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Abstract

Grain legumes form an important component of the human diet, provide feed for livestock, and replenish soil fer-
tility through biological nitrogen fixation. Globally, the demand for food legumes is increasing as they complement 
cereals in protein requirements and possess a high percentage of digestible protein. Climate change has enhanced 
the frequency and intensity of drought stress, posing serious production constraints, especially in rainfed regions 
where most legumes are produced. Genetic improvement of legumes, like other crops, is mostly based on pedigree 
and performance-based selection over the past half century. To achieve faster genetic gains in legumes in rainfed 
conditions, this review proposes the integration of modern genomics approaches, high throughput phenomics, and 
simulation modelling in support of crop improvement that leads to improved varieties that perform with appropriate 
agronomy. Selection intensity, generation interval, and improved operational efficiencies in breeding are expected to 
further enhance the genetic gain in experimental plots. Improved seed access to farmers, combined with appropriate 
agronomic packages in farmers’ fields, will deliver higher genetic gains. Enhanced genetic gains, including not only 
productivity but also nutritional and market traits, will increase the profitability of farming and the availability of afford-
able nutritious food especially in developing countries.
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Introduction

Legumes are the third largest group among higher plants 
with more than 18 000 species in 650 genera. Grain leg-
umes belong to subfamily Papilionoideae. Economically 

important food and feed legumes mostly fall in four clades of 
Papilionoideae: (i) genistoids, (ii) aeschynomenoids/dalber-
gioids, (iii) Hologalegina, and (iv) phaseoloids/millettioids. 
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Recent molecular studies placed cool-season legumes in the 
inverted repeat loss clade of Hologalegina, while warm sea-
son legumes were included in the phaseoloid/millettioid clade 
(Wojciechowski et  al., 2004). Cool season legumes include 
chickpea (Cicer arietinum), faba bean (Vicia faba), lentil (Lens 
culinaris), and pea (Pisum sativum). Warm season legumes 
include common bean (Phaseolus vulgaris), cowpea (Vigna 
unguiculata), pigeonpea (Cajanus cajan), soybean (Glycine 
max), and groundnut (Arachis hypogaea) (Doyle and Luckow, 
2003). Signature features of legumes include biological nitro-
gen fixation in symbiotic association with bacteria and myc-
orrhiza, geotropic peg and pod development in groundnut, 
and vernalization in chickpea, each of which is of economic 
and scientific interest. Legumes form an important compo-
nent of the human diet, provide animal feed, and replenish 
soil fertility through biological nitrogen fixation. In addition, 
legumes can recover unavailable forms of soil phosphorus, 
possibly lower the emission of greenhouse gases, and are 
prospective assets in future cropping systems (Stagnari et al., 
2017). A  recent review gives a good summary of the many 
virtues of food legumes and sets an agenda for their improve-
ment in the decades to come (Sinclair and Vadez, 2012; Foyer 
et al., 2016).

According to United States Census Bureau International 
Database, the global population is predicted to approach 9.8 
billion by 2050. Further, the Global Alliance for Improved 
Nutrition, which works to strengthen the availability of nutri-
tious and affordable foods for infants and women, estimated 
that 2 billion people across the world are undernourished 
and 2.6 million children die due to malnutrition (http://www.
gainhealth.org/knowledge-centre/fast-facts-malnutrition/). 
The majority of crop improvement programs, however, have 
emphasized only crop productivity traits in the past including 
during the green revolution. As a result, despite the attaining 
of global food security, a continuous increase in micronutrient 
malnutrition has been recorded in most of the developing 
countries. Under such a scenario, the grain legumes are rele-
vant in the fight against malnutrition and are considered to 
provide ‘nutritious seeds for a sustainable future’. Therefore, 
a comprehensive strategy and dedicated effort are required to 
produce more and dense nutritious legume crops to ensure 
food and nutritional security.

Climate change has significant adverse impacts on all com-
ponents of crop production—area, intensity, and yield— and 
hence producing more food to feed the growing population 
is a great challenge before agriculturists and other stakehold-
ers. The World Resources Institute predicted that by 2040, 
the USA, China, and India are expected to face 40–70% more 
water stress. Globally the demand for food legumes is increas-
ing as legumes may complement cereals in protein require-
ments and possess a high percentage of digestible protein. 
The majority of the area under legumes is in Asia (~76%), 
principally soybean, beans, groundnut, and chickpea. More 
recent studies indicate that between 1961 and 2014, 75% of 
the legume area in South America and 90% of that in North 
America are under soybean cultivation (FAOSTAT, 2016). In 
Sub-Saharan Africa, food legumes are cultivated on 20 mil-
lion ha, and 44% of production comes from cowpea and 31% 

from dry beans. Sub-Saharan Africa alone contributes 54% 
of global cowpea production (Akibode, 2011).

High tolerance to environmental stresses of many rainfed 
legumes, when compared with soybean, is required for sus-
tainable production in often harsh soil and climatic condi-
tions in dryland agriculture (Foyer et  al., 2016; Sita et  al., 
2017). Erratic rainfall increases the occurrence of drought 
stress necessitating drought-tolerant legume varieties that can 
produce in water-limited environments. Drought tolerance is 
a very complex trait and hence an in-depth understanding of 
the genomic control and molecular mechanism of drought 
tolerance is essential for effective deployment in breeding.

Genetic gain can be defined as the rate of increase in yield 
over a given time period—pure genetic gain is estimated 
against potential yield, but can also be assessed under defined 
stress conditions. Barker et al. (2010) reported a maize gen-
etic gain of 211 kg ha−1 year−1 in favorable environments in 
Woodland, CA, USA. Further, the same study reported lower 
genetic gains under water limited environments, of 124 and 
91 kg ha−1 year−1 expressed during flowering and mid-grain 
filling, respectively. Recently, by using marker-assisted recur-
rent selection (MARS) in maize, a 3% increase in yield per 
cycle under water stress conditions was reported (Bankole 
et al., 2017). Among legumes, Koester et al., (2014) reported 
a genetic gain of 26.5 kg ha–1 year–1 by studying the historical 
data of 80 years of soybean breeding at the Crop Research 
and Education Center in Urbana (IL, USA). This gain in 
grain yield is attributed to increases in light interception, 
energy conversion, and partitioning efficiencies.

A contemporary question in legume improvement is how 
to enhance the synergy among the different disciplines of 
genomics, phenomics, crop physiology, growth modelling, 
and agronomy. In this article, we discuss the technological 
advances in different disciplines and advocate their integrated 
use both to understand the genetics of traits and to deploy 
them in crop improvement programs of soybean, chickpea, 
pigeonpea, and groundnut. A  special emphasis has been 
placed on deployment of genomic selection in breeding pro-
grams to attaining faster genetic gain.

Technological advances

Agricultural research has benefitted from new technologies 
that have helped in achieving current food sufficiency in 
many parts of the world. However, to realize future demands, 
researchers need to apply new tools, technologies, and part-
nerships to achieve even higher productivity and profitability 
of farming and better nutrition for all consumers. Emerging 
crop improvement technologies are outlined in the following 
sections.

Sequencing and genotyping

During the past two decades, advances in molecular marker 
technologies and next-generation sequencing technolo-
gies have enhanced our understanding of  several traits in 
crop plants including food legumes (Varshney et al., 2015). 
Genome sequences for most of  the grain legumes are now 
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available, for instance soybean (Schmutz et  al., 2010), 
groundnut progenitors (Bertioli et  al., 2016; Chen et  al., 
2016), chickpea (Varshney et  al., 2013d; Parween et  al., 
2015), pigeonpea (Varshney et  al., 2012a), common bean 
(Schmutz et al., 2014; Yang et al., 2015), and adzuki bean 
(Kang et al., 2015; Yang et al., 2015) (Table 1). Efforts are 
underway to sequence the  remaining legume genomes. The 
past decade has witnessed an exponential increase in avail-
ability of  genomic resources and their deployment in trait 
discovery and breeding (see Bohra et  al., 2014; Varshney 
et al., 2015; Pandey et al., 2016). As a result, several of  these 
legume crops have genomic resources and associated pheno-
typic data to support genomics-based discovery and breed-
ing approaches to develop superior legume varieties.

Besides disclosing the blueprint of  genomes of  several 
legumes, different research groups also re-sequenced leg-
ume germplasm lines, which further increased our under-
standing of  genome architecture, structural variations, 
genome evolution, and genome dynamics during domes-
tication. Several million structural variations that aid 
in trait mapping and trait improvement were reported 
(Kumar et  al., 2016; Thudi et  al., 2016b). In addition, 
genome-wide single nucleotide polymorphisms (SNPs) 
were also used to identify significant marker trait asso-
ciations for economically important traits (Zhou et  al., 
2015a; Varshney et  al., 2017). Resequencing germplasm 
lines also enabled us to understand the spatial and tem-
poral trends in diversity in released varieties of  chickpea 
(Thudi et  al., 2016a), cultivated and wild accessions of 
soybean (Lam et al., 2010; Zhou et al., 2015a), and a ref-
erence set of  pigeonpea (Varshney et  al., 2017; Table  1). 
Resequencing of  28 Brazilian soybean cultivars suggested 
that, despite the diversification of  modern Brazilian culti-
vars, the soybean germplasm remains very narrow because 
of  the large number of  genome regions that exhibit low 
diversity (Maldonado dos Santos et  al., 2016). In recent 
years, genotyping by sequencing, skim sequencing, diver-
sity array technology (DArT)-seq and restriction site asso-
ciated DNA sequencing approaches were also employed 
for developing high density genetic maps, refining the QTL 
mapping and identifying trait linked markers in legumes 
(Jaganathan et al., 2015; Kale et al., 2015; Contreras-Soto 
et  al., 2017; Leamy et  al., 2017; Valdisser et  al., 2017). 
Nevertheless, the percentage of  missing data points and 
the SNP calling rates greatly reduce the number of  final 
SNPs for different studies and this has been a concern. To 
overcome these constraints several high-throughput SNP 
genotyping platforms, such as Veracode assays, Illumina 
GoldenGate assays, Infinium chips and Axiom arrays, are 
now available, which not only increase the precision of 
SNP calling but also enable genotyping of  larger popula-
tions at reduced cost (Table 1). Axiom arrays with >50K 
SNPs with uniform genome coverage were developed and 
are being used for germplasm characterization, trait map-
ping and molecular breeding in chickpea (Roorkiwal et al., 
2017), pigeonpea (ICRISAT unpublished data), ground-
nut (Pandey et al., 2017a) and soybean (Lee et al., 2015; 
Table 1).

High-density and precise phenotyping

Understanding the complex relationships between genotype 
and phenotype is a major challenge in plant sciences in view 
of the multi-scale nature of phenotypes and of the large 
phenotypic plasticity displayed by plants subjected to vary-
ing environmental conditions that results in different values 
of phenotypic variables and different rankings of genotypes 
in different experiments. It requires (i) capturing information 
on physiological traits and performance of large numbers of 
plants, together with their environment, (ii) analysing and 
organizing the resulting datasets, and (iii) developing models 
able to disentangle and simulate plant behavior in a range of 
scenarios (Tardieu et al., 2017). Good and relevant phenotyp-
ing starts with a detailed understanding of plant biological 
processes underlying tolerance/resistance to well-defined 
constraints. For instance, tolerance of chickpea to terminal 
drought in South Asia depends on plant traits that ensure the 
availability of water during the grain filling phase (Zaman-
Allah et al., 2011; Vadez et al., 2013a; Vadez 2014). Therefore, 
phenotyping first needs to be well targeted and defined. 
Precise phenotyping is the next step and involves the design 
of protocols and approaches that ensure the assessment of 
key traits at the highest rate and the cheapest cost. The cost 
of phenotyping increases with increase in population size, 
especially in the case of deployment of genomic selection (see 
later), which requires a larger population for high prediction 
accuracy.

The availability of non-destructive root phenotyping 
methods has, in the past, limited our understanding of 
traits involved in drought tolerance of legumes such as sto-
matal control or root system architecture. Hence, genome-
wide association studies of traits associated with drought 
tolerance, based on large-scale germplasm re-sequencing 
(Varshney et  al., 2017), require a suite of high-throughput 
and precise phenotyping technologies for capturing, analys-
ing, and interpreting images in order to infer heritable traits 
that can be analysed genetically (Tardieu et al., 2017).

Recognizing the importance of phenotyping, in recent 
years several large public, private and academic efforts have 
led to the establishment of state-of-the-art phenotyping facil-
ities word-wide in an exponential phase of automated high-
throughput phenotyping (Table 2). These include the German 
and French Plant Phenotyping Networks (http://www.
dppn.de; https://www.phenome-fppn.fr/), European Plant 
Phenotyping Network (2020) (EPPN2020; https://eppn2020.
plant-phenotyping.eu), European Plant Phenotyping 
Infrastructure (EMPHASIS), and International Plant 
Phenotyping Network (IPPN; https://www.plant-phenotyp-
ing.org/). These infrastructure networks enable access to the 
necessary tools for phenotyping, in particular robot-assisted 
image capture (Cooper et al., 2009; Fiorani and Schurr, 2013), 
statistical designs and models for extracting relevant physio-
logical variables from raw data (Cabrera-Bosquet et al., 2016), 
and specialized information systems managing large datasets 
originating from phenotyping experiments (Tardieu et  al., 
2017). GrowScreen-PaGe is a non-invasive, high-throughput 
phenotyping system developed at the Institute of Biosciences 
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Table 1.  Summary of genome sequence, resequencing efforts and available high throughput genotyping platforms in important 
legumes

Crop Genome sequence Germplasm lines resequenced High throughput genotyping 
platforms

Soybean • � 85% of Glycine max var William 82 genome 
(1115 Mb); 46 430 protein coding genes (Schmutz 
et al., 2010)

• � 915.4 Mb of G. soja var. IT182932 (Kim et al., 2010)

• � 106 (7 wild, 43 landraces and 56 elite; 
Valliyodan et al., 2016)

• � 302 (62 wild, 130 landraces and 110 elite; 
Zhou et al., 2015a)

• � 28 (commercial cultivars; Maldonado dos 
Santos et al., 2016)

•   �89 lines (Lee et al., 2015)
• � 286 (14 wild, 153 landraces and 119 elite; 

Zhou et al., 2015b)

•   �Illumina 384 SNP VeraCode assays 
(Lee et al., 2015)

• � NJAU 355 K SoySNP array (Wang 
et al., 2016)

• � Illumina Infinium SoySNP6K 
BeadChip (Akond et al., 2013)

• � SoySNP50K array (Song et al., 
2013)

•   �384 SNP GoldenGate assay (Hyten 
et al., 2008)

• � SoyaSNP180K Axiom (Lee et al., 
2015)

Pigeonpea • � 72.7% of Cajanus cajan var Asha genome 
(833.07 Mb); 48 680 protein coding genes 
(Varshney et al., 2012a)

•   �292 lines (Varshney et al., 2017)
• � 20 (crossing parentals of recombinant inbred 

lines, introgression lines, MAGIC and NAM 
population; Kumar et al., 2016)

• � 60K Axiom®Cajanus SNP 
array (Saxena et al., 2017 and 
unpublished)

 Chickpea • � 72.12% of Cicer arietinum var CDC Frontier  
genome (738 Mb); 28 269 protein coding genes 
(Varshney et al., 2013d)

• � 416 Mb of C. reticulatum var PI 489777 genome;  
25 680 protein coding genes (Gupta et al., 2017)

• � 35 (parental genotypes of mapping 
populations; Thudi et al., 2016a)

• � 129 released varieties (Thudi et al., 2016b)
•   �300 lines (ICRISAT, unpublished)
•   �3000 lines (ICRISAT, unpublished)

• � GoldenGate assays based on 
VeraCode technology (Roorkiwal 
et al., 2013)

• � 60K Axiom®Cicer SNP array 
(Roorkiwal et al., 2017)

• � GoldenGate assays based on 
VeraCode technology (Roorkiwal 
et al., 2013)

 Groundnut • � 1081 Mb of Arachis duranensis V14167 and 
1371 Mb of A. ipaensis K30076 (Bertioli et al., 2016)

• � A. duranensis var PI475845; 50 324 protein coding 
genes (Chen et al., 2016)

• � 11 genotypes including synthetics and their 
diploid parents (Chen et al., 2016)

• � 41 diverse genotypes (30 tetraploids and 11 
diploids) (Clevenger et al., 2017; Pandey et al., 
2017a)

• � 58K Axiom®Arachis SNP array 
(Pandey et al., 2017a)

•1536 SNP GoldenGate assay (Nagy 
et al., 2012)

Common bean • � 80.57% of Phaseolus vulgaris var G19833 genome 
(587 Mb); 26 279 protein coding genes (Schmutz 
et al., 2014)

• � 17 varieties (Song et al., 2015) •   �BARCBean6K_1, BARCBean6K_2 
chips, BARCBean6K_3 SNP chips 
(Song et al., 2013, 2015)

Mung bean • � 84.48% of Vigna radiata var radiata VC1973A 
geome (548 Mb); 22 427 predicted genes (Kang 
et al., 2014)

• � 84.48% of Vigna radiata var sublobata TC1966A 
geome (501 Mb); 22 834 predicted genes (Kang 
et al., 2014)

• � 81.81% of Vigna radiata var glabra V1160 geome 
(968 Mb); 41 484 predicted genes (Kang et al., 
2014)

— —

Adzuki bean • � 96.56% of Vigna angularis var Gyeongwon genome 
(612 Mb); 21 532 predicted genes (Kang et al., 
2015)

• � 83.02% of Vigna angularis var Jingnong geome 
(542 Mb); 34 183 predicted genes (Yang et al., 
2015)

— —

 Cowpea • � 323 Mb of Phaseolus vulgaris var IT97K genome 
(724 Mb) (Muñoz-Amatriaín et al., 2017)

• � 36 diverse accessions (Muñoz-Amatriaín et al., 
2017)

• � Cowpea iSelect Consortium Array 
(Muñoz-Amatriaín et al., 2017)

•   �1536 SNP GoldenGate assays 
(Muchero et al., 2009)

 Pea https://www.france-genomique.org/spip/spip. 
php?article141&lang=fr

— • � GenoPea 13.2K SNP Array (Tayeh 
et al., 2015a)

•   �384 SNP GoldenGate assays 
(Deulvot et al., 2010)
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Table 2.  A list of key high-throughput phenotyping platforms

Phenotyping platform (and institute or 
company)

Salient features Reference

LeasyScan phenotyping platform (ICRISAT, 
India)

• � A novel 3D scanning technique to capture leaf area 
development continuously

• � Scanner-to-plant concept to increase imaging 
throughput and analytical scales to combine 
gravimetric transpiration measurements.

• � Combines 3D imaging and lysimetry for high- 
throughput phenotyping of traits controlling plant 
water budget

Vadez et al. (2015)

Semi-hydroponic phenotyping system 
(The University of Western Australia, Australia)

• � Permits mapping and digital measurement of 
dynamic growth of taproot and lateral roots

• � Desirable tool for examining root architecture of 
deep root systems and large sets of plants in a 
relatively small space

Chen et al. (2011)

DEEPER: an integrated phenotyping platform 
for deeper roots
(PennState Colleage of Agriculture, USA)

• � A platform for identifying the traits of deeper  
rooted crops in non-destructive field phenotyping  
of rooting depth, root modeling, high-throughput  
3D imaging of root architecture, and anatomy

http://plantscience.psu.edu/research/labs/roots/projects/ 
deeper-an-integrated-phenotyping-platform-for-deeper-roots

GLO-Roots: luminescence-based imaging 
system
(Dinnenylab, USA)

• � Combines custom-made growth vessels and new 
image analysis algorithms to non-destructively 
monitor RSA development over space (2D)  
and time

• � Allows information on soil properties (e.g. moisture) 
to be integrated with root growth data

• � Makes use of luminescence imaging of roots 
expressing plant codon-optimize luciferase

Rellán-Álvarez et al. (2015)

X-Ray computed tomography (University of 
Nottingham, UK)

• � Non-destructively visualizes opaque root  
structures by measuring the attenuation of  
ionizing radiation as it passes through the root

• � A series of projections are acquired and  
combined to reconstruct a 3D image of the  
root system

Mairhofer et al. (2012), Mooney et al. (2012)

Rhizophonics
(University of Liège, Belgium)

•  Combines hydroponics and rhizotrons
• � System is made of a nylon fabric supported by an 

aluminum frame
• � The set-up is immersed in a tank filled with liquid 

medium
• � Allows non-destructive, 2D imaging of root 

architecture while simultaneously sampling shoots

Mathieu et al. (2015)

Clear pot method
(The University of Queensland, Australia)

• � Uses transparent pots filled with soil or other p 
otting media

• � Seeds are planted close to the pot wall to enable 
high- throughput imaging of roots along the clear 
pot wall

• � To prevent light exposure, the clear pot is placed  
in black pots while roots are developing

Richard et al. (2015)

Rhizoslides
(Institute of Agricultural Sciences,  
ETH Zurich, Switzerland)

• � The set-up consists of a Plexiglas sheet covered 
with moistened germination paper. Seeds are 
planted on the slit of the Plexiglas

• � Allows separation of crown roots from embryonic 
roots

Le Marié et al. (2014)

Shovelomics
(PennState Colleage of Agriculture, USA)

• � Involves manual excavation of plants and  
separating roots from shoots

• � Washed roots are then placed on a phenotyping 
board for root trait quantification

• � New algorithms allow extraction of several root  
traits in a high throughput manner

Trachsel et al. (2011), Bucksch et al. (2014)
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Phenotyping platform (and institute or 
company)

Salient features Reference

Soil coring
(CSIRO and The University of Queensland,  
Australia)

• � Uses a tractor-mounted, hydraulic soil corer to  
drive steel alloy sampling tubes into the soil

• � When combined with novel planting configurations 
(e.g. hill plots), this method allows for phenotyping 
deep rooted crop varieties

Wasson et al. (2014)

Rhizo-lysimetry
(E. H. Graham Centre for Agricultural 
Innovation, Australia)

• � Elaborate facility consisting of an underground 
corridor and concrete silos and pipes to house  
soil-containing soil cores for direct root observation

Eberbach et al. (2013)

Minirhizotrons • � A transparent observation tube permanently  
inserted in the soil. Images of roots growing along 
the minirhizotron wall at particular locations in the 
soil profile can be captured over time

Iversen et al. (2011), Maeght et al. (2013)

RhizoTube
(INRA, France)

• � Cylindrical rhizotrons that allow full 2D visualization 
of the root system of a single or up to six plants 
simultaneously

• � The RhizoCab is designed to take images of the 
entire root systems of plants growing in  
RhizoTubes, and also permits a focus on some  
parts of the root systems

Jeudy et al. (2016)

RADIX
(Institute of Agricultural Sciences, ETH Zurich, 
Switzerland)

• � Rhizoslide platform allowing high throughput  
digital image analysis of root system expansion

Le Marié et al. (2016)

Scanner bank (The James Hutton  
Institute, UK)

• � Low-cost, high-resolution root phenotyping  
platform, requiring no sophisticated equipment 
and adaptable to most laboratory and glasshouse 
environments, and applied to quantify  
environmental and temporal variation in root traits

Adu et al. (2014)

The Plant Accelerator® (The University of  
Adelaide, Australia)

• � The facility offers modern plant growth  
environments and state-of-the-art high-throughput 
automated imaging and computing technologies  
to monitor the performance of plants under  
different environmental conditions (e.g. which 
genotype performs best under drought stress)

• � Research projects facilitated by this technology vary 
from large scale screening of early growth, salinity 
tolerance to water and nutrient use efficiency

http://www.plantphenomics.org.au/services/accelerator/ 

DroughtSpotter (The University of Adelaide, 
Australia)

• � A gravimetric platform with precision irrigation to 
assess transpiration dynamics of plants with a 
precision of up to 1 g

• � Integrated irrigation units allow precise and 
reproducible water application for drought stress or 
related experiments that require an accurate control 
of water volume to 1 ml

http://www.plantphenomics.org.au/services/droughtspotter/

Crop Plant Root Module (The University of  
Adelaide, Australia)

• � Comprises destructive and non-destructive 
measurement of root growth, architecture, 
morphology, and water uptake in soil in controlled 
environments and in the field

http://www.plantphenomics.org.au/services/croproot/

Jülich Plant Phenotyping Centre (Jülich, 
Germany)

• � Reproducibly quantifies growth and architecture of 
roots

• � Elucidates dynamic establishment of roots in  
space and time

• � Determines interaction of root responses with  
above ground plant part

http://www.fz-juelich.de/ibg/ibg-2/EN/organisation/JPPC/ 
JPPC_node.html

PHENOPSIS (INRA, France) • � Automated platform for reproducible  
phenotyping of plant responses to soil water deficit

Granier et al. (2006), Bresson et al. (2015)

WIWAM
(SMO and VIB, Belgium)

• � Automated phenotyping platform for automated 
weighing, watering, and imaging of plants and, 
therefore, strictly controlling the applied watering 
regime

Skirycz et al. (2011), Clauw et al. (2015)

Table 2.  Continued
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and Geosciences suitable for investigating root systems and 
root plasticity of large sets of both dicots and monocots 
(Gioia et  al., 2016). The LeasyScan platform developed at 
the International Crops Research Institute for the Semi-Arid 
Tropics (ICRISAT) offers a novel 3D scanning technique that 
capture leaf area development continuously and phenotype 
traits controlling plant water budget (Vadez et al., 2015). The 
University of Western Australia, Australia has developed a 
semi-hydroponic phenotyping system that examines architec-
ture of deep root system and is amenable for phenotyping 
large sets of plants in a relatively small space (Chen et  al., 
2011). The salient features of several high throughput pheno-
typing platforms, such as PHENOPSIS (Bresson et al., 2015; 
Granier et  al., 2006), PhenoArch (Cabrera-Bosquet et  al., 
2016), DEEPER PHENOSCOPE (Bresson et al., 2015), and 
RADIX (Le Marié et al., 2016), are summarized in Table 2.

Robotic-assisted imaging platforms and computer vision-
assisted analysis tools have also been developed for precise 
phenotyping of physiological growth, development, and 
other phenotypic properties (Fahlgren et  al., 2015a,b). The 
data processing software that handles high throughput phe-
notyping for 2D, 3D, and anatomy cross sections of root have 
been extensively reviewed by Kuijken et al. (2015). The avail-
ability of automated high throughput phenotyping platforms 
enables testing of progenies from large germplasm popula-
tions across a range of target environments in terms of their 
impact on yield. The efficiency of these platforms, in this con-
text, depends on the heritability and correlation of the traits 
with agronomically relevant breeding targets. Proper iden-
tification of the key constraints for a particular production 
ecology and an understanding of the biological processes can 
now be achieved with increasing scale and speed using exist-
ing platforms and designing new ones.

Multiple challenges lie ahead for high throughput pheno-
typing such as (i) targeting the development of phenotyping 
protocols and technology specifically for the target traits of 
their breeding product profiles; (ii) development of precise 
protocols amenable for high throughput phenotyping for 
agronomically important traits; (iii) developing appropriate 
technology for collecting, collating, and analysing data; (iv) 
storage and processing of huge datasets collected during high 
throughput phenotyping; and (v) integration and deploy-
ment of high throughput phenotyping in breeding pipelines. 

On top of that, the cost per sample, especially when dealing 
with large-scale populations, still remains an important chal-
lenge to the phenotyping community. One important aspect 
of better integration of genomics compared with crop physi-
ology in breeding is the lower cost of genotyping per sample 
compared with field-based phenotyping. Another area that 
needs immediate attention is the automation of data collec-
tion, analysis and delivery of phenotypic data to support the 
breeding community in a cost-effective and timely manner. 
Addressing these challenges will accelerate the integration of 
modern phenotyping tools into breeding programs and accel-
erate the development of crop varieties with wider adapta-
tion, resilience, and increased productivity and profitability.

Crop growth simulation and modelling approaches

In recent years, crop simulation and modelling approaches 
have challenged the idea of  broad adaptation cultivars and 
have brought a new paradigm in breeding for target envi-
ronments. Crop models, with general genetic inputs, sug-
gest how a given combination of  alleles confers a positive or 
negative effect on plant performance in different locations 
and seasons (Hammer et  al., 2002; Tardieu and Tuberosa, 
2010; Messina et al., 2011). Modelling enables us to predict 
the effect of  a change in the biological architecture of  a plant 
type (for instance having faster growing roots, Vadez et al., 
2012; for water use efficiency and stay green, Kholová et al., 
2014), or of  a change in the agronomic management (for 
instance increasing planting density, Vadez et al., 2017). As 
such, modelling should become an important resource-sav-
ing tool to guide the choice of  breeding and agronomic man-
agement investment. Crop models have simulated the effect 
of  crop management and climate on yield (Duncan et  al., 
1967; de Wit et al., 1970; de Wit, 1978; Kumar et al., 2009; 
Kim et al., 2010). Later, crop models were redesigned into 
farming systems models that could consider more broadly 
the effects of  the management system including the car-
ryover effects of  rotations, planting density and intercrop-
ping. More broadly, systems models such as the Agricultural 
Production Systems sIMulator (APSIM) and the Decision 
Support System for Agrotechnology Transfer (DSSAT 
https://dssat.net/) simulate agricultural production systems 
(Keating et  al., 2003; Jones et  al., 2003; Holzworth et  al., 

Phenotyping platform (and institute or 
company)

Salient features Reference

PHENOSCOPE
(INRA, France)

• � Automated large-scale phenotyping platform that 
automatically adjusts watering and is equipped with 
a zenithal imaging system to monitor rosette size 
and expansion rate during the vegetative stage, with 
automatic image analysis allowing manual correction

Tisné et al. (2013)

LemnaTec
(LemnaTec, Germany)

• � Versatile phenotyping system and analytics platform 
for diverse temporal responses to water availability

Chen et al. (2014), Neumann et al. (2015)

GlyPh (self-construction) • � Simple and low-cost automatic platform for high 
throughput measurement of plant water use and 
growth to assess drought tolerance

Pereyra-Irujo et al. (2012)

Table 2.  Continued
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2014; Hoogenboom et al., 2017), modelling interactions of 
plants, animals, climate, soil, and land management. Teixeira 
et  al. (2015), using APSIM, demonstrated the importance 
of  rotations for simulating climate impact assessments and 
Sennhenn et al. (2017) found new niches for short season leg-
umes in Kenya. APSIM has been used in simulation studies 
for yield gap assessment in legumes such as soybean, ground-
nut, pigeonpea, and chickpea in India (Bhatia et al., 2007; 
Chauhan et al., 2008), in simulation of  soil temperature in 
the podding zone of  groundnut (Chauhan et al., 2007), and 
in assessment of  the impacts of  fertilizers and legumes on 
N2O and CO2 emissions from soils in subtropical agricul-
tural systems (Huth et al., 2010).

With the availability of high throughput phenotyping plat-
forms, the use of crop models in a genetic context has become 
possible. A conceptual framework was developed by Tardieu 
and Tuberosa (2010) with four modules that take into consid-
eration phenotyping, genetics, climate, and crop models for 
estimating the effects of genetic diversity on crop perform-
ance. More recently Parent and Tardieu (2014) compared the 
algorithms involved in 19 crop models developed for predict-
ing the effects of climate or cultivation techniques on a refer-
ence genotype. This study reported significant differences in 
combined effects of temperature and water deficit on plant 
development, but these differences have a low impact on 
the yield prediction of a reference genotype because errors 
in the effects of different traits compensate each other. The 
impact of climate on crop yield is assessed using two com-
mon approaches: (i) process-based simulation models, which 
attempt to represent key dynamic processes affecting crop 
yields, and (ii) statistical models, which estimate functional 
relationships between historical observations of weather and 
yields (Lobell and Asseng, 2017). The first approach is closer 
to physiological processes and can explicitly take into account 
the genetic variability of traits as measured in phenotyping 
platforms, for both main effects and genotype×environment 
interaction. However, it is often over-parametrized and can 
lead to inaccurate predictions in some cases because the 
model follows its own logic even if  not applicable to the con-
sidered set of conditions (Tardieu et al., 2017). The statistical 
approach is more conservative and safer, because predicted 
yields seldom depart from those observed experimentally. 
Both approaches are therefore complementary. The impact of 
drought on legume production is still not well understood in 
how it varies with legume species, region, agroecosystem, soil 
texture, and drought timing. For legumes specifically, a model 
has been developed (Simple Simulation Modelling; SSM) that 
uses the same model architecture across a range of grain leg-
umes and is easy to use (Soltani and Sinclair, 2012). SSM has 
been used successfully to predict growth and yield in chick-
pea (Soltani and Sinclair, 2011; Vadez et  al., 2012, 2013b), 
lentil (Ghanem et al., 2015a,b), common bean (Marrou et al., 
2014), soybean (Sinclair et al., 2014), and groundnut (Vadez 
et al., 2017). In the case of soybean, a recent modelling study 
indicated that a faster rate of root growth has a negative 
impact on yield as available soil moisture was depleted faster 
by more vigorous root growth (Sinclair et al., 2010). While 
significant progress is being made in crop growth simulation 

and modelling, their integration with genetics and breeding is 
still in its infancy.

Genomics-assisted breeding

Most legume breeding programs focus on yield under drought 
stress. However, the pace of progress has been slow and the 
rate of yield gains has been minimal due to the complex nature 
of drought and non-availability of precise drought screening 
methods. As a result, the genetic gain achieved is about 1% 
per year in several species (Duvick, 2005; Cooper et al., 2009; 
Brisson et al., 2010; Lopes et al., 2012; Aisawi et al., 2015). 
The most promising option to design more drought resilient 
and sustainable production is to target the major traits of 
adaptation that include early flowering and seed set before 
the onset of terminal drought (Sennhenn et al., 2017).

During the past two decades, the availability of molecu-
lar markers such as simple sequence repeats (Gupta and 
Varshney, 2000) and SNPs (Varshney et  al., 2010) facili-
tated dissecting complex traits that hamper crop production, 
using QTL mapping and genome wide association mapping 
approaches (Varshney et  al., 2015). Genome wide SNPs 
based on resequencing of several germplasm lines were also 
used to identify marker-trait associations in the cases of leg-
umes such as pigeonpea (Varshney et al., 2017) and soybean 
(Zhou et al., 2015a).

Genomics-assisted breeding (GAB; Varshney et al., 2005) 
was proposed to integrate genomics in breeding and it has 
been quite successful for several traits in cereals (Septiningsih 
et  al., 2013; Varshney et  al., 2006) and legumes (Varshney, 
2016; Pratap et al., 2017). Recently, Reynolds and Langridge 
(2016) have suggested crossing parents with different complex 
but complementary traits to achieve cumulative gene action 
for yield, while selecting progeny using remote sensing in 
combination with genomic selection. Genetic and genomics 
approaches and innovative tools have been made available 
during the past decade to breed climate-resilient legumes; for 
instance, root xylem plasticity and its role in improving water 
use efficiency in soybean (Prince et al., 2017).

The QTLs/genomic regions and markers associated with 
traits are used to breed for stress resilience using marker-assisted 
selection (MAS), marker-assisted back crossing (MABC), and 
MARS approaches (Varshney et al., 2012b). The legume com-
munity has been successful in developing several molecular 
breeding products despite the late arrival of genomic resources 
and trait-associated markers (Varshney et al., 2013a,b; Pandey 
et al., 2016; Varshney, 2016). Some key examples include resist-
ance to Fusarium wilt and ascochyta blight (Varshney et al., 
2013b) and improved drought tolerance (Varshney et al., 2013a) 
in chickpea; resistance to nematode and high oleic acid (Chu 
et al., 2011), resistance to leaf rust (Varshney et al., 2014), and 
resistance to high oleic acid (Janila et al., 2016) in groundnut; 
resistance to rust disease (Khanh et al., 2013), soybean mosaic 
virus (Saghai-Maroof et al., 2008; Shi et al., 2009; Parhe et al., 
2017), and low phytate (Landau-Ellis and Pantalone, 2009) in 
soybean; Striga resistance and seed size in cowpea (Lucas et al., 
2015; see Boukar et al., 2016); pyramid genes for resistance to 
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ascochyta blight and anthracnose in lentil (Taran et al., 2003); 
powdery mildew resistance (Ghafoor and McPhee 2012), lodg-
ing resistance (Zhang et al., 2006), frost tolerance (see Tayeh 
et  al., 2015b), and Aphanomyces root rot resistance (Lavaud 
et al., 2015) in pea; and resistance to common bacterial blight 
disease (Miklas et al., 2000, 2006; Mutlu et al., 2005; O’Boyle 
and Kelly, 2007), rust and viruses (Stavely, 2000), rust, anthrac-
nose, and angular leaf spot (Oliveira et al., 2008), rust (Feleiro 
et  al., 2001), and anthracnose (Alzate-Marin et  al., 1999) in 
common bean. Several of these improved lines have either been 
released or are in the release pipeline in different countries. In 
addition to the above, the gene/QTL pyramiding efforts are at 
an advanced stage for several legume traits such as in groundnut 
(leaf rust resistance+late leaf spot+high oleic acid), chickpea 
(fusarium wilt resistance+ascochyta blight resistance+drought 
tolerance; see Pandey et  al., 2016), and cowpea (resistance 
to Striga+aphid+macrophomina root rot; see Boukar et  al., 
2016). The majority of the legume crops now enjoy the avail-
ability of genomic resources and such examples are seen 
more frequently in grain legumes. The MARS approach was 
deployed in cowpea successfully for improving grain yield, 
drought tolerance, Striga resistance and Macrophomina resist-
ance (see Boukar et al., 2016), but this approach did not work 
in the case of chickpea (see Varshney et al., 2013c).

Next generation GAB approaches

While some examples, as mentioned above, are available for 
the use of molecular breeding, they include introgression of 
one to a few traits with higher heritability through MABC. 
Due to advances in low-cost genotyping/sequencing and 
availability of diagnostic markers, we expect use of early 
generation selection, genomic selection, and genome editing 
technologies in future GAB approaches.

Early generation selection

Early generation selection (EGS) is performed in highly seg-
regating populations (mostly F2) while advanced generation 
selection (AGS) begins with F4 onwards followed by assess-
ment of yield performance and other important agronomic-
ally superior traits in subsequent generations. Both EGS and 
AGS can be used to breed improved lines followed by evaluat-
ing these lines in target populations of environment (i.e. the 
set of conditions under which the set of considered varieties 
has been bred) to select promising lines with wider adapta-
tion and higher yield under water limited environments. The 
success of EGS depends on (i) efficiency and accuracy of phe-
notyping a selected trait in a segregating population of single 
plants, for instance phenotyping for leaf wilting and selec-
tion for root depth in tubes, and (ii) genetic makeup of the 
population; for instance, drought tolerance has been intro-
gressed from the wild species resulting in the appearance of 
undesirable and agronomically segregating populations. EGS 
will be highly desirable only when F2s are from agronomically 
superior elite lines. In the case of soybean, EGS for pods per 
plant proved to be the most effective for enhancing the yield 

(Singh and Sharma, 2016). AGS holds considerable promise 
for traits that are best expressed in homozygous progeny.

While EGS and AGS have been earlier practised based on 
phenotypic selection, diagnostic markers are now being inte-
grated for traits, for both EGS and AGS. A high-throughput 
genotyping project (HTPG; http://cegsb.icrisat.org/high-
throughput-genotyping-project-htpg/), an initiative led by 
ICRISAT in collaboration with the International Maize 
and Wheat Improvement Center (CIMMYT) and the 
International Rice Research Institute (IRRI) and funded by 
the Bill & Melinda Gates Foundation, is expected to accelerate 
the deployment of EGS/AGS. It is important to note that the 
HTPG project has made it possible to screen populations at a 
2017 cost of US$ 1.5 per sample for 10 SNP markers including 
DNA extraction. While several institutes such as CIMMYT, 
ICRISAT and IRRI have started to deploy EGS at a large scale 
in maize, rice, wheat, and groundnut, the genomics community 
needs to work on developing additional diagnostic markers for 
more traits especially nutrition traits across all legume crops.

Genomic selection

Genomic selection (GS), proposed by Meuwissen et al. (2001), is 
a promising breeding approach for simultaneous improvement 
of complex traits, especially those with low heritability. GS uses 
genomic signatures or dense marker profiles of individuals as 
well as parents for predicting the breeding values. The use of 
GS for accelerating genetic gains, based on genomic-estimated 
breeding values predicted using genome-wide dense markers, 
has been deployed extensively in dairy cattle (Van Raden et al., 
2009). García-Ruiz et al. (2016) reported a positive impact of 
GS on cattle breeding through drastic reduction of gener-
ation interval and increased selection intensity for low herit-
able traits. Initially, computer simulations and parametric and 
non-parametric statistical models were used on maize and wheat 
datasets to study the prediction accuracies in real plant breeding 
scenarios (Bernardo and Yu, 2007; de los Campos et al., 2009; 
Crossa et al., 2010, 2011). Promising results in major cereals pro-
vided a kick start for deploying GS in a few legume crops, such 
as pea, soybean, chickpea, groundnut, and pigeonpea (Varshney, 
2016). GS in crop plants including legumes has been extensively 
reviewed recently elsewhere (Crossa et al., 2017).

In GS, in brief, a training population (genotyped with gen-
ome wide markers and extensively phenotyped over years and 
in several locations) is trained with appropriate models to 
estimate the genomic-estimated breeding values in a breeding 
population (genotyped with genome wide markers) and vali-
dated in a validation population. Hickey et al. (2017) compared 
both plant and animal breeding approaches to make a case for 
bringing the two together through the application of GS. In 
recent years, the GS approach has been deployed in different 
types of populations, for instance bi-parental, multi-parental 
(Beyene et al., 2015), and synthetic populations (Schopp et al., 
2017) and diverse panel of inbred lines, which basically differ 
in the pedigree, number of founders used to develop the popu-
lation, linkage disequilibrium decay, and population structure.

The genetic advance achieved through selection depends 
on the total variation (σ2), the repeatability of the trait (h2) 
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and the selection pressure (S) imposed. The selection pressure 
implies the proportion of the population selected. Even if  the 
repeatability is high the genetic advance (genetic gain, R) 
would be small without a large genetic variation. With selec-
tion, the genetic variation and consequently the repeatability 
and thus the advance from one to the next generation decline 
while the mean value of the trait increases (or decreases, 
depending on the trait).

Genotyping platforms, training populations and statistical 
models
Although the availability of genome wide markers and cost of 
genotyping were two major factors that restricted implemen-
tation of GS in crop breeding, they are no longer constraints 
as most of the legume communities are now equipped with 
genome sequence information as well as high density SNP 
arrays. For instance, high density SNP arrays have become 
available in case of chickpea (Roorkiwal et al., 2017), ground-
nut (Pandey et al., 2017a), and pigeonpea (Saxena et al., 2017 
and unpublished). In addition, the efficiency and accuracy 
with which superior lines can be predicted also depend on the 
size of the reference population (Jannink et al., 2010; Lorenz 
et  al., 2011). The genetic relatedness or population struc-
ture (Saatchi et  al., 2011; Riedelsheimer et  al., 2013; Wray 
et al., 2013) may result in overestimating the heritability of 
the traits (Price et al., 2010; Visscher et al., 2012; Wray et al., 
2013). The population structure of the training population 
can be determined with greater accuracy using genome wide 
SNPs compared with the simple sequence repeats and SNP 
arrays (Isidro et al., 2015). Accuracy of estimating breeding 
values is important in GS. For instance, Jarquín et al. (2014) 
obtained a high prediction accuracy of 0.64 by deploying GS 
for improving yield and agronomic traits using genotyping-
by-sequencing in a breeding program. In addition, GS for 
yield ridge regression best linear unbiased prediction (BLUP) 
coupled with fivefold cross-validations and marker preselec-
tion based on haplotype blocks is an interesting option for a 
cost-efficient implementation of genomic selection for grain 
yield in soybean breeding (Ma et al., 2016). In the case of pea, 
using GS, Tayeh et al. (2015c) reported mean cross-environ-
ment prediction accuracies of 0.83 for thousand-seed weight, 
0.68 for number of seeds per plant, and 0.65 for date of 
flowering. Population structure did not impact the prediction 
accuracy, and modelling genotype by environment by man-
agement (G×E×M) indicated improved prediction efficiency 
in chickpea (Roorkiwal et al., 2016). Further, Roorkiwal et al. 
(2016) used statistical models such as RR-BLUP, Kinship 
GAUSS, Bayes Cπ, Bayes B, Baysian LASSO, and random 
forest regression and reported high prediction accuracies for 
days to maturity, days to flowering, and seed dry weight. The 
development and deployment of improved and more precise 
statistical models will eventually enhance further the predic-
tion accuracy leading to enhanced GS efficiency in legume 
crops. Development of models that use deep machine-learn-
ing methods and multi-trait and multi-environment infor-
mation is essential to realize the potential of GS in legume 
breeding and to enhance the prediction accuracies (Crossa 
et al., 2017).

Selection intensity and generation interval
The selection differential (S) is defined as the difference of 
base population mean and the mean of the selected parents

	 R h S= 2
	

where h2 is the narrow-sense heritability (Arruda et al., 2016).
The selection intensity depends on how different the 

selected parents are from the overall population average. 
The closer the selected parents to the population average, the 
smaller the selection intensity and vice versa. The impact of 
GS and generation intervals in cattle breeding was first sys-
tematically studied by de Roos et al. (2010). Recently, García-
Ruiz et al. (2016) reported that decreased generation interval 
and increased selection intensity for low heritable traits is as a 
result of the positive impact of GS on the US cattle industry. 
Genomic selection in combination with a reduced generation 
interval may double the rate of genetic gain while keeping the 
rate of inbreeding per generation constant.

Rapid cycling
The usefulness of rapid cycling genomic selection (RCGS) 
was first reported in a bi-parental mapping population 
derived from B73 and Mo17. Massman et al. (2013) reported 
that RCGS had a superior response for stover yield, as well 
as stover and grain yield indices that were 14–50% higher 
than those of MARS. Recently, in tropical maize, by employ-
ing RCGS on eight bi-parental populations evaluated under 
drought stress environments, Beyene et al. (2015) reported an 
average gain of 0.086 ton ha−1 per cycle, and hybrids derived 
from cycle 3 produced 7.3% (0.176 ton ha−1) higher grain yield 
than those from cycle 0 and conventional pedigree breeding 
methods. Further, Zhang et al. (2017) using RCGS in a trop-
ical maize multi-parental population reported a genetic gain 
for grain yield from cycle 1 to cycle 4 reached 0.225 ton ha−1 
per cycle, which is equivalent to 0.100 ton ha−1 year−1 over 
a 4.5 year breeding period from the initial cross to the last 
cycle. While similar rates of gain have not been reported in 
legumes, recent reports on over three generations per year in 
traditional breeding for pigeonpea (Saxena et al., 2017) offer 
new opportunities to apply RCGS to accelerate rates of gen-
etic gain in grain legumes.

Genome editing

The sequencing-based trait dissection and gene discovery are 
enabling the functional characterization of genes. An alterna-
tive approach for modifying targeted genomic regions, gen-
ome editing, may be better suited for improving the deficiency 
of one or two traits within popular varieties that have suit-
able production and market traits. Enhancing the perform-
ance of market-preferred varieties offers the advantage of 
higher productivity and higher replacement rates by farmers 
(Dar et al., 2013). Genome editing harnesses the strength of 
programmable nucleases in cutting and pasting the specific 
genetic information in living cells (Kim, 2016). The availabil-
ity of more and more information on functionality of genes 
or haplotypes for economically important traits will facilitate 
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modification of multiple SNPs through genome editing with-
out leading to a deterioration in the original behavior of a 
popular cultivar. In several of the legume crop species, with 
genetic barriers such as ploidy differences, the exchange of 
genetic material through natural process is restricted and 
therefore the huge genetic variation lying within crop’s wild 
relatives remains untapped and unutilized. In this context, if  
the function of the specific genome variations in wild relatives 
can be assigned, genome editing can enable targeted editing 
of a popular cultivar without fear of linkage drag.

The recently developed targeted genome-editing technolo-
gies such as zinc finger nucleases, RNA-guided endonucleases, 
transcription-activator-like effector nucleases, and CRISPR 
(cluster of regularly interspaced palindromic repeats) have 
undergone tremendous improvement over the past couple of 
years (Wang et al., 2017). Of the several approaches, CRISPR 
received wider acceptance among researchers due to its huge 
potential role in crop improvement in coming years (Kim, 
2016). This technology has already been optimized in three 
model legume crops, soybean (Sun et al., 2015; Li et al., 2015), 
Lotus japonicas (Wang et al., 2016) and Medicago truncatula 
(Meng et  al., 2017). The efficiency of genome editing using 
various endogenous and exogenous RNA polymerase III pro-
moters has been compared (Sun et al., 2015; Du et al., 2016) 
and in soybean the Cas9–single guide RNA together with 
donor DNA fragments was successfully transformed into soy-
bean using the particle bombardment method (Li et al., 2015). 
Medicago and Lotus, having smaller diploid genomes, are the 
model legume crops for conducting research in several areas 
including symbiotic nitrogen fixation. The efficacy of the 
CRISPR system has been assessed in these two crops by modi-
fying the multiple genes related to symbiotic nitrogen fixation 
(Michno et al., 2015; Wang et al., 2016; Meng et al., 2017). 
Recently, Benson Hill Biosystems, an agricultural technology 
company based in the UK, launched a commercial service for 
genome editing for crop improvement (https://www.prnews-
wire.com/news/benson-hill-biosystems). These developments 
will further accelerate the deployment of this promising tech-
nology in improving desired traits in legume crops.

Genome editing is considered to be a safe technology for 
developing improved crop plants by US regulators, who indi-
cated that genome editing products developed using oligonucle-
otide-directed mutagenesis or site-directed nucleases should not 
be subjected to regulation as these technologies are similar to 
mutagenesis (see Sprink et al., 2016). There are multiple exam-
ples of development of improved plant varieties using genome 
editing technology and 37 such examples in Arabidopsis, 
tobacco, maize, rice, wheat, canola, soybean, camelina, 
tomato, and cucumber have been well documented recently 
(see Kamburova et al., 2017). Of these successful efforts, sev-
eral of these products have been approved in different countries 
for cultivation, such as herbicide-tolerant SU Canola (Cibus 
5715)  in Canada in 2014 (https://cen.acs.org/articles/95/i24/
CRISPR-new-toolbox-better-crops.html), browning-resistant 
Arctic apples in the USA and Canada in 2015 (Smyth, 2017), 
and less-acrylamide-producing potatoes for chip processing 
in Canada in 2016 (Smyth, 2017), while tomato with a greater 
number of fruits and soybean with high oleic acid are near to 

reaching approval. Expected products in Canada and the USA 
in the coming years include glyphosate-tolerant flax in 2019. 
Products expected for 2020 include late-blight-resistant potato, 
herbicide-tolerant rice, and starchy or ‘waxy’ corn.

Improving the operational efficiency in 
breeding programs

Improvement in operational efficiency in the breeding pro-
grams will help in conducting precise and well-documented 
research experiments. Currently, the majority of breeding pro-
grams still record data on paper. The digitalization of breeding 
programs and improved operational efficiency will reduce the 
chance of error, which in turn will allow breeders to assess the 
potential of improved breeding procedures (Varshney et  al., 
2016). In this context, digitalization, automation, and mech-
anization in breeding procedures need to be adopted during 
the breeding process. More emphasis is required on uniform 
ontology, digitalized pedigree information, appropriate experi-
mental design, barcoding of breeding material, digital data 
recording in the field, data management systems, and quality 
control. Integrated Breeding Platform (http://www.integrated-
breeding.net) is one such initiative that is helping breeding pro-
grams to modernize and improving their breeding efficiency. 
For instance, the Breeding Management System of Integrated 
Breeding Platform is being used extensively at ICRISAT and 
its partner breeding programs. Similarly, B4R (http://bbi.irri.
org/home) is a program for managing breeding data that has 
been developed and is being used by IRRI. The volume of 
data generated throughout the breeding process has increased 
significantly due to the involvement of high throughput geno-
typing and phenotyping technologies. Data volume now poses 
a significant challenge in compilation, processing, and inter-
pretation. Available tools engaged today may no longer be 
suitable for handling high volume data in the future, thereby 
necessitating development of improved tools/software that can 
drive science-based breeding at a faster pace with user-friendly 
tools and databases. The Genomic Open-source Breeding 
Informatics Initiative is one such endeavor (http://gobiipro-
ject.org/) targeting deployment of high density genotyping 
information in public sector breeding programs for more 
precise selection to achieve higher genetic gains. Further, the 
Excellence in Breeding (EiB; http://excellenceinbreeding.org/) 
platform came into existence very recently to bring all the com-
ponents of CGIAR crop improvement under a single platform 
to focus on better integration and modernizing of breeding 
programs in developing countries. The above efforts will help 
in improving the efficiency and resilience of agricultural sys-
tems to achieve more sustainable food production for increased 
profitability of farming, greater resilience and nutrition of glo-
bal agrifood systems.

Seed systems

Once superior varieties are developed, they should reach 
farmers’ fields as early as possible such that the average age of 
the varieties in the farmers’ fields are not more than 10 years. 
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Cultivar replacement is indeed one of the basic undertakings 
in the EiB platform. In the past, however, most released varie-
ties of legumes have not enjoyed high rates of adoption (Atlin 
et al., 2017). One reason could be low performance of new 
varieties under farmers’ field management and conditions. 
The second reason is limited multi-location testing of public 
sector varieties due to limited funds. As a result, seed com-
panies do not know the level of superiority of a new variety 
for a certain production ecology and are reluctant to invest in 
producing and promoting a new seed product.

Our experience from the Tropical Legumes project (http://
tropicallegumes.icrisat.org/) shows that adoption of new vari-
eties requires promotion just like with new products in the 
manufacturing sector. As compared with hybrid maize, where 
the private sector invests heavily in thousands of demonstra-
tion plots to create awareness and popularize new varieties, 
only very limited demonstration plots of new legume varie-
ties and accompanying agronomic practices are conducted. 
Farmers’ awareness of improved varieties has been reported 
to be strongly correlated with higher adoption rates for 
pigeonpea in Tanzania (Amare et al., 2012) and for chickpea 
in Ethiopia (Abate et al., 2012).

However, unlike the private manufacturing sector where a 
new product is promoted and new demand can be met quickly, 
seed is the vehicle through which genetic gains are realized in 
farmers’ fields, especially with small-scale farmers in the case 
of legumes. Production of seed takes time through cycles of 
breeding, foundation and certified seed, each stage taking at 
least one cropping season. Compared with cereals and can-
ola, legumes generally have a lower seed multiplication rate, 
thereby requiring extra space, labor, time, effort, and more 
generations to produce sufficient quantities of certified seed. 
This increases the cost of seed production to seed producers, 
which must be paid for by farmers, many of whom find the 
costs prohibitive compared with non-authentic sources. In 
addition, virtually all legumes are self-pollinated (pigeonpea 
is an exception) and farmers usually recycle their own seeds. 
Therefore, the incentive to develop a business around seed 
production in most grain legumes is low.

Some legumes have relatively large seed rate requirements, 
sometimes more than 100 kg ha−1, meaning farmers have to 
buy large quantities to plant a relatively smaller area com-
pared with cereals. This has additional implications in terms 
of requirement of seed storage space and packaging mater-
ial, further increasing the cost of seed. In addition, transpor-
tation of the seed to remote areas is both cumbersome and 
expensive due to the bulky nature of grain legumes. Legume 
seeds also suffer from loss of germination faster than cere-
als, especially in hot, humid environments. Seed producers 
and traders must meet these challenges by investing in proper 
storage, thereby increasing the willingness of farmers to buy 
seed regularly off-farm with an assurance of better quality 
than farm-save seed (Sperling and McGuire, 2010). Besides 
these challenges, legumes are highly self-pollinated and it is 
assumed that farmers save their own seed for several seasons 
and do not need to buy new seed each season, which makes 
it difficult for seed companies to predict demand for seed. It 
was, however, reported in 2016 that a significant fraction of 

legume farmers (64.4%) actually do buy ‘seed’ or rather grain 
from local markets (McGuire and Sperling, 2016). However, 
due to high cost, limited availability, and access, farmers do 
not buy legume seed from the formal seed sector (seed com-
panies and agrodealers).

Innovative approaches are therefore necessary to tackle the 
challenge of legume seed supply to ensure availability, acces-
sibility, affordability, and sustainability for the varieties to 
replace older varieties. This requires an integrated approach 
to seed production and delivery systems that includes formal 
public–private sector partnerships and a variety of farmer-
based seed production and supply initiatives (Siddique et al., 
2012; Johansen and Siddique 2017). One of the approaches 
used to increase total seed production and availability, par-
ticularly of early generation seed, is through licensing of pub-
lic varieties for decentralized production. An example of this 
is in seed production and distribution of improved varieties of 
common bean in Ethiopia. Well-established innovation plat-
forms along the bean value chain contributed to sustaining a 
decentralized seed production system (Rubyogo et al., 2010). 
Seed certification, normally by public agencies, is an import-
ant quality control step but it also increases the cost of seed 
significantly. Kenya and Zambia are examples of countries 
where certification is licensed to private institutions and indi-
viduals. Quality declared seed (QDS) is an approach to pro-
ducing seed by competent seed producers and suppliers that 
accommodates the diversity of farming systems, particularly 
in the more difficult areas where highly organized seed sys-
tems do not function well (Plant Production and Protection 
Division, 2006). QDS standards and monitoring procedures 
are slightly less demanding, allowing for less expensive seed 
and more decentralized producers. The quality and perform-
ance of QDS seed on farmers’ fields is comparable—but the 
seed is less expensive (Granqvist, 2006).

Innovative approaches are also needed for increasing avail-
ability, supply and access to high quality seed of improved 
varieties (e.g. through small packs, financial support, bet-
ter coordination with extension or development programs). 
A small seed pack approach was pioneered by Pan-African 
Bean Research Alliance two decades ago to encourage infor-
mal varietal diffusion and adoption of new varieties (Grisley, 
1993) and gained popularity as an efficient and cost effective 
means of reaching more farmers with bean seed of improved 
varieties (Maereka and Rubyogo, 2015). It has been adopted 
and popularized in the Tropical Legumes II/III project 
(Monyo and Varshney 2016), involving national programs 
and the private sector (Rubyogo et al., 2016). Demand cre-
ation for quality seed includes working with off-takers like 
grain exporters, demonstration plots of better varieties, post-
harvest handling, and market linkages. Good examples of the 
role of off-takers can be cited with the Raphael Group Ltd 
in southern Tanzania that has promoted the adoption of the 
‘Uyole 03’ sugar bean variety and ACOS Ltd in Ethiopia that 
has promoted market-orientated production of various varie-
ties of white pea bean and kabuli chickpea. Reaching farm-
ers ‘at the last mile’ by bundling seed with other products, 
piggybacking on existing product supply channels such as 
fertilizers and pesticides, and strengthening community seed 
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production approaches are all critically important areas for 
innovation.

Agronomy packages

Improved seeds alone do not guarantee improved yields. Soil 
fertility is often a big constraint for smallholder farmers in 
the semi-arid tropics (Kamanga et al., 2013). Deployment of 
improved varieties should be accompanied by integrated crop 
management practices, underscoring the prevailing crop-
ping practices. In fact, consideration of agronomic practices 
should be considered early in the development of product 
profiles so that breeding populations are developed accord-
ingly and selection pressure integrates prevailing agronomic 
practices (e.g. soil fertility, crop density). Combining organic 
and mineral fertilizer is a sound management principle for 
smallholder farmers when combined with techniques such 
as crop rotations to improve soil fertility and nutrient avail-
ability. Two examples clearly illustrate the integration of inte-
grated soil fertility management principles: (i) dual purpose 
grain legume–maize rotations with P fertilizer targeted at the 
legume phase and N fertilizer targeted at the cereal phase in 
the moist savanna agro-ecozone (Sanginga et al., 2003), and 
(ii) micro-dose fertilizer applications in legume–sorghum 
or legume–millet rotations with retention of crop residues 
and water harvesting techniques in semi-arid agro-ecozones 
(Bationo et al., 1998). In trials in West Africa, control of early 
season insect pests and diseases increased crop vigor, and 
greater yields have been reported in legumes such as cowpea 
(Tekwa et al., 2010) and groundnut (Yakubu et al., 2011) with 
ApronStar, a seed treatment fungicide–insecticide mixture 
for controlling downy mildew, damping-off diseases, as well 
as for protection of seeds and seedlings against early season 
insect pests and soil-borne diseases. Therefore, there is a need 
in the future to breed cultivars in a system perspective, i.e. 
to breed crops considering elements of the agro-ecosystem in 
which these will be deployed.

Understanding abiotic and biotic stresses is important 
in designing breeding programs. For example, planting 
groundnuts early in the season when aphid populations 
are still low coupled with maintaining a good plant density 
can reduce aphids that are the vector for rosette disease, 
which in turn reduces disease incidence (Waliyar et  al., 
2007). This in turn would ensure optimum yield and that 
varieties developed for other traits, such as oil quality, early 
maturity, drought tolerance, and foliar disease resistance, 
are not lost due to rosette disease. Sowing time is also par-
ticularly important in pigeonpea, where there are differ-
ent maturity groups. Early maturing varieties can compete 
with the cereals in intercropping systems but would be the 
best suited as a sole crop in places prone to short rainfall 
periods. Medium maturing varieties are planted after the 
main cereals and remain in the field when the main cereal 
is harvested. Similarly, proper timing is critical in chickpea 
to ensure the crop does not suffer from terminal drought (if  
planted too late) or seedling fungal diseases if  planted too 
early during the rainy period.

Integrated and coordinated approach

Legumes are nutrient-rich crops with high levels of protein 
and other important nutritional components that offer great 
support in fighting malnutrition across the world. Genetic 
improvement for legumes needs to accommodate traditional 
yield-improvement priorities alongside nutritional character-
istics. A single technology or process cannot be singled out 
to achieve higher yields in farmers’ fields with high consist-
ency (Siddique et  al 2012; Johansen and Siddique, 2017). 
Participatory feedback from different stakeholders along 
commodity value chains is required to develop appropriate 
product profiles so farmers can be more productive and prof-
itable by accessing markets with surplus production. In this 
context, a holistic approach is required to realize higher gen-
etic gains in less time and with more precision in the legume 
crops. We have proposed this strategy in Fig. 1.

Our crop improvement programs, which include not just 
breeding but all other disciplines, need to start with demand 
and feedback from the stakeholders including farmers, con-
sumers, and markets. Based on these demands, crop improve-
ment programs prioritize traits (including nutrition) and 
define a product profile of the varieties to be developed. 
Subsequently, genebank, pre-breeding and trait discovery 
groups together with breeders and biometricians formulate a 
list of suitable genotypes with desired traits, and high breed-
ing values are identified after a comprehensive genome char-
acterization using sequencing and genotyping platforms and 
phenotypic characterization in target environments. In paral-
lel, we need to have diagnostic markers with higher prediction 
accuracy and candidate genes with causal effect for a given 
trait. For trait discovery, instead of using a traditional map-
ping approach, it is possible now to use sequencing-based 
trait mapping approaches such as QTL-Seq, Bulk-Seq and 
Indel-Seq (Singh et  al., 2016, 2017; Pandey et  al., 2017b). 
Similarly, recent advances in functional genomics such as 
gene expression atlases (Pazhamala et al., 2017) and use of 
near-isogenic lines for transcriptomics approaches can iden-
tify the candidate genes for the target traits.

In order to increase selection intensity, it is essential to 
increase the number of crosses and the population of each 
cross in public sector breeding programs. In our opinion, 
each breeding program should make at least 100 crosses every 
year and each cross should have at least 500–1000 F2s using 
the most appropriate parental combinations. Of course, the 
size of the population would also need to be adjusted to the 
genetics of the target trait. Early generation screening with 
the diagnostic markers or candidate genes for must-have 
traits can dramatically reduce early generation populations as 
a ‘forward breeding’ process. After selecting a small numbers 
of lines, genomic prediction can be undertaken and selected 
lines with higher breeding values can be targeted for testing in 
target population of environments. Subsequently, the selected 
lines can go to a national program for further multi-location 
and multi-year testing for possible release of improved varie-
ties or can be included in the pool of parental selections in the 
new crossing schemes. We believe that such an approach will 
accelerate the development of superior grain legume varieties.
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In parallel, it is also possible to continue to undertake 
MAS or MABC in the ruling varieties for introgressing major 
genes/QTLs that have become deficient during their long-
term cultivation in farmers’ fields. While undertaking GAB 
approaches, it is also essential that we improve our oper-
ational efficiency with appropriate analytical and decision 
support tools. For instance, appropriate experimental design 
for testing a segregating population/germplasm collection is 
very important. Similarly, having phenotypic data for differ-
ent breeding populations/germplasm collections in databases 
and using these databases for planning a new set of experi-
ments is critical. Deployment of breeding databases such as 
BMS and B4R in breeding programs needs to be accelerated. 
Use of tablets and mobile-based ‘Field Book’ programs will 
reduce error and turnaround time for data-driven breeding 
decisions. While using the GAB strategies, EGS, GS, MABC 
or MAS, it is important that breeding programs use the 
appropriate decision support tools to select the superior lines 
instead of using spreadsheets or stand-alone programs. All 
these efforts and good breeding practices together offer oper-
ational efficiency in the breeding programs.

While use of  GAB approaches together with oper-
ational efficiency methods can help in developing better 

varieties faster, the full genetic potential of  these vari-
eties can only be realized once they have been adopted 
and grown in farmers’ fields. It is essential to work with 
government agencies together with informal seed system 
actors in different developing countries to accelerate var-
ietal replacement. We need to start using ‘digital seed 
road maps’ (http://seedsystems.icrisat.org/) that can help 
different stakeholders of  the seed value chain to assess 
the need and make different kinds of  seeds (breeders’ 
seed, foundation seeds, certified/truthfully labeled seeds) 
available to farmers. Finally, digital agriculture tools, 
for example, sowing apps (http://www.icrisat.org/tag/ 
sowing-app/), plantix (http://www.icrisat.org/tag/plan-
tix/), should be deployed to provide increased access to 
equitable markets by farmers to increase profitability.

We believe that use of  such a holistic approach will 
not just deliver higher genetic gains in research plots of 
scientists but also in farmers’ field. By using the entire 
approach from science of  discovery to science of  delivery, 
the scientific community will be able to contribute to both 
enhancing crop productivity and increasing farm profit-
ability. Furthermore, it will also help to make cheap raw 
material available to industry, and finally, availability of 

Fig. 1.  Strategy for strengthening the breeding process and adopting improved technologies for achieving higher genetic gains in farmers’ field. Low-
cost sequencing and genotyping technology will eventually help in molecular characterization of entire diverse germplasms. High density genotyping data 
together with phenotyping data on entire germplasm will help filter the most useful germplasm lines for use in breeding programs. Low-cost sequencing 
and genotyping data will also facilitate dissection of multiple traits even in complex genetic populations and faster and precise gene discovery. Improved 
and modern approaches need to be integrated in trait mapping and trait improvement pipeline in addition to adoption of improved breeding operational 
efficiency. Higher genetic gains achieved with improvement of desired traits, key to major stakeholders, will eventually help not only in attaining higher 
productivity but also in increasing the profitability of farming.
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affordable nutritious food to the poorest of  the poor in 
society.

Acknowledgements
The authors from ICRISAT are thankful to the Bill & Melinda Gates 
Foundation (Tropical Legumes I, II & III), United States Agency for 
International Development (USAID), MARS Chocolate Inc., Indian Council 
of Agricultural Research (ICAR), and Department of Biotechnology (DBT) 
of Government of India. The work reported in this article was undertaken 
as a part of the CGIAR Research Program on Grain Legumes and Dryland 
Cereals (GLDC). ICRISAT is a member of the CGIAR.

References
Abate T, Alene AD, Bergvinson D, Shiferaw B, Silim S, Orr A, Asfaw 
S. 2012. Tropical grain legumes in Africa and south Asia: knowledge and 
opportunities. Nairobi, Kenya: International Crops Research Institute for the 
Semi-Arid Tropics. https://core.ac.uk/download/pdf/12107473.pdf.

Adu MO, Chatot A, Wiesel L, Bennett MJ, Broadley MR, White PJ, 
Dupuy LX. 2014. A scanner system for high-resolution quantification of 
variation in root growth dynamics of Brassica rapa genotypes. Journal of 
Experimental Botany 65, 2039–2048.

Aisawi KAB, Reynolds MP, Singh RP, Foulkes MJ. 2015. The 
physiological basis of the genetic progress in yield potential of CIMMYT 
spring wheat cultivars from 1966 to 2009. Crop Science 55, 1749.

Akibode CS. 2011. Trends in the production, trade, and consumption of 
food-legume crops in sub-Saharan Africa. MSc Thesis, Michigan State 
University.

Akond M, Liu S, Schoener L, et al. 2013. SNP-based genetic linkage 
map of soybean using the SoySNP6K illumina infinium BeadChip 
genotyping array. Journal of Plant Genome Science 1, 80–89.

Alzate-Marin AL, Menarim H, de Carvalho GA, de Paula TJ, 
de Barros EG, Moreira MA. 1999. Improved selection with newly 
identified RAPD markers linked to resistance gene to four pathotypes of 
Colletotrichum lindemuthianum in common bean. Phytopathology 89, 
281–285.

Amare M, Asfaw S, Shiferaw B. 2012. Welfare impacts of maize-pigeon 
pea intensification in Tanzania. Agricultural Economics 43, 27–43.

Arruda MP, Lipka AE, Brown PJ, et al. 2016. Comparing genomic 
selection and marker-assisted selection for Fusarium head blight 
resistance in wheat (Triticum aestivum L.). Molecular Breeding 36, 84.

Atlin GN, Cairns JE, Das B. 2017. Rapid breeding and varietal 
replacement are critical to adaptation of cropping systems in the 
developing world to climate change. Global Food Security 12, 31–37.

Bankole F, Menkir A, Olaoye G, Crossa J, Hearne S, Unachukwu N, 
Gedil M. 2017. Genetic gains in yield and yield related traits under drought 
stress and favorable environments in a maize population improved using 
marker assisted recurrent selection. Frontiers in Plant Science 8, 808.

Barker T, Campos H, Cooper M, Dolan D, Edmeades G, Habben J, 
Schussler, Wright D, Zinselmeier C. 2010. Improving drought tolerance 
in maize. Plant Breeding Reviews 25, 173–253.

Bationo A, Lompo F, Koala S. 1998. Research on nutrient flows and 
balances in West Africa: state-of the art. Agriculture, Ecosystems and 
Environment 71, 19–35.

Bernardo R, Yu J. 2007. Prospects for genome-wide selection for 
quantitative traits in maize. Crop Science 47, 1082.

Bertioli DJ, Cannon SB, Froenicke L, et al. 2016. The genome 
sequences of Arachis duranensis and Arachis ipaensis, the diploid 
ancestors of cultivated peanut. Nature Genetics 48, 438–446.

Beyene Y, Semagn K, Mugo S, et al. 2015. Genetic gains in grain yield 
through genomic selection in eight bi-parental maize populations under 
drought stress. Crop Science 55, 154.

Bhatia VS, Singh P, Wani SP, Rao AVRK, Srinivas K. 2007. Yield gap 
analysis of soybean, groundnut, pigeonpea and chickpea in India using 
simulation modeling. Journal of SAT Agricultural Research 5, 1–160.

Bohra A, Pandey MK, Jha UC, Singh B, Singh IP, Datta 
D, Chaturvedi SK, Nadarajan N, Varshney RK. 2014. 

Genomics-assisted breeding in four major pulse crops of developing 
countries: present status and prospects. Theoretical and Applied 
Genetics 127, 1263–1291.

Boukar O, Fatokun CA, Huynh BL, Roberts PA, Close TJ. 2016. 
Genomic tools in cowpea breeding programs: status and perspectives. 
Frontiers in Plant Science 7, 757.

Bresson J, Vasseur F, Dauzat M, Koch G, Granier C, Vile D. 2015. 
Quantifying spatial heterogeneity of chlorophyll fluorescence during plant 
growth and in response to water stress. Plant Methods 11, 23.

Brisson N, Gate P, Gouache D, Charmet G, Oury F-X, Huard F. 
2010. Why are wheat yields stagnating in Europe? A comprehensive data 
analysis for France. Field Crops Research 119, 201–212.

Bucksch A, Burridge J, York LM, Das A, Nord E, Weitz JS, Lynch JP. 
2014. Image-based high-throughput field phenotyping of crop roots. Plant 
Physiology 166, 470–486.

Cabrera-Bosquet L, Fournier C, Brichet N, Welcker C, Suard 
B, Tardieu F. 2016. High-throughput estimation of incident light, light 
interception and radiation-use efficiency of thousands of plants in a 
phenotyping platform. New Phytologist 212, 269–281.

Chauhan Y, Wright G, Rachaputi NR, Krosch S, Robertson M, 
Hargreaves J, Broome A. 2007. Using APSIM-soiltemp to simulate 
soil temperature in the podding zone of peanut. Australian Journal of 
Experimental Agriculture 47, 992–999.

Chauhan Y, Wright G, Rachaputi N, McCosker K. 2008. Identifying 
chickpea homoclimes using the APSIM chickpea model. Australian Journal 
of Agricultural Research 59, 260–269.

Chen D, Neumann K, Friedel S, Kilian B, Chen M, Altmann T, Klukas 
C. 2014. Dissecting the phenotypic components of crop plant growth and 
drought responses based on high-throughput image analysis. The Plant 
Cell 26, 4636–4655.

Chen X, Li H, Pandey MK, et al. 2016. Draft genome of the peanut 
A-genome progenitor (Arachis duranensis) provides insights into geocarpy, 
oil biosynthesis and allergens. Proceedings of the National Academy of 
Sciences, USA 113, 6785–6790.

Chen YL, Dunbabin VM, Diggle AJ, Siddique KHM, Rengel Z. 2011. 
Development of a novel semi-hydroponic phenotyping system for studying 
root architecture. Functional Plant Biology 38, 355–363.

Chu Y, Wu CL, Holbrook CC, Tillman BL, Person G, Ozias-Akins P. 
2011. Marker-assisted selection to pyramid nematode resistance and high 
oleic trait in peanut. The Plant Genome 4, 110–117.

Clauw P, Coppens F, De Beuf K, Dhondt S, Van Daele T, Maleux K, 
Storme V, Clement L, Gonzalez N, Inzé D. 2015. Leaf responses to 
mild drought stress in natural variants of Arabidopsis. Plant Physiology 
167, 800–816.

Clevenger J, Chu Y, Chavarro C, et al. 2017. Genome-wide SNP 
genotyping resolves signatures of selection and tetrasomic recombination 
in peanut. Molecular Plant 10, 309–322.

Contreras-Soto RI, de Oliveira MB, Costenaro-da-Silva, Scapim 
CA, Schuster I. 2017. Population structure, genetic relatedness and 
linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max). 
Euphytica 213, 173.

Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C. 
2009. Modeling QTL for complex traits: detection and context for plant 
breeding. Current Opinion in Plant Biology 12, 231–240.

Crossa J, de Campos GL, Pérez P, et al. 2010. Prediction of genetic 
values of quantitative traits in plant breeding using pedigree and molecular 
markers. Genetics 186, 713–724.

Crossa J, Pérez P, de los Campos G, Mahuku G, Dreisigacker 
S, Magorokosho C. 2011. Genomic selection and prediction in plant 
breeding. Journal of Crop Improvement 25, 239–261.

Crossa J, Pérez-Rodríguez P, Cuevas J, et al. 2017. Genomic 
selection in plant breeding: methods, models, and perspectives. Trends in 
Plant Science 22, 961–975.

Dar MH, de Janvry A, Emerick K, Raitzer D, Sadoulet E. 2013. Flood-
tolerant rice reduces yield variability and raises expected yield, differentially 
benefitting socially disadvantaged groups. Scientific Reports 3, 3315.

de los Campos G, Naya H, Gianola D, Crossa J, Legarra A, Manfredi 
E, Weigel K, Cotes JM. 2009. Predicting quantitative traits with 
regression models for dense molecular markers and pedigree. Genetics 
182, 375–385.

Accelerating genetic gains in legumes  |  3307

Downloaded from https://academic.oup.com/jxb/article-abstract/69/13/3293/4920840
by International Crops Research Institute for the Semi-Arid Tropics user
on 25 June 2018

https://core.ac.uk/download/pdf/12107473.pdf


de Roos AP, Schrooten C, Veerkamp RF, van Arendonk JA. 2010. 
The impact of genomic selection and short generation interval on dairy 
cattle breeding programs. In: Proceedings of 9th World Congress on 
Genetics Applied to Livestock Production. http://www2.naut.is/Files/
Skra_0043312.pdf.

Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-
Hénaut I, Burstin J, Aubert G. 2010. Highly-multiplexed SNP genotyping 
for genetic mapping and germplasm diversity studies in pea. BMC 
Genomics 11, 468.

de Wit CT, Brouwer R, Penning de Vries FWT. 1970. The simulation of 
photosynthetic systems. In: Setlik I, ed. Prediction and measurements of 
photosynthetic productivity. Proceedings of the IBP/PP Technical Meeting, 
Trebon. Wageningen: Pudoc, 47–50.

de Wit CT. 1978. Simulation of assimilation, respiration and transpiration 
of crops. Simulation Monographs. Wageningen: Centre for Agricultural 
Publishing and Documentation.

Doyle JJ, Luckow MA. 2003. The rest of the iceberg. Legume diversity 
and evolution in a phylogenetic context. Plant Physiology 131, 900–910.

Du H, Zeng X, Zhao M, Cui X, Wang Q, Yang H, Cheng H, Yu D. 
2016. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/
Cas9. Journal of Biotechnology 217, 90–97.

Duncan WG, Loomis RS, Williams WA, Hanau R. 1967. A model for 
simulating photosynthesis in plant communities. Hilgardia 38, 181–205.

Duvick DN. 2005. Genetic progress in yield of United States maize. 
Maydica 50, 193–202.

Eberbach PL, Hoffmann J, Moroni SJ, Wade LJ, Weston LA. 2013. 
Rhizo-lysimetry: facilities for the simultaneous study of root behaviour 
and resource use by agricultural crop and pasture systems. Plant 
Methods 9, 3.

Fahlgren N, Feldman M, Gehan MA, et al. 2015a. A versatile 
phenotyping system and analytics platform reveals diverse temporal 
responses to water availability in Setaria. Molecular Plant 8, 1520–1535.

Fahlgren N, Gehan MA, Baxter I. 2015b. Lights, camera, action: high-
throughput plant phenotyping is ready for a close-up. Current Opinion in 
Plant Biology 24, 93–99.

FAOSTAT. 2016. Review of CGIAR priorities and strategies. Rome: Food 
and Agriculture Organization of the United Nations. www.fao.org/wairdocs/
tac/x5756e/x5756e08.htm.

Feleiro FG, Vinhadelli WS, Ragagnin VA, Vinhadelli WS, Moreira 
MA, Stavely JR, de Barros EG. 2001. Resistance of bean lines to four 
races of Uromyces appenduculata isolated in the state of Minas Gerais. 
Fitopatologia Brasileiara 26, 77–80.

Fiorani F, Schurr U. 2013. Future scenarios for plant phenotyping. Annual 
Review of Plant Biology 64, 267–291.

Foyer CH, Lam HM, Nguyen HT, et al. 2016. Neglecting legumes has 
compromised human health and sustainable food production. Nature 
Plants 2, 16112.

García-Ruiz A, Cole JB, VanRaden PM, et al. 2016. Changes in 
genetic selection differentials and generation intervals in US Holstein 
dairy cattle as a result of genomic selection. Proceedings of the National 
Academy of Sciences, USA 113, E3995–E4004.

Ghafoor A, and McPhee K. 2012. Marker assisted selection (MAS) for 
developing powdery mildew resistant pea cultivars. Euphytica 186, 593–607.

Ghanem ME, Marrou H, Biradar C, Sinclair TR. 2015a. Production 
potential of lentil (Lens culinaris Medik.) in East Africa. Agricultural Systems 
137, 24–38.

Ghanem ME, Marrou H, Soltani A, Kumar S, Sinclair TR. 2015b. 
Lentil variation in phenology and yield evaluated with a model. Agronomy 
Journal 107, 1967–77.

Gioia T, Galinski A, Lenz H, et al. 2016. GrowScreen-PaGe, a non-
invasive, high-throughput phenotyping system based on germination 
paper to quantify crop phenotypic diversity and plasticity of root traits 
under varying nutrient supply. Functional Plant Biology 44, 76–93.

Granier C, Aguirrezabal L, Chenu K, et al. 2006. PHENOPSIS, an 
automated platform for reproducible phenotyping of plant responses to 
soil water deficit in Arabidopsis thaliana permitted the identification of an 
accession with low sensitivity to soil water deficit. New Phytologist 169, 
623–635.

Granqvist B. 2006. Is quality declared seed production an effective way 
to address seed and food security in Africa? http://knowledge.cta.int/

Dossiers/S-T-Policy/ACP-agricultural-S-T-dialogue/Demanding-Innovation/
Feature-articles/Is-Quality-Declared-Seed-Production-an-effective-and-
sustainable-way-to-address-Seed-and-Food-Security-in-Africa.

Grisley W. 1993. Seed for bean production in sub-Saharan Africa: issues, 
problems, and possible solutions. Agricultural Systems 43, 19–33.

Gupta S, Nawaz K, Parween S, Roy R, Sahu K, Kumar Pole A, 
Khandal H, Srivastava R, Kumar Parida S, Chattopadhyay D. 2017. 
Draft genome sequence of Cicer reticulatum L., the wild progenitor of 
chickpea provides a resource for agronomic trait improvement. DNA 
Research 24, 1–10.

Gupta PK, Varshney RK. 2000. The development and use of 
microsatellite markers for genetics and plant breeding with emphasis on 
bread wheat. Euphytica 113, 163–185.

Hammer GL, Kropff MJ, Sinclair TR, Porter JR. 2002. Future 
contributions of crop modelling—from heuristics and supporting decision 
making to understanding genetic regulation and aiding crop improvement. 
European Journal of Agronomy 18, 15–31.

Hickey JM, Chiurugwi T, Mackay I, Powell W, Implementing 
Genomic Selection in CGIAR Breeding Programs Workshop 
Participants. 2017. Genomic prediction unifies animal and plant breeding 
programs to form platforms for biological discovery. Nature Genetics 49, 
1297–1303.

Holzworth DP, Huth NI, Zurcher EJ, et al. 2014. APSIM – evolution 
towards a new generation of agricultural systems simulation. 
Environmental Modelling & Software 62, 327–350.

Hoogenboom G, Porter CH, Shelia V, et al. 2017. Decision Support 
System for Agrotechnology Transfer (DSSAT) Version 4.7, https://DSSAT.
net. Gainesville, FL, USA: DSSAT Foundation.

Huth NI, Thorburn PJ, Radford BJ, Thornton CM. 2010. Impacts of 
fertilisers and legumes on N2O and CO2 emissions from soils in subtropical 
agricultural systems: a simulation study. Agriculture Ecosystems & 
Environment 136, 351–357.

Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, 
Nelson RL, Shoemaker RC, Young ND, Cregan PB. 2008. High-
throughput genotyping with the GoldenGate assay in the complex genome 
of soybean. Theoretical and Applied Genetics 116, 945–952.

Isidro J, Jannink JL, Akdemir D, Poland J, Heslot N, Sorrells ME. 
2015. Training set optimization under population structure in genomic 
selection. Theoretical and Applied Genetics 128, 145–158.

Iversen CM, Murphy MT, Allen MF, Childs J, Eissenstat DM, 
Lilleskov EA, Sarjala TM, Sloan VL, Sullivan PF. 2011. Advancing the 
use of minirhizotrons in wetlands. Plant Soil 352, 23–39.

Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, 
Kishor PB, Nguyen H, Sutton T, Varshney RK. 2015. Genotyping-
by-sequencing based intra-specific genetic map refines a “QTL-hotspot” 
region for drought tolerance in chickpea. Molecular Genetics and 
Genomics 290, 559–571.

Janila P, Pandey MK, Shasidhar Y, et al. 2016. Molecular breeding 
for introgression of fatty acid desaturase mutant alleles (ahFAD2A and 
ahFAD2B) enhances oil quality in high and low oil containing peanut 
genotypes. Plant Science 242, 203–213.

Jannink JL, Lorenz AJ, Iwata H. 2010. Genomic selection in plant 
breeding: from theory to practice. Briefings in Functional Genomics 9, 
166–177.

Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, 
Lorenz A. 2014. Genotyping by sequencing for genomic prediction in a 
soybean breeding population. BMC Genomics 15, 740.

Jeudy C, Adrian M, Baussard C, et al. 2016. RhizoTubes as a 
new tool for high throughput imaging of plant root development and 
architecture: test, comparison with pot grown plants and validation. 
Plant Methods 12, 31.

Johansen C, Siddique K. 2017. Grain legumes in integrated crop. In: 
Shivasankar S, Bergvinson D, Gaur P, Kumar S, Beebe S, Tamo M, eds. 
Achieving sustainable cultivation of grain legumes. Chapter 10, Grain 
legumes in integrated crop management systems. Sawston, UK: Burleigh 
Dodds Science Publishing Limited.

Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, 
Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT. 2003. 
DSSAT cropping system model. European Journal of Agronomy 18, 
235–265.

3308  |  Varshney et al.

Downloaded from https://academic.oup.com/jxb/article-abstract/69/13/3293/4920840
by International Crops Research Institute for the Semi-Arid Tropics user
on 25 June 2018

http://www2.naut.is/Files/Skra_0043312.pdf
http://www2.naut.is/Files/Skra_0043312.pdf
http://www.fao.org/wairdocs/tac/x5756e/x5756e08.htm
http://www.fao.org/wairdocs/tac/x5756e/x5756e08.htm
http://knowledge.cta.int/Dossiers/S-T-Policy/ACP-agricultural-S-T-dialogue/Demanding-Innovation/Feature-articles/Is-Quality-Declared-Seed-Production-an-effective-and-sustainable-way-to-address-Seed-and-Food-Security-in-Africa
http://knowledge.cta.int/Dossiers/S-T-Policy/ACP-agricultural-S-T-dialogue/Demanding-Innovation/Feature-articles/Is-Quality-Declared-Seed-Production-an-effective-and-sustainable-way-to-address-Seed-and-Food-Security-in-Africa
http://knowledge.cta.int/Dossiers/S-T-Policy/ACP-agricultural-S-T-dialogue/Demanding-Innovation/Feature-articles/Is-Quality-Declared-Seed-Production-an-effective-and-sustainable-way-to-address-Seed-and-Food-Security-in-Africa
http://knowledge.cta.int/Dossiers/S-T-Policy/ACP-agricultural-S-T-dialogue/Demanding-Innovation/Feature-articles/Is-Quality-Declared-Seed-Production-an-effective-and-sustainable-way-to-address-Seed-and-Food-Security-in-Africa
https://DSSAT.net
https://DSSAT.net


Kale SM, Jaganathan D, Ruperao P, et al. 2015. Prioritization of 
candidate genes in “QTL-hotspot” region for drought tolerance in chickpea 
(Cicer arietinum L.). Scientific Reports 5, 15296.

Kamanga BCG, Waddington SR, Whitbread A, Almekinders CJM, 
Giller K. 2013. Improving the efficiency of use of small amounts of 
nitrogen and phosphorus fertiliser on smallholder maize in central Malawi. 
Experimental Agriculture 50, 229–249.

Kamburova VS, Nikitina EV, Shermatov SE, Buriev ZT, Kumpatla 
SP, Emani C, Abdurakhmonov IY. 2017. Genome editing in plants: 
an overview of tools and applications. International Journal of Agronomy 
2017, 7315351.

Kang YJ, Kim SK, Kim MY, et al. 2014. Genome sequence of 
mungbean and insights into evolution within Vigna species. Nature 
Communications 5, 5443.

Kang YJ, Satyawan D, Shim S, et al. 2015. Draft genome sequence of 
adzuki bean, Vigna angularis. Scientific Reports 5, 8069.

Keating BA, Carberry PS, Hammer GL, et al. 2003. An overview of 
APSIM, a model designed for farming systems simulation. European 
Journal of Agronomy 18, 267–288.

Khanh T, Anh T, Buu B, et al. 2013. Applying molecular breeding to 
improve soybean rust resistance in Vietnamese elite soybean. American 
Journal of Plant Sciences 4, 1–6.

Kholová J, Murugesan T, Kaliamoorthy S, et al. 2014. Modelling 
the effect of plant water use traits on yield and stay-green expression in 
sorghum. Functional Plant Biology 41, 1019–1034.

Kim HK, van Oosterom E, Dingkuhn M, Luquet D, Hammer G. 2010. 
Regulation of tillering in sorghum: environmental effects. Annals of Botany 
106, 57–67.

Kim JS. 2016. Genome editing comes of age. Nature Protocols 11, 
1573–1578.

Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA. 2014. 
Historical gains in soybean (Glycine max Merr.) seed yield are driven by 
linear increases in light interception, energy conversion, and partitioning 
efficiencies. Journal of Experimental Botany 65, 3311–3321.

Kuijken RC, van Eeuwijk FA, Marcelis LF, Bouwmeester HJ. 2015. 
Root phenotyping: from component trait in the lab to breeding. Journal of 
Experimental Botany 66, 5389–5401.

Kumar SR, Hammer GL, Broad I, Harland P, McLean G. 2009. 
Modelling environmental effects on phenology and canopy development of 
diverse sorghum genotypes. Field Crops Research 111, 157–165.

Kumar V, Khan AW, Saxena RK, Garg V, Varshney RK. 2016. First-
generation HapMap in Cajanus spp. reveals untapped variations in 
parental lines of mapping 1 populations. Plant Biotechnology Journal 14, 
1673–1681.

Lam HM, Xu X, Liu X, et al. 2010. Resequencing of 31 wild and 
cultivated soybean genomes identifies patterns of genetic diversity and 
selection. Nature Genetics 42, 1053–1059.

Landau-Ellis D, Pantalone VR. 2009. Marker-assisted backcrossing to 
incorporate two low phytate alleles into the Tennessee soybean cultivar 
5601T. In: Shu GY, ed. Induced plant mutations in the genomics era. 
Rome: Food and Agriculture Organization of the United Nations (FAO), 
316–318.

Lavaud C, Lesné A, Piriou C, Le Roy G, Boutet G, Moussart A, 
Poncet C, Delourme R, Baranger A, Pilet-Nayel ML. 2015. Validation 
of QTL for resistance to Aphanomyces euteiches in different pea genetic 
backgrounds using near-isogenic lines. Theoretical and Applied Genetics 
128, 2273–2288.

Le Marié C, Kirchgessner N, Flütsch P, Pfeifer J, Walter A, Hund A. 
2016. RADIX: rhizoslide platform allowing high throughput digital image 
analysis of root system expansion. Plant Methods 12, 40.

Le Marié C, Kirchgessner N, Marschall D, Walter A, Hund A. 2014. 
Rhizoslides: paper-based growth system for non-destructive, high 
throughput phenotyping of root development by means of image analysis. 
Plant Methods 10, 13.

Leamy LJ, Zhang H, Li C, Chen CY, Song BH. 2017. A genome-wide 
association study of seed composition traits in wild soybean (Glycine soja). 
BMC Genomics 18, 18.

Lee YG, Jeong N, Kim JH, et al. 2015. Development, validation and 
genetic analysis of a large soybean SNP genotyping array. The Plant 
Journal 81, 625–636.

Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, 
Clifton E, Falco SC, Cigan AM. 2015. Cas9-Guide RNA directed 
genome editing in soybean. Plant Physiology 169, 960–970.

Lobell DB, Asseng S. 2017. Comparing estimates of climate change 
impacts from process based and statistical crop models. Environment 
Research Letters 12, 015001.

Lopes MS, Reynolds MP, Manes Y, Singh RP, Crossa J, Braun HJ. 
2012. Genetic yield gains and changes in associated traits of CIMMYT 
spring bread wheat in an historic set representing 30 years of breeding. 
Crop Science 52, 1123.

Lorenz AJ, Chao S, Asoro FG, Heffner EL. 2011. Genomic selection 
in plant breeding: knowledge and prospects. Advances in Agronomy 110, 
77–123.

Lucas MR, Huynh BL, Roberts PA, Close TJ. 2015. Introgression of a 
rare haplotype from Southeastern Africa to breed California blackeyes with 
larger seeds. Frontiers in Plant Science 6, 126.

Ma Y, Reif JC, Jiang Y, et al. 2016. Potential of marker selection to 
increase prediction accuracy of genomic selection in soybean (Glycine max 
L.). Molecular Breeding 36, 113.

Maeght JL, Rewald B, Pierret A. 2013. How to study deep roots—and 
why it matters. Frontiers in Plant Science 4, 299.

Maereka EK, Rubyogo JC. 2015. Integrated bean seed systems in Africa: 
implications for community seed production. In: Ojiewo CO, Kugbei S, Bishaw 
Z, Rubyogo JC, eds. Community seed production. Workshop proceedings, 
December 2013. Addis Ababa: ICRISAT and Rome: FAO, 9–11.

Maldonado dos Santos JV, Valliyodan B, Joshi T, et al. 2016. 
Evaluation of genetic variation among Brazilian soybean cultivars through 
genome resequencing. BMC Genomics 17, 110.

Mairhofer S, Zappala S, Tracy SR, Sturrock C, Bennett M, Mooney 
SJ, Pridmore T. 2012. RooTrak: automated recovery of three-dimensional 
plant root architecture in soil from x-ray microcomputed tomography 
images using visual tracking. Plant Physiology 158, 561–569.

Marrou H, Sinclair TR, Metral R. 2014. Assessment of irrigation 
scenarios to improve performances of Lingot bean (Phaseolus vulgaris) in 
southwest France. European Journal of Agronomy 59, 5922–5928.

Massman JM, Gordillo A, Lorenzana RE, Bernardo R. 2013. 
Genomewide predictions from maize single-cross data. Theoretical and 
Applied Genetics 126, 13–22.

Mathieu L, Lobet G, Tocquin P, Périlleux C. 2015. “Rhizoponics”: a 
novel hydroponic rhizotron for root system analyses on mature Arabidopsis 
thaliana plants. Plant Methods 11, 3.

McGuire S, Sperling L. 2016. Seed systems smallholder farmers use. 
Food Security 8, 179–195.

Meng Y, Hou Y, Wang H, Ji R, Liu B, Wen J, Niu L, Lin H. 2017. 
Targeted mutagenesis by CRISPR/Cas9 system in the model legume 
Medicago truncatula. Plant Cell Reports 36, 371–374.

Messina CD, Podlich D, Dong Z, Samples M, Cooper M. 2011. Yield-
trait performance landscapes: from theory to application in breeding maize 
for drought tolerance. Journal of Experimental Botany 62, 855–868.

Meuwissen TH, Hayes BJ, Goddard ME. 2001. Prediction of total genetic 
value using genome-wide dense marker maps. Genetics 157, 1819–1829.

Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM. 2015. 
CRISPR/Cas mutagenesis of soybean and Medicago truncatula using 
a new web-tool and a modified Cas9 enzyme. GM Crops & Food 6, 
243–252.

Miklas PN, Kelly JD, Beebe SE, Blair MW. 2006. Common bean 
breeding for resistance against biotic and abiotic stresses: from classical to 
MAS breeding. Euphytica 147, 105–131.

Miklas PN, Smith JR, Riley R, Grafton KF, Singh SP, Jung G, Coyne 
DP. 2000. Marker-assisted breeding for pyramided resistance to common 
bacterial blight in common bean. Annual Reports Bean Improvement 
Cooperatives 43, 39–40.

Monyo ES, Varshney RK. 2016. Seven seasons of learning and 
engaging smallholder farmers in the drought-prone areas of sub-Saharan 
Africa and South Asia through Tropical Legumes, 2007–2014. Patancheru, 
Telangana, India: International Crops Research Institute for the Semi-Arid 
Tropics.

Mooney S, Pridmore T, Helliwell J, Bennett MJ. 2012. Developing 
X-ray computed tomography to non-invasively image 3-D root systems 
architecture in soil. Plant Soil 352, 1–22.

Accelerating genetic gains in legumes  |  3309

Downloaded from https://academic.oup.com/jxb/article-abstract/69/13/3293/4920840
by International Crops Research Institute for the Semi-Arid Tropics user
on 25 June 2018



Muchero W, Diop NN, Bhat PR, et al. 2009. A consensus genetic map 
of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived 
SNPs. Proceedings of the National Academy of Sciences, USA 106, 
18159–18164.

Muñoz-Amatriaín M, Mirebrahim H, Xu P, et al. 2017. Genome 
resources for climate-resilient cowpea, an essential crop for food security. 
The Plant Journal 89, 1042–1054.

Mutlu N, Miklas PN, Reiser J, et al. 2005. Backcross breeding for 
improved resistance to common bacterial blight in pinto bean (Phaseolus 
vulgaris L.). Plant Breeding 124, 282–287.

Nagy ED, Guo Y, Tang S, et al. 2012. A high-density genetic map 
of Arachis duranensis, a diploid ancestor of cultivated peanut. BMC 
Genomics 13, 469.

Neumann K, Klukas C, Friedel S, Rischbeck P, Chen D, Entzian A, 
Stein N, Graner A, Kilian B. 2015. Dissecting spatiotemporal biomass 
accumulation in barley under different water regimes using high-throughput 
image analysis. Plant, Cell & Environment 38, 1980–1996.

O’Boyle PD, Kelly JD. 2007. Use of marker-assisted selection to breed 
for resistance to common bacterial blight in common bean. Journal of 
American Society of Horticultural Science 132, 381–386.

Oliveira LK, Melo LC, Brondani C, Peloso MJ, Brondani RP. 2008. 
Backcross assisted by microsatellite markers in common bean. Genetics 
and Molecular Research 7, 1000–1010.

Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, 
Thudi M, Chitikineni A, Rathore A, Varshney RK. 2016. Emerging 
genomic tools for legume breeding: current status and future prospects. 
Frontiers in Plant Science 7, 455.

Pandey MK, Agarwal G, Kale SM, et al. 2017a. Development and 
evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K 
SNPs for accelerating genetics and breeding in groundnut. Scientific 
Reports 7, 40577.

Pandey MK, Khan AW, Singh VK, et al. 2017b. QTL-seq approach 
identified genomic regions and diagnostic markers for rust and late leaf 
spot resistance in groundnut (Arachis hypogaea L.). Plant Biotechnology 
Journal 15, 927–941.

Parent B, Tardieu F. 2014. Can current crop models be used in the 
phenotyping era for predicting the genetic variability of yield of plants 
subjected to drought or high temperature? Journal of Experimental Botany 
65, 6179–6189.

Parhe SD, Chimote VP, Deshmukh MP, Chandra K, Akash M. 2017. 
Marker-assisted pyramiding of four QTL/genes for Asian rust (Phakopsora 
pachyrhizi) resistance in soybean. Journal of Crop Improvement 31, 689–711.

Parween S, Nawaz K, Roy R, et al. 2015. An advanced draft genome 
assembly of a desi type chickpea (Cicer arietinum L.). Scientific Reports 5, 
12806.

Pazhamala LT, Purohit S, Saxena RK, Garg V, Krishnamurthy L, 
Verdier J, Varshney RK. 2017. Gene expression atlas of pigeonpea 
and its application to gain insights into genes associated with pollen 
fertility implicated in seed formation. Journal of Experimental Botany 68, 
2037–2054.

Pereyra-Irujo GA, Gasco ED, Peirone LS, Aguirrezabal L. 2012. 
GlyPh: a low-cost platform for phenotyping plant growth and water use. 
Functional Plant Biology 39, 905–913.

Plant Production and Protection Division. 2006. Quality declared seed 
system. FAO Plant Production and Protection Paper 185. Rome: Food and 
Agriculture Organization of the United Nations. 

Pratap A, Chaturvedi SK, Tomar R, Rajan N, Malviya N, Thudi M, 
Saabale PR, Prajapati U, Varshney RK, Singh NP. 2017. Marker-
assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, 
an elite cultivar of desi chickpea. Molecular Genetics and Genomics 292, 
1237–1245.

Price AL, Zaitlen NA, Reich D, Patterson N. 2010. New approaches 
to population stratification in genome-wide association studies. Nature 
Reviews Genetics 11, 459–463.

Prince SJ, Murphy M, Mutava RN, Durnell LA, Valliyodan B, 
Shannon JG, Nguyen HT. 2017. Root xylem plasticity to improve water 
use and yield in water-stressed soybean. Journal of Experimental Botany 
68, 2027–2036.

Rellán-Álvarez R, Lobet G, Lindner H, et al. 2015. GLO-Roots: an 
imaging platform enabling multidimensional characterization of soil-grown 
root systems. eLife 4, 07597.

Reynolds M, Langridge P. 2016. Physiological breeding. Current Opinion 
in Plant Biology 31, 162–171.

Richard CA, Hickey LT, Fletcher S, Jennings R, Chenu K, 
Christopher JT. 2015. High-throughput phenotyping of seminal root traits 
in wheat. Plant Methods 11, 13.

Riedelsheimer C, Endelman JB, Stange M, Sorrells ME, Jannink JL, 
Melchinger AE. 2013. Genomic predictability of interconnected biparental 
maize populations. Genetics 194, 493–503.

Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi 
M, Varshney RK. 2017. Development and evaluation of high density 
SNP array (Axiom® CicerSNP Array) for high resolution genetic mapping 
and breeding applications in chickpea. Plant Biotechnology Journal 16, 
890–901.

Roorkiwal M, Rathore A, Das RR, et al. 2016. Genome-enabled 
prediction models for yield related traits in Chickpea. Frontiers in Plant 
Science 7, 1666.

Roorkiwal M, Sawargaonkar SL, Chitikineni A, Thudi M, Saxena 
RK, Upadhyaya HD, Vales MI, Riera-Lizarazu O, Varshney RK. 2013. 
Single nucleotide polymorphism genotyping for breeding and genetics 
applications in chickpea and pigeonpea using the BeadXpress platform. 
The Plant Genome 6, doi: 10.3835/plantgenome2013.05.0017.

Rubyogo JC, Myer GM, Ajeigbe H, et al. 2016. Integrated seed 
systems delivering on the promise: experiences from Tropical Legumes 
II. In: Monyo ES, Varshney RK. Seven seasons of learning and engaging 
smallholder farmers in the drought-prone areas of sub-Saharan Africa 
and South Asia through Tropical Legumes, 2007–2014. Patancheru, 
Telangana, India: International Crops Research Institute for the Semi-Arid 
Tropics, 167–178.

Rubyogo JC, Sperling JC, Muthoni R, Buruchara R. 2010. Bean seed 
delivery for small farmers in sub-saharan Africa: the power of partnerships. 
Society & Natural Resources 4, 285–302.

Saatchi M, McClure MC, McKay SD, et al. 2011. Accuracies of 
genomic breeding values in American Angus beef cattle using K-means 
clustering for cross-validation. Genetics, Selection, Evolution 43, 40.

Saghai-Maroof MA, Jeong SC, Gunduz I, Tucker DM, Buss GR, Tolin 
S. 2008. Pyramiding of soybean mosaic virus resistance genes by marker 
assisted selection. Crop Science 48, 517–526.

Sanginga N, Dashiell K, Diels J, et al. 2003. Sustainable resource 
management coupled to resilient germplasm to provide new intensive 
cereal–grain–legume–livestock systems in the dry Savanna. Agriculture, 
Ecosystems and Environment 100, 305–314.

Saxena K, Saxena RK, Varshney RK. 2017. Use of immature seed 
germination and single seed descent for rapid genetic gains in pigeonpea. 
Plant Breeding 136, 954–957.

Schmutz J, Cannon SB, Schlueter J, et al. 2010. Genome sequence of 
the palaeopolyploid soybean. Nature 463, 178–183.

Schmutz J, McClean PE, Mamidi S, et al. 2014. A reference genome 
for common bean and genome-wide analysis of dual domestications. 
Nature Genetics 46, 707–713.

Schopp P, Müller D, Technow F, Melchinger AE. 2017. Accuracy of 
genomic prediction in synthetic populations depending on the number of 
parents, relatedness, and ancestral linkage disequilibrium. Genetics 205, 
441–454.

Sennhenn A, Njarui DMG, Maass BL, Whitbread AM. 2017. 
Exploring niches for short-season grain legumes in semi-arid Eastern 
Kenya—coping with the impacts of climate variability. Frontiers in Plant 
Science 8, 699.

Septiningsih EM, Collard BC, Heuer S, Bailey-Serres J, Ismail AM, 
Mackill DJ. 2013. Applying genomics tools for breeding submergence 
tolerance in rice. In: Varshney RK, Tuberosa R, eds. Translational genomics 
for crop breeding, Vol II, Abiotic stress, yield and quality. John Wiley & 
Sons, Inc., 9–30.

Shi A, Chen P, Li D, Zheng C, Zhang B, Hou A. 2009. Pyramiding 
multiple genes for resistance to soybean mosaic virus in soybean using 
molecular markers. Molecular Breeding 23, 113–124.

Siddique KH, Johansen C, Turner NC, Jeuffroy M-H, Hashem A, 
Sakar D, Gan Y, Alghamdi S. 2012. Innovations in agronomy for food 
legumes. A review. Agronomy for Sustainable Development 32, 45–64.

Sinclair TR, Marrou H, Soltani A, Vadez V, Chandolu KC. 2014. 
Soybean production potential in Africa. Global Food Security 3, 31–40.

3310  |  Varshney et al.

Downloaded from https://academic.oup.com/jxb/article-abstract/69/13/3293/4920840
by International Crops Research Institute for the Semi-Arid Tropics user
on 25 June 2018



Sinclair TR, Messina CD, Beatty A, Samples M. 2010. Assessment 
across the United States of the benefits of altered soybean drought traits. 
Agronomy Journal 102, 475–482.

Sinclair TR, Vadez V. 2012. The future of grain legumes in cropping 
systems. Crop and Pasture Science 63, 501–512.

Singh VK, Khan AW, Jaganathan D, et al. 2016. QTL-seq for rapid 
identification of candidate genes for 100-seed weight and root/total plant 
dry weight ratio under rainfed conditions in chickpea. Plant Biotechnology 
Journal 14, 2110–2119.

Singh VK, Khan AW, Saxena RK, et al. 2017. Indel-seq: a fast-forward 
genetics approach for identification of trait-associated putative candidate 
genomic regions and its application in pigeonpea (Cajanus cajan). Plant 
Biotechnology Journal 15, 906–914.

Singh T, Sharma A. 2016. Early generation selection for yield and its 
related traits in soybean [Glycine max (L.) Merrill.]. Legume Research 39, 
343–348.

Sita K, Sehgal A, HanumanthaRao B, et al. 2017. Food legumes and 
rising temperatures: effects, adaptive functional mechanisms specific 
to reproductive growth stage and strategies to improve heat tolerance. 
Frontiers in Plant Science 8, 1658.

Skirycz A, Vandenbroucke K, Clauw P, et al. 2011. Survival and 
growth of Arabidopsis plants given limited water are not equal. Nature 
Biotechnology 29, 212–214.

Smyth SJ. 2017. Canadian regulatory perspectives on genome 
engineered crops. GM Crops & Food 8, 35–43.

Soltani A, Sinclair TR. 2011. A simple model for chickpea development, 
growth and yield. Field Crops Research 124, 252–260.

Soltani A, Sinclair TR. 2012. Modeling physiology of crop development, 
growth and yield. Wallingford, UK: CABI.

Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan 
PB. 2013. Development and evaluation of SoySNP50K, a high-density 
genotyping array for soybean. PLoS One 8, e54985.

Song Q, Jia G, Hyten DL, et al. 2015. SNP assay development for 
linkage map construction, anchoring whole-genome sequence, and 
other genetic and genomic applications in common bean. G3: Genes, 
Genomes, Genetics 5, 2285–2290.

Sperling L, McGuire S. 2010. Understanding and strengthening informal 
seed markets. Experimental Agriculture 46, 119–136.

Sprink T, Eriksson D, Schiemann J, Hartung F. 2016. Regulatory 
hurdles for genome editing: process- vs. product-based approaches in 
different regulatory contexts. Plant Cell Reports 35, 1493–1506.

Stagnari F, Maggio A, Galieni A, Pisante M. 2017. Multiple benefits of 
legumes for agriculture sustainability: an overview. Chemical and Biological 
Technologies in Agriculture 4, 2.

Stavely JR. 2000. Pyramiding rust and viral resistance genes using 
traditional and marker techniques in common bean. Annual Reports Bean 
Improvement Cooperatives 43, 1–4.

Sun X, Hu Z, Chen R, Jiang Q, Song G, Zhang H, Xi Y. 2015. Targeted 
mutagenesis in soybean using the CRISPR-Cas9 system. Scientific 
Reports 5, 10342.

Taran B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, 
Vandenberg A. 2003. Using molecular markers to pyramid genes for 
resistance to ascochyta blight and anthracnose in lentil (Lens culinaris 
Medik.). Euphytica 134, 223–230.

Tardieu F, Cabrera-Bosquet L, Pridmore T, Bennett M. 2017. Plant 
phenomics, from sensors to knowledge. Current Biology 27, R770–R783.

Tardieu F, Tuberosa R. 2010. Dissection and modelling of abiotic stress 
tolerance in plants. Current Opinion in Plant Biology 13, 206–212.

Tayeh N, Aluome C, Falque M, et al. 2015a. Development of two major 
resources for pea genomics: the GenoPea 13.2K SNP array and a high-
density, high-resolution consensus genetic map. The Plant Journal 84, 
1257–1273.

Tayeh N, Aubert G, Pilet-Nayel ML, Lejeune-Hénaut I, Warkentin TD, 
Burstin J. 2015b. Genomic tools in pea breeding programs: status and 
perspectives. Frontiers in Plant Science 6, 1037.

Tayeh N, Klein A, Le Paslier MC, et al. 2015c. Genomic prediction in 
pea: effect of marker density and training population size and composition 
on prediction accuracy. Frontiers in Plant Science 6, 941.

Teixeira EI, Brown HE, Sharp J, Meenken ED, Ewert F. 2015. 
Evaluating methods to simulate crop rotations for climate impact 

assessments—a case study on the Canterbury plains of New Zealand. 
Environmental Modelling & Software 72, 304–313.

Tekwa IJ, Ijabula ST, Maijama’a NP. 2010. Effect of herbicides, seed 
dressing chemicals and spray regimes on germination, insect infestation 
and yield of cowpea (Vigna unguiculata (L) Walp). Australian Journal of 
Agricultural Engineering 1, 14–17.

Thudi M, Chitikineni A, Liu X, et al. 2016a. Recent breeding programs 
enhanced genetic diversity in both desi and kabuli varieties of chickpea 
(Cicer arietinum L.). Scientific Reports 6, 38636.

Thudi M, Khan AW, Kumar V, Gaur PM, Katta K, Garg V, Roorkiwal 
M, Samineni S, Varshney RK. 2016b. Whole genome re-sequencing 
reveals genome-wide variations among parental lines of 16 mapping 
populations in chickpea (Cicer arietinum L.). BMC Plant Biology 16 Suppl 
1, 10.

Tisné S, Serrand Y, Bach L, et al. 2013. Phenoscope: an automated 
large-scale phenotyping platform offering high spatial homogeneity. The 
Plant Journal 74, 534–544.

Trachsel S, Kaeppler SM, Brown KM, Lynch JP. 2011. Shovelomics: 
High throughput phenotyping of maize (Zea mays L.) root architecture in 
the field. Plant Soil 341, 75–87.

Vadez V. 2014. Root hydraulics: the forgotten side of root in drought 
adaptation. Field Crops Research 165, 15–24.

Vadez V, Halilou O, Hissene HM, Sibiry-Traore P, Sinclair TR, 
Soltani A. 2017. Mapping water stress incidence and intensity, optimal 
plant populations, and cultivar duration for African groundnut productivity 
enhancement. Frontiers in Plant Science 8, 432.

Vadez V, Kholová J, Hummel G, Zhokhavets U, Gupta SK, Hash CT. 
2015. LeasyScan: a novel concept combining 3D imaging and lysimetry 
for high-throughput phenotyping of traits controlling plant water budget. 
Journal of Experimental Botany 66, 5581–5593.

Vadez V, Kholova J, Zaman-Allah M, Belko N. 2013a. Water: the most 
important ‘molecular’ component of water stress tolerance research. 
Functional Plant Biology 40, 1310–1322.

Vadez V, Soltani A, Sinclair TR. 2012. Modelling possible benefits of 
root related traits to enhance terminal drought adaptation of chickpea. 
Field Crops Research 137, 108–115.

Vadez V, Soltani A, Sinclair TR. 2013b. Crop simulation analysis of 
phenological adaptation of chickpea to different latitudes of India. Field 
Crops Research 146, 1–9.

Valdisser PAMR, Pereira WJ, Almeida Filho JE, et al. 2017. In-depth 
genome characterization of a Brazilian common bean core collection using 
DArTseq high-density SNP genotyping. BMC Genomics 18, 423.

Valliyodan B, Dan Qiu, Patil G, et al. 2016. Landscape of genomic 
diversity and trait discovery in soybean. Scientific Reports 6, 23598.

Van Raden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, 
Schnabel RD, Taylor JF, Schenkel FS. 2009. Reliability of genomic 
predictions for North American Holstein bulls. Journal of Dairy Science 92, 
16–24.

Varshney RK. 2016. Exciting journey of 10 years from genomes to fields 
and markets: some success stories of genomics-assisted breeding in 
chickpea, pigeonpea and groundnut. Plant Science 242, 98–107.

Varshney RK, Chen W, Li Y, et al. 2012a. Draft genome sequence of 
pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor 
farmers. Nature Biotechnology 30, 83–89.

Varshney RK, Gaur PM, Chamarthi SK, Krishnamurthy L, Tripathi S, 
Kashiwagi J, Samineni S, Singh VK, Thudi M, Jaganathan D. 2013a. 
Fast-track introgression of “QTL-hotspot” for root traits and other drought 
tolerance traits in JG11, an elite and leading variety of chickpea. The Plant 
Genome 6, 1–9.

Varshney RK, Glaszmann JC, Leung H, Ribaut JM. 2010. More 
genomic resources for less-studied crops. Trends in Biotechnology 28, 
452–460.

Varshney RK, Graner A, Sorrells ME. 2005. Genomics-assisted 
breeding for crop improvement. Trends in Plant Science 10, 621–630.

Varshney RK, Hoisington DA, Tyagi AK. 2006. Advances in cereal 
genomics and applications in crop breeding. Trends in Biotechnology 24, 
490–499.

Varshney RK, Kudapa H, Pazhamala L, et al. 2015. Translational 
genomics in agriculture: some examples in grain legumes. Critical Reviews 
in Plant Sciences 34, 169–194.

Accelerating genetic gains in legumes  |  3311

Downloaded from https://academic.oup.com/jxb/article-abstract/69/13/3293/4920840
by International Crops Research Institute for the Semi-Arid Tropics user
on 25 June 2018



Varshney RK, Mohan SM, Gaur PM, et al. 2013b. Marker-assisted 
backcrossing to introgress resistance to Fusarium Wilt Race 1 and Ascochyta 
blight in C 214, an elite cultivar of chickpea. The Plant Genome 7, 1–11.

Varshney RK, Pandey MK, Janila P, Nigam SN, Sudini H, Gowda MV, 
Sriswathi M, Radhakrishnan T, Manohar SS, Nagesh P. 2014. Marker-
assisted introgression of a QTL region to improve rust resistance in three 
elite and popular varieties of peanut (Arachis hypogaea L.). Theoretical and 
Applied Genetics 127, 1771–1781.

Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, 
Langridge P. 2012b. Can genomics boost productivity of orphan crops? 
Nature Biotechnology 30, 1172–1176.

Varshney RK, Roorkiwal M, Nguyen HT. 2013c. Legume genomics: 
from genomic resources to molecular breeding. The Plant Genome 6, 
1–7.

Varshney RK, Saxena RK, Upadhyaya HD, et al. 2017. Whole-genome 
resequencing of 292 pigeonpea accessions identifies genomic regions 
associated with domestication and agronomic traits. Nature Genetics 49, 
1082–1088.

Varshney RK, Singh VK, Hickey J, Xun X, Marshall DF, Wang J, 
Edwards D, Ribaut J. 2016. Analytical and decision support tools for 
genomics-assisted breeding. Trends in Plant Science 15, S1360–S1385.

Varshney RK, Song C, Saxena RK, et al. 2013d. Draft genome 
sequence of chickpea (Cicer arietinum) provides a resource for trait 
improvement. Nature Biotechnology 31, 240–246.

Visscher PM, Brown MA, McCarthy MI, Yang J. 2012. Five years of 
GWAS discovery. American Journal of Human Genetics 90, 7–24.

Waliyar F, Kumar PL, Ntare BR, Diallo AT. 2007. A century of research 
on groundnut rosette disease and its management. Information Bulletin 
no. 75. Patancheru, Andhra Pradesh, India: International Crops Research 
Institute for the Semi-Arid Tropics.

Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu 
D. 2016. Efficient inactivation of symbiotic nitrogen fixation related genes 
in Lotus japonicus using CRISPR-Cas9. Frontiers in Plant Science 7, 
1333.

Wang LL, Wang LX, Zhou Y, Duanmu D. 2017. Use of CRISPR/Cas9 
for symbiotic nitrogen fixation research in legumes. Progress in Molecular 
Biology and Translational Science 150, 1–495.

Wasson AP, Rebetzke GJ, Kirkegaard JA, Christopher J, Richards 
RA, Watt M. 2014. Soil coring at multiple field environments can directly 
quantify variation in deep root traits to select wheat genotypes for 
breeding. Journal of Experimental Botany 65, 6231–6249.

Wojciechowski MF, Lavin M, Sanderson MJ. 2004. A phylogeny 
of legumes (Leguminosae) based on analysis of the plastid matK gene 
resolves many well-supported subclades within the family. American 
Journal of Botany 91, 1846–1862.

Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. 
2013. Pitfalls of predicting complex traits from SNPs. Nature Reviews 
Genetics 14, 507–515.

Yakubu H, Buji IB, Sandabe MK. 2011. Effects of seed-dressing 
fungicides on germination, nodulation, N2-fixation and yields of two 
groundnut varieties in semi-arid region of Nigeria. Sandabe International 
Journal of Applied Agricultural Research 6, 121–129.

Yang K, Tianb Z, Chenc C, et al. 2015. Genome sequencing of adzuki 
bean (Vigna angularis) provides insight into high starch and low fat 
accumulation and domestication. Proceedings of the National Academy of 
Sciences, USA 112, 3213–18.

Zaman-Allah M, Jenkinson DM, Vadez V. 2011. A conservative pattern 
of water use, rather than deep or profuse rooting, is critical for the terminal 
drought tolerance of chickpea. Journal of Experimental Botany 62, 
4239–4252.

Zhang C, Tar’an B, Warkentin T, Tullu A, Bett KE, Vandenberg B, 
Somers D. 2006. Selection for lodging resistance in early generations of 
field pea by molecular markers. Crop Science 46, 321–329.

Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin 
G, Prasanna BM, Vargas M, San Vicente F, Crossa J. 2017. Rapid 
cycling genomic selection in a multiparental tropical maize population. G3 
7, 2315–2326.

Zhou Z, Jiang Y, Wang Z, et al. 2015a. Resequencing 302 wild and 
cultivated accessions identifies genes related to domestication and 
improvement in soybean. Nature Biotechnology 33, 408–414.

Zhou L, Wang SB, Jian J, et al. 2015b. Identification of domestication-
related loci associated with flowering time and seed size in soybean with 
the RAD-seq genotyping method. Scientific Reports 5, 9350.

3312  |  Varshney et al.

Downloaded from https://academic.oup.com/jxb/article-abstract/69/13/3293/4920840
by International Crops Research Institute for the Semi-Arid Tropics user
on 25 June 2018


