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SUMMARY

Roots, tubers, and bananas (RTB) are vital staples for food security in the world’s poorest nations. A major

constraint to current RTB breeding programmes is limited knowledge on the available diversity due to lack

of efficient germplasm characterization and structure. In recent years large-scale efforts have begun to eluci-

date the genetic and phenotypic diversity of germplasm collections and populations and, yet, biochemical

measurements have often been overlooked despite metabolite composition being directly associated with

agronomic and consumer traits. Here we present a compound database and concentration range for

metabolites detected in the major RTB crops: banana (Musa spp.), cassava (Manihot esculenta), potato

(Solanum tuberosum), sweet potato (Ipomoea batatas), and yam (Dioscorea spp.), following metabolomics-

based diversity screening of global collections held within the CGIAR institutes. The dataset including 711

chemical features provides a valuable resource regarding the comparative biochemical composition of each

RTB crop and highlights the potential diversity available for incorporation into crop improvement pro-

grammes. Particularly, the tropical crops cassava, sweet potato and banana displayed more complex com-

positional metabolite profiles with representations of up to 22 chemical classes (unknowns excluded) than

that of potato, for which only metabolites from 10 chemical classes were detected. Additionally, over 20%

of biochemical signatures remained unidentified for every crop analyzed. Integration of metabolomics with

the on-going genomic and phenotypic studies will enhance ’omics-wide associations of molecular signa-

tures with agronomic and consumer traits via easily quantifiable biochemical markers to aid gene discovery

and functional characterization.

Keywords: Banana and plantain (Musa spp.), cassava (Manihot esculenta), potato (Solanum tuberosum),
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Highlights

• Root, tuber and banana (RTB) crops are consumed by over 2 billion people.

• A comparative metabolomics workflow is applied to RTB crops.

• Biochemical diversity of understudied species was captured and is a freely available data resource.

• Potential application in breeding programmes, for example bio-fortification, disease resistance mechanisms, and stress

tolerance.

• Integration into multiomic workflows.

INTRODUCTION

Importance of RTB crops

The annual global production of root, tuber, and banana

(RTB) crops exceeds 1000 million tonnes (Food and Agri-

culture Organization of the United Nations, 2019) and feeds

over 2 billion people worldwide (Scott et al., 2000) (Fig-

ure 1). RTBs are especially vital in the least developed

countries where they provide ≥15% of daily calories and

are a source of economic subsistence to over 750 million

people (Kennedy et al., 2019). In Africa, the production of

RTBs exceeds that for all other staples combined (San-

ginga, 2015) and are the most important crops for direct

human consumption. Over 30 000 RTB crop accessions are

currently held in the genebanks of four CGIAR institutes

with many further accessions in national and regional col-

lections, representing the diversity currently available for

breeding (Tay, 2013). Whilst the RTB crops are cited to

have high yield potential (especially regarding calories per

hectare production) when compared with other staples (ce-

reals), the extent of diversity available for breeding cannot

be capitalized upon due to limited knowledge on the bio-

logical potential of these accessions. In addition to the

dearth of genetic resources, basic characterization such as

phenotypic and agronomic traits, including growth and

yield parameters, are scarce for a large proportion of

accessions. Consequently, insufficient germplasm charac-

terization and evaluation has hindered the exploitation of

the available diversity within breeding programmes (Jan-

sky et al., 2015). Depending on the RTB crop three factors

have contributed, to a varying degree, to the current situa-

tion: (i) poor or under-representation of crop wild relatives

in germplasm collections (Casta~neda-�Alvarez et al., 2016);

(ii) high levels of accession duplication and misidentifica-

tions in the collections, particularly prevalent in clonal crop

collections (yam up to 30% (Girma et al., 2012), potato var-

ies from c. 4.5 % (Ellis et al., 2018) to c. 75 % (Huam�an

et al., 2000) across different subsets); and (iii) the poorly

recorded assessment of germplasm diversity, which is

especially complex in RTB crops due to crop wild gene

flow via ennoblement, hybridization from overlapping

natural and cultivation habitats, and genetic assimilation

from vegetative propagation (Scarcelli et al., 2017).

In recent years many large-scale efforts have sought to

further understand these crops using genome sequences

(Xu et al., 2011; D’Hont et al., 2012; Wang et al., 2014;

Tamiru et al., 2017; Yang et al., 2017; Li et al., 2019) and

genome diversity studies (Bredeson et al., 2016; Hardigan

et al., 2017; Nyine et al., 2017; Christelov�a et al., 2017;

Mu~noz-Rodr�ıguez et al., 2018; N�eme�ckov�a et al., 2018),

genetic selection (Wolfe et al., 2016), molecular markers

(QTLs) (Monden and Tahara, 2017; Kim et al., 2017;

Sharma and Bryan, 2017), and comparative transcriptome

resources (Kundapura Venkataramana et al., 2015; Sarah

et al., 2017; van Wesemael et al., 2019; Cenci et al., 2019)

widely developed alongside morphologic, agronomic and

phenotypic classifications (Oliveira et al., 2015; Rahajeng

and Rahayuningsih, 2017; D�epigny et al., 2018; Girma

et al., 2018; van Wesemael et al., 2019). The progress of

the CGIAR Research Program on Roots, Tubers and Bana-

nas (www.rtb.cgiar.org), applying genomics-assisted

breeding to RTBs, has recently been reviewed (Friedmann

et al., 2018). Although typically in the early stages, the

authors noted that success will be dependent upon the

quality of phenotypic characterization.

Why metabolomics in breeding?

Agronomic and consumer traits can often be directly asso-

ciated with metabolite composition (Bino et al., 2004),

which favours the use of metabolomics to generate mea-

surable biochemical signatures for characterization. Meta-

bolomics approaches can provide a standalone technique

when genetic mechanisms are not well understood (Price

et al., 2017), as evident in RTB crops. Phenotypic evalua-

tion of materials is required multiple times along the

breeding pipeline and integration of metabolomics into

current practices is advocated to greatly shorten the devel-

opment time of new varieties, reduce costs, and provide

unbiased phenotypic profiles for validation of genetic

parameters (Fernie and Schauer, 2009), and has the poten-

tial of being a powerful approach for future precision

breeding (Zivy et al., 2015).
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Various different metabolomics approaches can be

undertaken, generally encompassing untargeted metabo-

lite profiling including broad-scale relative quantification of

known and unknown metabolites and targeted profiling

and absolute quantification of identified metabolites. As

the accuracy of identification and quantification increases,

so does the time required for analysis. Through integration

with other ’omics to associate genotype with phenotype,

the regulation of agronomic/ phenotypic traits (phenomics)

at the genetic (genomics, epigenomics), transcriptional

(transcriptomics), translational (proteomic) and metabolic

level (metabolomics) can be dissected in a holistic systems

biology manner to enhance the understanding of crop

development and its responses to biotic and abiotic

changes. The development of bioinformatics tools and

resources has rapidly progressed alongside ’omics tech-

nologies to facilitate the integration and management of

these large and complex datasets. However, the interpreta-

tion of integrated datasets is complex, requiring expertise

and collaboration across many scientific fields, and

remains the major challenge for multiomics investigations

(Pinu et al., 2019; Misra et al., 2019). This system biology

approach has already been applied to model crops such as

tomato, rice, and wheat, in which metabolomics analyses

have provided a richness of resources (Grennan, 2009;

Perez-Fons et al., 2014) available to integrate with genetic

breeding approaches. These resources rapidly accelerated

progress for identifying trait markers (Schwahn et al.,

2014; Li et al., 2016a; Sprenger et al., 2018), elucidation of

biosynthetic pathways contributing to traits (Schwahn

et al., 2014; Daygon et al., 2017), and validation of genetic/

metabolic prediction (Wei et al., 2018). For example, inte-

grating genetic and metabolite markers for phenotypic

traits of wheat has provided more robust signatures than

either alone (Ward et al., 2015), and both were equally pre-

dictive for complex traits (Riedelsheimer et al., 2012).

Furthermore, metabolite markers are inherently affected

by environmental factors and can provide more precise

measures for crop trait variation compared with genetic

markers. Metabolite markers can be stably inherited (Chan

et al., 2010) and, as such, the metabolome can be viewed

in an analogous manner to the epigenome, acting as a

dynamic yet conserved network comprised from genetic

and environmental influence. Consequently, when per-

forming comparative analyses of crop growth under differ-

ent environments, quantifying the contributions of

biochemical signatures towards phenotype is often simpler

than for genetic markers, especially in highly heterozygous

Figure 1. Production of root, tuber, and banana (RTB) crops. Global and continental production of RTB crops highlights their importance as a staple food and

livelihood for billions of people especially in Low Income Food Deficit Countries (LIFDCs). Data taken from FAOSTAT (production data for 2017, value data for

2016) (Food and Agriculture Organization of the United Nations, 2019). World map image modified from www.freevectormaps.com
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crops, like RTBs. This gives rise to the potential to generate

chemotype core collections (CCC) for use in breeding, in

which material selection is based on fixation of a comple-

ment of biochemical signatures that could confer the

desired characteristics more robust to environmental varia-

tion. This is contrary to genotypic core collections, in

which breeding tries to fix gene variants that can then

often harbour different traits under different environments.

Furthermore, increased trait stability of CCCs would pro-

vide a suitable base for comparative GxE (Geno-

type 9 Environment) studies to elucidate environmental

effects on crop production (Xu, 2016). CCCs would there-

fore complement genotypic core collections to facilitate

localized precision breeding in the future.

Despite these advantages, the deployment of enhanced

cultivars directly from metabolomics-directed breeding is

still limited, largely based on the slow uptake by breeders

and the limited access to this technology, with the field still

being listed as prospective but with the potential to be

game-changing for future agricultural practice (Kumar

et al., 2017).

Prospective societal impact

Given the role that RTB crops play in the livelihoods of mil-

lions of people in the least developed nations, improve-

ment is paramount. On the whole, RTBs are primarily

grown through small-holder farms with a large proportion

of child and female labour and, therefore, the crops hold

extreme importance for the most vulnerable portions of

society.

Increasing the precision and speed of phenotyping dur-

ing the breeding ladder (Figure 2) would enable faster crop

improvements and, therefore, a multitude of benefits: (i)

enhanced agronomic, breeding efficiency and consumer

traits (e.g. increased yields, increased flowering, reduced

dormancy and bio-fortification) to tackle food insecurity

and malnutrition, which are more prevalent in RTB grow-

ing regions; (ii) decreased fertilizer inputs and improved

pest and disease resistance to lower production costs and

increase incomes; (iii) increased abiotic stress tolerance to

improve climate change adaptation and yields on mar-

ginal, saline or drought prone soils; and (iv) facilitate a bet-

ter understanding of basic phenomena such as crop

evolution/domestication, ploidy, and inheritance mecha-

nisms for understudied clonal crops.

RESULTS AND DISCUSSION

Metabolomics approach – general screening

The metabolomics workflow implemented and optimized

for each crop was based on a general concept (Figure 2).

All plant materials collected were flash-frozen, lyophilized,

and ground to a homogenous powder before undergoing

metabolite profiling workflow to ensure consistent

reproducibility. A common two-phase solvent extraction

method was implemented to extract a broad range of

metabolites from each type of sample. This standardized

and widely used method also allowed rapid optimization

of different tissue types. Furthermore, the partition into

aqueous and organic phase allowed the independent anal-

ysis of polar and non-polar extracts, which simplified sam-

ple handling, chromatographic method development, and

metabolite identification. During analysis, the requirements

for extraction blanks, quality controls and internal stan-

dards were implemented to maintain consistency and

good laboratory practices and enable normalization and

batch correction (Fernie and Klee, 2011).

Database curation

The data generated can be deposited in public reposito-

ries addressing metabolomics in general (Metabolights,

Dataverse, Metabolomics Workbench, Metexplore or

Metabolonote) and/or crop specific database such as Cas-

savaBase and MusaBase or PlantCyc. Initial fingerprinting

via LC-MS was conducted on materials to enable a rapid

screen of biochemical diversity, especially focussed on

secondary metabolism as this is typically where the lar-

gest proportion of chemical diversity resides (De Luca

et al., 2012). The bottleneck in many LC-MS based meta-

bolomics studies is compound identification and use of

the same chromatographic method meant data generated

could also be used to guide the purchase of metabolite

standards for LC-MS library generation. Typical finger-

printing screens were performed on methanol extracts

and measured only one biological replicate for speed. A

minimum of three biological replicates and at least two

analytical platforms were used for untargeted studies,

including study of both aqueous and organic extracts for

more comprehensive coverage of the metabolome. For

the identification of features/compounds detected during

the untargeted analysis, quality controls representing a

pool of samples for each species were used. Peaks

detected during GC-MS and LC-MS analyses were identi-

fied using published libraries (e.g. NIST, GMD (Kopka

et al., 2005), MassBank (Horai et al., 2010) etc.) and con-

firmed by authentic commercial standards to build a crop

specific library. After database curation, automated analy-

sis was possible for the whole dataset of each species

and the identification process integrated as an element of

the metabolomics data analysis pipeline. Nevertheless,

manual curation was undertaken for each dataset to

reduce matching errors. The analysis of isoprenoid

derived metabolites, such as carotenoids and chloro-

phylls, was carried out using ultra high or high perfor-

mance liquid chromatography coupled with a diode array

detector (U/HPLC-DAD). As the composition of leaf and

tuber materials has been reported extensively (Burns

et al., 2003; Drapal et al., 2017; Price et al., 2018; Drapal

© 2019 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2020), 101, 1258–1268

Metabolite resources of roots, tubers, and bananas 1261



et al., 2019b; Drapal et al., 2019c) and methods previously

validated (Fraser et al., 2000; Nogueira et al., 2013), this

was performed in a semitargeted mode in which the

majority of compounds was quantified absolutely. This

approach remains essential due to the intrinsic chemical

nature of the photosynthetic pigments displaying a lack of

amenability to MS.

Current progress in defining the metabolome of RTB crops

The database curated for banana, cassava, potato, sweet

potato, and yam, currently includes over 300 identified

metabolites (Table S1). Additionally, significant numbers

of reoccurring unidentified features summarized as ‘un-

knowns’ were measured (Figure 3 and Table S2). The

metabolites identified in each crop present a broad range

of the plant metabolome including amino acids, organic

acids, compounds of the tricarboxylic acid (TCA) cycle, iso-

prenoid derived compounds, phenylpropanoids, sugars,

fatty acids, sterols, and corresponding subfamilies. The

metabolite libraries have been implemented in the current

projects of the RTB programme, facilitating the assessment

of biochemical diversity, with future intentions to aid the

identification of trait biomarkers in the RTB crops. The lim-

its of metabolite concentrations have been reported to

include all the available quantitative range for use in tar-

geted breeding. This is exploitable because extremes are

often favoured in crop breeding to achieve the maximum

gains and enhancements above the average range and

contrasts with other databases reporting the average and/

or standard deviation.

Potato had the simplest biochemical profile with the

presence of just 10 chemical classes (excluding unknowns);

four of these related to primary metabolism. Sweet potato

and banana comprised 13 and 16 chemical families,

respectively, whilst the cassava and yam chemo-libraries

sum up over 20 families of compounds (Figure 3a).

Sugars was the largest annotated chemical class in all

crops. This is expected in sink/storage organs as for the tis-

sues analyzed in the collection. Similarly, chemical classes

related to primary metabolism (namely amino acids,

organic acids and components of the TCA cycle) were also

well annotated in all species. Potato’s chemical composi-

tion presented the largest proportion of these primary

metabolite sectors with sugars comprising more than the

other crops representing the presence of higher starch

quantity.

The divergence between crop compositions resided

mostly in components related to secondary metabolism.

For example, yams had a greater proportion of odd-chain

fatty acids, which are rare in plants. Also characteristic of

yam was the higher content and diversity of nitrogen-

containing compounds such as amines, nucleobases, and

catecholamines. Nevertheless, the catecholamine dopa-

mine was vastly more abundant (up to one order of

magnitude) in Musa. Triterpenoids also constituted a

source of chemical diversity within the RTB crops with a

more complex composition found in both cassava and

yam. Whilst typically these compounds were detected in

the leaf tissue of the accessions, yam tubers also pre-

sented significant amounts of sterols. Crude extracts of

yam presented a range of triterpenoids, including choles-

terol, reflecting the production of glycosylated steroidal

saponins within this crop (Sautour et al., 2007). Similarly,

cassava leaves showed an accumulation of amyrins and

Figure 2. Workflow of metabolomics analysis established to screen biochemical diversity of root, tuber, and banana crops. The use of numerous and comple-

mentary analytical platforms provides a more comprehensive coverage of the metabolome; customized libraries specific for each crop reduce matrix effects.

Metabolic fingerprint analysis typically takes c. 20 min per sample and generates c. 10 000 features, with data analysis being c. 1 h per 100 samples. Library cre-

ation is on-going but requires c. 20 h per crop before implementing automation, inclusive of machine time. Untargeted metabolite profiling takes c. 60 min per

sample per analytical platform and data analysis plus manual curation takes c. 10 h per 100 samples. Example statistical visualizations created using SIMCA-P

(Umetrics), Metscape (Basu et al., 2017) in Cytoscape (Shannon, 2003), and an in-house pathway mapper, Biosynlab (Royal Holloway University of London, UK).
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isomers, which are likely to represent the glycosylated

pentacyclic saponins. High levels of b-carotene and xan-

thophylls were also observed for orange-fleshed lines of

sweet potato and yam tubers, cassava roots, and Musa

fruit, as to be expected. The largest diversity of phenolic

compounds such as phenylpropanoids, coumarins, flavo-

noids and lignin/lignin oligomers was encountered in

cassava and sweet potato, although for sweet potato

many phenolics remain structurally elusive (level 3

unknown).

Unknowns comprised over half of all metabolites

measured (Figure 3b) and ranged from approximately

one-quarter to one-third of features recorded, for each indi-

vidual crop following the analysis of crude extracts (Fig-

ure 3a). Distinguishing the chemical features detected via

LC-MS, and turning these into distinct compounds was

challenging and will require further work to determine

whether each peak is of biological origin. Given that in typ-

ical LC-MS screening over 90% of features detected are not

true metabolites (Mahieu and Patti, 2017; Aksenov et al.,

2017), a conservative approach to limit false positives was

chosen in which only unknowns that are well characterized

(e.g. via MS/MS, clear UV–vis spectra) were included in the

database. The drawback to this is that the true level of

unknowns may be greatly underestimated in the current

database. As to be expected, the unknowns that could be

assigned to a compound class were predominantly sec-

ondary metabolites (Table S2). Unknowns have been given

unique identifiers to allow on-going annotations of com-

pounds for libraries and curation and updating of the data-

base (Table S2).

The diversity of compound classes recorded was highest

in yam and cassava, then banana, sweet potato, and low-

est in potato (Figure 3a). This finding is not unsurprising,

given that cassava was most intensively studied (most

accessions and on all platforms) and yam is a multispecies

crop and large biochemical diversity has previously been

evidenced across the genus (Price et al., 2016). In line with

this, yam presented the highest proportion of unknowns

(c. 50%, Figure 3a); despite not undergoing LC-MS study as

per the other crops. Sweet potato also had a comparably

large proportion of unknowns (c. 45%) mostly comprising

phenolic-derived compounds, which are likely to be conju-

gates (Drapal et al., 2019c). Accurate identification of such

compounds has been shown to require comprehensive

MS3 fragmentation and is therefore beyond that typically

conducted in current metabolite screening practices

(Akimoto et al., 2017). Interestingly, even with the relatively

extensive application of metabolomics to potato (Puzanskiy

et al., 2017), a large number of unknowns still exists and is

Figure 3. Pie-charts showing total number of annotated compounds in RTB crops following the metabolomics workflow (Figure 2) and displayed (a) per crop

and (b) for all RTB crops combined. Colours represent different compound classes and colouration follows the legend clock-wise per each pie chart.
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mostly sugars (Table S2). Carbohydrate analysis is particu-

larly complex, with high numbers of isomers and complex

polymers that are likely to contribute to the lack of conclu-

sive annotation. Level 3 unknowns detected in banana

extracts were mostly sugars and phenolics. Furthermore,

cassava had the lowest proportion of unidentified metabo-

lites. Cassava material has been the most intensively stud-

ied area (subjected to all three analytical platforms and the

largest number of tissues and accessions analyzed). This

highlights that extensive analysis via diverse methods can

elucidate unknowns and slowly conquer the challenge of

identification, commonly touted as metabolomics’ biggest

hurdle.

Overall, the observed differences between crops’

metabolite databases may be the result of the application

of different analytical platforms to each crop within the

modular pipeline. However, current observations match

that expected from literature. Dominance of particular

classes of compounds in each crop reflected the plasticity

of plants metabolism to develop physiological features

than can be linked to particular phenotypes.

Future developments

Presenting the ranges of metabolites recorded in a simple

spreadsheet format enables the easy use of information

regarding the comparative biochemical diversity of these

under-characterized crops. All compounds detected repre-

sent a portion of the steady-state metabolome of the plant

samples and can be used for untargeted data analysis to

unravel the great amount of variation that can be used to

guide breeding decisions. The system has proven to be

robust over datasets even when measured months apart.

Therefore, it is possible for future work to extend the plat-

form from relative to proximate absolute quantification for

many compounds through the generation of relative

response factors to the internal standard (Cifkova et al.,

2012) and subsequent correction following testing of

extraction recovery. Therefore, the next step will represent

the transition of the untargeted pipeline to a holistic semi-

targeted system. From this, data can be more informative

for use in flux modelling and genome-wide reconstruc-

tions, which are essential for understanding the fundamen-

tal processes governing plant physiology (Kruger and

Ratcliffe, 2015).

More elaborate sample preparations, such as solid

phase extraction (SPE) and molecular recognition, via

immunoaffinity, or imprinting, can be used to extend the

breadth of metabolites captured and increase metabolome

coverage. However, this would concurrently increase the

number of unidentified compounds, which already repre-

sent a considerable proportion of the dataset (Figure 3b).

Extensive structural elucidation via multistage MS frag-

mentation (MSn) and/or coupling of LC to NMR platforms

(e.g. LC-SPE-MS/NMR) or ion mobility (e.g. LC-IMS-MS)

has not yet become routine, largely hindered by the high

capital costs at outset, and expert knowledge required for

data interpretation, which is labour intensive. That said, in

recent years a great deal of progress has been made

towards the accessibility of tools for computational inter-

pretation of such data (Spicer et al., 2017; Tsugawa, 2018).

Investments in automated structural elucidation of uniden-

tified compounds have the potential to revolutionize meta-

bolomics workflows by overcoming the current bottleneck

of structural elucidation.

However, knowing the structure of a compound does

not allow one to fully assess biological relevance. Recent

years have seen a shift towards increased spatial resolu-

tion via mass spectrometry imaging and localization

through cell sorting and laser microdissection etc., along-

side flux-omics and longitudinal (time-series/developmen-

tal) applications. These applications evidence that

contextualizing metabolomics data requires a detailed

understanding of metabolic network dynamics and func-

tional activity, which will become the next hurdle for the

field.

Screening of complete germplasm collections will allow

the establishment of a CCC that comprises the majority of

biochemical diversity available. CCCs would therefore rep-

resent an advance in precision over morphological core

collections and can be overlaid with genotypic collections

to reduce and focus the selection on accessions with the

highest prospects for successful transfer of desired traits,

that is through overcoming genetic differences that do

not translate through to phenotype and by encompassing

biochemical traits not observed at the morphological

level.

CONCLUSION

Outlook for metabolomics in breeding of RTBs

Future work appears set to capitalize on the synergy of

pursuing a multiple ’omics platform for rapid progress dur-

ing crop improvement and breeding. At the forefront of

this pursuit is the combination of genomics and transcrip-

tomics for breeding and trait understanding. Moreover,

recently, metabolomics has been favoured to enhance pre-

cision during molecular phenotyping, and the utilization of

such methods looks set to increase. Metabolomics can

prove especially useful when tackling complex traits, that

is those with many determinants, as the metabolome

inherently reflects environmental factors and other stimuli

such as chemical interactions. This is evidenced by the

preference for elucidation of ‘interactomes’ such as the rhi-

zosphere and volatile-ome of plants by incorporating deep

sequencing of the microbiome (Hu et al., 2018; Jacoby and

Kopriva, 2019) or atmospheric transformation of volatiles

(Blande et al., 2014; Li et al., 2016b), respectively. Combin-

ing these measurements expands the biological system to
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the complete local environment and therefore characteriza-

tion occurs at the ecosystem level.

Improvement of RTB crops is vital for the attainment of

the UN Sustainable Development Goals and improving

livelihoods in the most deprived regions of the globe. In

addition, the RTB crops show potential as scientific models

for the analysis of complex genetic architectures, revealing

the interplay between evolution and domestication in clo-

nal crops.

Breeding and development for each of the RTB crops

shows unique pitfalls and problems, yet each is widely

grown due to the unique traits they present. The com-

plexities that have hindered crop improvement and agro-

nomic development for production of RTBs to date may

also be the crops’ largest saviours. In light of climate

change, the large morphological plasticity, limited genetic

assimilation, and resilience of these crops to extreme con-

ditions and low technology agricultural systems provide

the potential to adapt and overcome the impacts of global

warming and, therefore, provide the incentive to increase

research efforts towards these critically important under-

studied RTB crops. To ensure this, the breeding commu-

nity needs to move beyond viewing metabolomics and

other ’omics as a hypothesis-free service science to tech-

niques that can be integrated to solve complex biological

questions in a rapid, large-scale manner. Ironically, the

initial characterization of plant genetic resources and

diversity available is crucial to pose the biological ques-

tions for investigation and, as such, metabolomics can

progress on both fronts.

EXPERIMENTAL PROCEDURES

Samples from in vitro cultures and plants grown in the field
were harvested, flash-frozen with liquid nitrogen, and lyophilized
to remove all water content. The samples comprised a collection
of different tissues, for example leaf, root, tuber, stem, and fruit
from each crop. The tissue samples were then ground to a fine
powder and metabolites extracted. Sample preparation and
extraction and the profiling procedure of the extracts was based
on previously published protocols and optimized for each crop
to account for the matrix effects of the respective tissue (Perez-
Fons et al., 2014; Price et al., 2016; Drapal et al., 2017; Price
et al., 2017; Price et al., 2018; Drapal et al., 2019a; Drapal et al.,
2019b; Drapal et al., 2019c). To account for the difference in
chemical properties of the metabolites, three different platforms
were utilized in a modular manner for the screening process:
ultra/high performance liquid chromatography with diode array
detector (U/HPLC-DAD), liquid chromatography-mass spectrome-
try (LC-MS) and gas chromatography-mass spectrometry (GC-
MS). The yam materials underwent GC-MS of both polar and
non-polar extracts alongside HPLC-DAD of the non-polar phase.
All other crops underwent GC-MS and LC-MS analysis on polar
extracts and UPLC-DAD of non-polar extracts. Non-polar extracts
from cassava and sweet potato were also subjected to GC-MS
analysis.

The curation of crop specific libraries with identified metabo-
lites followed the same workflow for both the GC-MS and LC-MS
analytical platforms (Figure 3), whereas an established UPLC-DAD

library was used for all crops (Fraser et al., 2000; Burns et al.,
2003) with an extended version used for yam and sweet potato
(Price et al., 2018). All features detected in the generated sample
set were aligned and following statistical analysis, significant fea-
tures were identified and confirmed with standards (Fernie and
Klee, 2011). GC-MS data were processed via AMDIS (v2.71, NIST)
whereas the alignment and filtering of chromatograms for LC-MS
was achieved via metaMS (Wehrens et al., 2014; Franceschi et al.,
2014). U/HPLC-PDA data were analyzed via Empower 2TM software
(Waters Corp.). Manual confirmation of the identified compounds
was carried out (Table S1) and recurrent unidentified features that
represent hypothetical compounds have been reported with
unique identifiers per species (Table S2) (Bino et al., 2004). Nor-
malization to internal standards and sample weight allowed rela-
tive quantification, concatenation of data from the platforms, and
subsequent comparison between tissue types and species. For the
UPLC, absolute quantification for the major photosynthetic com-
pounds (b-carotene, violaxanthin, neoxanthin, phytoene, phyto-
fluene, chlorophyll a, chlorophyll b, b-cryptoxanthin, lutein,
antheraxanthin, and zeaxanthin) was achieved via comparison
with dose–response curves of authentic commercially available
standards. For carotenoids, for which an authentic standard was
not available, quantification was based on standard curves of car-
otenoids with the closest chemical structure and spectral proper-
ties similarity. When compounds were detected on more than one
analytical platform, the values reported in the database represent
that of the maxima recorded and the analytical technique that
proved to be more amenable was cited first. The database and
pie-charts were created in Microsoft Excel 2013.

As the compiled dataset was comprised of numerous indepen-
dent analyses undertaken over a three-year time-frame, the
metabolite ranges reported for each crop differed in the number
of samples analyzed and replicate measurements made. However,
for each metabolite reported per crop a minimum of 12 measure-
ments were taken and the validity and repeatability of measures
were controlled within each independent study. Furthermore, ana-
lytical drift and different response factors were controlled plat-
form-to-platform, batch–to-batch and study-to-study via the
analysis of both reference sample (quality control) and reference
metabolite (internal standard) to ensure robustness.
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