Norton GW (2012) Agricultural productivity: measurement and sources of growth. Springer, Berlin

    Google Scholar 

  4. Battilani A (2012) Sustainable knowledge-based irrigation management: the IRRINET package. http://ec.europa.eu/environment/archives/greenweek2012/adriano-battilani.html. Accessed 1 Feb 2019

  5. Benblidia M, Thivet G (2010) Gestion des ressources en eau: les limites d’une politique de l’offre. Les notes d’analyse CIHEAM, 58

  6. Capalbo SM, Antle JM (eds) (2015) Agricultural productivity: measurement and explanation. Routledge, Abingdon

    Google Scholar 

  7. Chabaka MN, Hartani T, Bouarfa S (2010) Le goutte-à-goutte: un remède miracle pour réduire les pertes en eau? In: Imache A, Hartani T, Bouarfa S, Kuper M (eds) La Mitidja 20 ans après, réalitées agricoles aux portes d’Alger. Edition Alpha, Alger, pp 211–214

  8. Chebil A, Frija A, Amri S (2014) Impact assessment of technology change on durum wheat productivity: a cross sectional analysis in central semi-arid Tunisia. J Agric Sci Technol 4:49–57

    Google Scholar 

  9. Chebil A, Frija A, Alyani R (2016). Measurement of total factor productivity and its determinants: case of wheat sector in Tunisia. In: 21st annual conference on democracy and economic development, Gammarth, Tunisia

  10. Coelli TJ, Rao DP (2005) Total factor productivity growth in agriculture: a malmquist index analysis of 93 countries, 1980–2000. Agric Econ 32:115–134

    Article  Google Scholar 

  11. Coelli TJ, Rao DSP, O’Donnell CJ, Battese GE (2005) An introduction to efficiency and productivity analysis, 2nd edn. Springer, New York

    Google Scholar 

  12. Dhehibi B, Bahri H, Annabi M (2012) Input and output technical efficiency and total factor productivity of wheat production in Tunisia. Afr J Agric Resource Econ 7(1):70–87

    Google Scholar 

  13. Dhehibi B, El-Shahat AAIA, Frija A, Hassan AA (2016) Growth in total factor productivity in the egyptian agriculture sector: growth accounting and econometric assessments of sources of growth. Sustain Agric Res 5(1):38–48

    Google Scholar 

  14. Diewert WE (1980) Capital and theory of productivity measurement. Am Econ Rev 70(2):260–267

    Google Scholar 

  15. Evans RG, Sadler EJ (2008) Methods and technologies to improve efficiency of water use. Water Resources Res. https://doi.org/10.1029/2007wr006200

    Article  Google Scholar 

  16. FAO (2016) AQUASTAT website. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/nr/water/aquastat/countries_regions/dza/indexfra.stm. Accessed on 27 Oct 2016

  17. Frija A, Dhehibi B, Aw-Hassan A, Akroush S, Ibrahim A (2015) Approaches to total factor productivity measurements in the agriculture economy. CGIAR Report

  18. Fouzai A, Bachta MS, Ben Brahim M, Rajhi E (2013) Evaluation économique de la dégradation de l’eau d’irrigation Etude de cas: La région de Korba. In: Fourth international conference of the African Association of Agricultural Economists. 22–25 Sept, Hammamet, Tunisia (No. 160683)

  19. Hanson B, Bowers W, Davidoff B (1995) Field performance of microirrigation systems. In: Microirrigation for a changing world. Proceedings of fifth international microirrigation congress, April 2–6, 1995. American Society of Agricultural Engineers, Orlando, FL, pp 769–774

  20. Hulten CR (2001) Total factor productivity: a short biography. In: New developments in productivity analysis. University of Chicago Press, pp 1–54

  21. Imache A, Legoulven P, Bouarfa S, Chabaca M (2007) Évolutions de la demande en eau agricole dans la plaine irriguée de la Mitidja, Algérie. Economies d’eau en systèmes irrigués au Maghreb. Actes du troisième atelier régional du projet Sirma, Nabeul, Tunisie, 4-7 juin. http://hal.cirad.fr/docs/00/19/45/73/PDF/12_Article_Imache_et_al.pdf

  22. Imache A, Kuper M, Bouarfa S, Hartani T (2011) La Mitidja vingt ans après: Réalités agricoles aux portes d’Alger. Editions Alpha

  23. Kathuria V, Raj RSN, Sen K (2013) Productivity measurement in indian manufacturing: a comparison of alternative methods. J Quant Econ 11(1–2):149–179

    Google Scholar 

  24. Kumbhakar SC (2003) Factor productivity and technical change. Appl Econ Lett 10(5):291–297

    Article  Google Scholar 

  25. Mouhouche B (2008) Etude en vue d’une utilisation durable et efficace des ressources hydriques en Algérie. Colloque international sur l’aridoculture: Optimisation des productions agricoles et développement durable. CRSTRA, Biskra, Algeria

  26. MRE (2018) Annual report. Ministère des Ressources en Eau, Algérie

  27. Nishimizu M, Page JM (1982) Total factor productivity growth, technological progress and technical efficiency change: dimensions of productivity change in Yugoslavia, 1965-78. Econ J 92(368):920–936

    Article  Google Scholar 

  28. Perry C, Steduto P, Allen RG, Burt CM (2009) Increasing productivity in irrigated agriculture: agronomic constraints and hydrological realities. Agric Water Manag 96(11):1517–1524

    Article  Google Scholar 

  29. Petrin A, Levinsohn J (2012) Measuring aggregate productivity growth using plant-level data. Rand J Econ 43(4):705–725

    Article  Google Scholar 

  30. Sadoulet E, De Janvry A (1995) Quantitative development policy analysis. The Hopkins University Press, Baltimore

    Google Scholar 

  31. Salhi S, Bédrani S (2010) Reconversion au goutte-à-goutte: les limites du PNDA. In: Imache A, Hartani T, Bouarfa S, Kuper M. La Mitidja 20 ans après: réalités agricoles aux portes d’Alger. Editions Alpha

  32. Sanz GL (1999) Irrigated agriculture in the Guadiana River high basin (Castilla-La Mancha, Spain): environmental and socioeconomic impacts. Agric Water Manag 40(2):171–181

    Article  Google Scholar 

  33. Seyoum ET, Battese GE, Fleming EM (1998) Technical efficiency and productivity of maize producers in Eastern Ethiopia: a study of farmers within and outside the Sasakawa-Global 2000 Project. Agric Econ 19(3):341–348

    Google Scholar 

  34. Wen GJ (1993) Total factor productivity change in China’s farming sector: 1952-1989. Econ Dev Cult Change 42(1):1–41

    Article  Google Scholar 

  35. WssTP (2012) Irrigated agriculture water saving options in irrigation, looking for efficient techniques, irrigation management and adapted cropping practices. Water Supply and Sanitation Technology Platform (WssTP). http://www.wsstp.eu/files/WSSTPX0001/library/agriculture/SP%20Agriculture%20VI.pdf. Accessed 1 Feb 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amine Oulmane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oulmane, A., Chebil, A., Frija, A. et al. Water-Saving Technologies and Total Factor Productivity Growth in Small Horticultural Farms in Algeria. Agric Res 9, 585–591 (2020). https://doi.org/10.1007/s40003-019-00446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40003-019-00446-2

Keywords

Navigation