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Abstract

Cluster of loci were identified and selected and functional information such as correlation be-

tween them and ecological gradients were retrieved. Techniques for addressing allele-climate

association analysis required the aptness to unravel likely environmental variable effects from

confounding effects tabled by population ancestry. Recommendations for analysis of genome-

wide datasets propounded mechanisms which were computationally fast and efficient on infer-

ence. We proffered a routine based on population genetics, ecological modeling, and statistical

learning procedures to identify and select genomes which were adaptable locally. This method

was latent factor mixed models.

Latent factor mixed model was implemented in the LEA package in R statistical software. This

computationally efficient and swift strategy diagnosed associations between ecological variables

and clusters of loci on specific chromosomes while simultaneously performing inference on un-

derlying population stratas, visualized by Manhattan graphical tool. We then introduced this

model to durum wheat genetic and environmental data sets, identifying multiple loci that ex-

hibited strong correlations with climatic gradients.

KEYWORDS: Local Adaptation, Genome Scans, Environmental Gradients, Population Struc-

tures, Latent Factor Mixed Models.
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1. INTRODUCTION

1 Introduction

1.1 Background

The International Center for Agricultural Research in the Dry Areas (ICARDA) gene bank

holds more than 140,000 accessions of barley, durum wheat, food legumes (lentil,chickpea and

faba bean) and feed legumes (vetch and grass pea), composed mainly by landraces and wild

species.

ICARDA gene bank is a place where significant quantities of genetic materials are collected,

stored, classified and processed. This is to preserve genetic diversity for outsourcing for research

and plant breeding so as to sustain food productivity, mitigate poverty and overcome hunger

for a rapidly growing world population. Such genetic resources also allow for adaptation to

deforestation, desertification and environmental uncertainties. Accessions refer to a distinct,

uniquely identifiable sample of seeds, which represent cultivated varieties selected by humans

or a population, and stored for conservation and use. The ICARDA gene bank possesses both

landraces and wild accessions of cereals, legumes and forages, which are collected from dryland

areas around the world. The wild species and landraces are relevant to breeders as they possess

resistant genes for diseases and favorable alleles for adaptation to abiotic stress. They also hold

alleles for nutritional and quality attributes.

Durum wheat (Triticum turgidum) is the only tetraploid (four sets of chromosomes) and con-

tains the hardest shell of all the different wheat types. It was artificially bred from the Emmer

wheat (Triticum dicoccum), which is a member of the annual grass wheat family, because of

its very high micro-nutritional contents. It is grown in the spring in the Mediterranean area,

Canada and along the Great Northern Plains in the US. Durum wheat is used to make most

raised and flat breads, couscous, dried pasta, as well as semolina flour pasta. Durum wheat is

sold at 20% to 30% higher prices than other common wheats because it is preferentially used

by the food industry to produce high value foods. It is an important staple food, with about

35 % of the human population consuming it.

Durum wheats, which conveniently fit themselves to the prevailing environmental conditions,

tend to survive and produce more offsprings. Their abilities to adapt well to their environment

is dependent on the differences in genetic traits among the population, for characteristics which

are considered to have influence on its fitness (Darwin 1859; Williams 1966). This postulation

is regarded as the main process which brings about evolution, conservation, and global change

1



1. INTRODUCTION

in biology (Joost et al. 2007; Manel et al. 2010; Barrett and Hoekstra 2011; Jay et al. 2012;

Schoville et al. 2012).

Durum wheat contains many traits to adapt to several environmental and commercial uncer-

tainties, such as disease resistance, heat, cold temperatures, drought and salinity tolerances.

Plant breeders make use of genetic material of plants in the gene bank to develop superior col-

lection of cultivated varieties. This is achieved through gene mining and new genetic diversity

techniques, such as Focused Identification of Germplasm Strategy (FIGS), which improves the

resilience and building unit of these cultivated varieties, fortifying them for future environmental

and commercial uncertainties. FIGS is essential in identifying adaptive traits during breeding

programs.

(a) Emmer wheat (b) Durum Wheat

[b]4cm

Figure 1: Wheats representation from Isterra-seeds.com

Knowledge of the presence of important traits, alleles and genes are instrumental in plant ac-

cession duplications and seed stock maintenance decision making. DartSeq markers (https:

//www.diversityarrays.com/index.php/technology-and-resources/dartseq/), which are

DNA fragments associated with particular locations of the genome assay genome polymor-

phisms. Information derived from DNA polymorphism are vital. They can be used to clas-

sify and explain population differentiation. Population differentiation is brought about by

gene diversity and gene flow estimates. Also, the information serves as a guide in trans-

ferring superior quality traits such as biotic resilience, which often results in genetic varia-

tion. Marker-assisted selection makes use of this information to develop germplasm resources

(http://www.isaaa.org/resources/publications/pocketk/19/default.asp).

Some of these identified loci show correlation with their environment. A study carried by Joost

et al. (2007) reported that associations between loci and environmental variables can be tested

by using regression models. Other studies, based on humans (Hancock et al.,2008; Fumangalli

2
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1. INTRODUCTION

et al.,2011; Frichot et al.,2013), and on loblolly pines (Eckert et al. ,2010), agreed with the use

of regression models in evaluating associations between identified loci and climatic gradients.

The study carried out by Jones et al. (2012) reported the use of ecological correlation methods

when marine and sticklebacks were compared, to investigate the association between identified

loci with the habitat.

In addition, these different suggested methods in testing for associations between detected loci

and the environment were adopted by use of models. Some of these models do account for

correction of confounding effects due to population structure or isolation-by-distance, whereas

others do not. These models were viewed in different categories. A first category, applicable

to continuous populations or populations characterized by high gene flows (Joost et al.,2007),

was the logistic regression model or simple mantel test. A drawback of using this model was

the generation of vast numbers of false positive associations (Schoville et al.,2012, De Mita

et al.,2013, Frichot et al., 2013). A second category of models were those statistically depen-

dent on residual terms, which examined effects of ecological variables on allele frequencies after

overcoming confounding effects due to geographic structure (demographic history or isolation-

by-distance) (Grafen, 1989; Harvey and Pagel, 1991). A third category of methods which

evaluated effects of unknown latent factors while appraising the relationship between allele fre-

quencies and environmental gradients are those galvanized by Genome-wide association studies

and mixed models (Yu et al., 2006; Frichot et al., 2013; Yoder et al., 2014). In mixed models,

fixed effects modeled association between allele frequencies and known environmental variables,

whereas unknown hidden factors resulted from population structures due to demographic his-

tory or isolation-by-distance. A study presented by Frichot et al. (2013) reported that this

mixed model methodology is implemented in the software Latent Factor Mixed Model (LFMM

2.1). Another study carried out by De Villemereuil et al. ( 2014), nominated Latent Factor

Mixed Model as the most reliable method in assaying multiple genome-scan methods.

The current study used Latent Factor Mixed Models (LFMMs) based on regression models to

evaluate the association between allele frequencies and candidate environmental variables while

extinguishing unknown underlying hidden factors.

1.2 Objective

The purpose of the current study was to appraise desirable associations between allele frequen-

cies and environmental variables for a set of North African durum wheat landraces using latent

factor mixed models. Specifically:

3



1. INTRODUCTION

• To examine the correlation, covariance and variance structure of the data.

• To assess probable confounding effects which could impact results interpretation.

• To assay the association between allele frequencies and environmental variables after cor-

rection of latent factors.

4



2. DATA DESCRIPTION

2 Data Description

2.1 Genomic data

Genotypic data for durum wheat landraces were selected from the ICARDA gene bank. These

species were collected from five different countries in North Africa, representing the North

African durum wheat genetic diversity. A total of 919 species were collected, where 347, 34,

9, 183 and 346 were from Algeria, Egypt, Libya, Morocco and Tunisia respectively. Different

accessions were collected from the same sites. Accessions had unique identification referred to as

ICARDA ID. Collection sites also had distinct identification known as SiteCode. These diploid

species were recored in a genotypic matrix, as illustrated below.

Y =


y1,1 y1,2 . . . y1,8366

y2,1 y2,2 . . . y2,8366
...

...
...

y919,1 y919,2 . . . y919,8366


The genomic data for this study contained 919 rows representing individual genotypes and

8366 columns tabling genomic positions or loci. Loci were referred to as single nucleotide

polymorphisms (SNPs), where yi,j were ith individual at jth locus.

2.2 Climatic Data

The environmental predictors contained geographic coordinates (Longitude and latitude) of the

sites from which different landraces were collected. In total, 55 environmental variables were

considered in the current study as predictors illustrated below

X =


x1,1 x1,2 . . . x1,55

x2,1 x2,2 . . . x2,55
...

...
...

x919,1 x919,2 . . . x919,55


Amongst the 55 environmental gradients were 36 monthly climatic variables (precipitation, min-

imum and maximum temperatures) and 19 bioclimatic variables (Hijmans et al., 2005). The

data was derived by interpolating monthly average climatic data from weather stations on a 30

arc-second resolution grid usually known as ”1 km2” resolution (International Journal of Clima-

tology 25: 1965-1978). The 19 bioclimatic variables were generated from monthly temperatures

and rainfall values, which aided as a support tool to develop more variables which were biolog-

5



2. DATA DESCRIPTION

ically more meaningful. They were adopted in some ecological modeling approaches as well as

modeling of distribution of species. The bioclimatic variables demonstrated yearly inclination

(e.g., mean annual temperature, annual precipitation), seasonality (e.g., annual range in tem-

perature and precipitation), and extreme or constraint ecological attributes (e.g., temperature

of the coldest and warmest month, and precipitation of wettest and driest quarters). A quarter

is a three months period (1/4 of an annum). The table below showed a concised description of

climatic variables considered in the current study.

Table 1: Description of the climatic study variables.

Variable Type Description

ICARDA IG Categorical Identification of accessions held at ICARDA gene bank.
Predictor Variables
tmin1 -tmin12 Continuous Minimum temperatures from January to December (0C).
tmax1-tmax12 Continuous Maximum temperatures from January to December (0C).
prec1-prec12 Continuous Precipitation from January to December (mm).
bio1 Continuous Annual Mean Temperature (0C).
bio2 Continuous Mean Diurnal Range (Mean of monthly (max temp - min temp))(0C).
bio3 Continuous Isothermality (bio2/bio7) (* 100) (0C).
bio4 Continuous Temperature Seasonality (standard deviation *100) (0C).
bio5 Continuous Max Temperature of Warmest Month (0C).
bio6 Continuous Min Temperature of Coldest Month (0C).
bio7 Continuous Temperature Annual Range (bio5-bio6) (0C).
bio8 Continuous Mean Temperature of Wettest Quarter (0C).
bio9 Continuous Mean Temperature of Driest Quarter (0C).
bio10 Continuous Mean Temperature of Warmest Quarter (0C).
bio11 Continuous Mean Temperature of Coldest Quarter (0C).
bio12 Continuous Annual Precipitation (mm).
bio13 Continuous Precipitation of Wettest Month (mm).
bio14 Continuous Precipitation of Driest Month (mm).
bio15 Continuous Precipitation Seasonality (Coefficient of Variation) (mm).
bio16 Continuous Precipitation of Wettest Quarter (mm).
bio17 Continuous Precipitation of Driest Quarter (mm).
bio18 Continuous Precipitation of Warmest Quarter (mm).
bio19 Continuous Precipitation of Coldest Quarter (mm).

6



3. METHODOLOGY.

3 Methodology.

3.1 Exploratory Data Analysis.

3.1.1 Genetic exploratory analysis.

Motivation for performing exploratory analysis on genomic data were:

• to estimate the number of latent factors that will be used for allele-environment analysis.

• to investigate population ancestry.

Suggested number of latent factors.

To be able to have an insight of population ancestry and the number of latent factors to be

used for further allele-environment analysis, principal component analysis was performed based

on covariance matrix of the genotypic data. Genotypes were represented as Y = 919 x 8366

matrix, where 919 individuals were the rows and 8366 SNPs were the columns. YTwas the

notation used for the transpose of the matrix Y. Matrix Y was mean-centered by subtracting

the per column (SNPs) average from each column, so that means of each jth column were zero.

Principal component analysis was dependent on evaluating eigenvectors of 919 x 919 covariance

matrix Σ = YYT.

The decomposition was done using eigen decomposition approach, where the covariance matrix

denoted Σ was initially computed. Eigen decomposition was performed such that Σ = UΛUT,

where U was a 919 x k matrix (UTU=I), with columns that represented eigenvectors of YYT,

D a k x k diagonal matrix of singular values (square root of the eigenvalues of YYT and YTY)

and V was a 8366 x k matrix (VTV=I) of the eigenvectors YTY, where k is the matrix rank,

dig(Λ)= λ1, . . . , λk = diag(D2) were the eigenvalues, U is the matrix of eigenvectors YYT. Λ

and D were similar (having same eigenvalues, same number of independent eigenvectors but

potentially different eigenvectors) but not same (same eigenvalues, same number of independent

eigenvectors and probably same eigenvectors). The principal components P of the genomic data

were given by the projection of the data onto the eigenvectors P=YV=UD. PCA for genomic

data was computed using pca program in LEA package in R statistical software, which outputted

eigenvectors U as principal components without being weighted by singular values D, which led

to principal components with different scales. Since covariance was scaled by a factor
1

N− 1
,

then singular values were scaled by a factor of
1√
N-1

for relevance of interpretation of singular

7



3. METHODOLOGY.

values D as square-root of eigenvalues of scaled covariance
1

N− 1
YYT. Differences in these

scales did not affect interpretation of principal components when making inference on population

structure for genomic data. The number of principal components retained was based on Cattell’s

scree criterion which involved visual inspection of scree plot. The benchmark trend in a scree

plot was a steep curve, followed by a bend and then by a straight line. Eigenvalues coincided

to population structure that lied on the steep curve. Principal components retained were those

whose eigenvalues were on the steep curve before the bend and before the curve eventually

leveled off to a straight line. The number of principal components retained suggested the

number of ancestral populations that explained variation in the entire genomic population. The

number of ancestral population recommended the number of latent factors that were adopted

for the allele-environment analysis.

Population ancestry for the tabled latent factors.

To be able to trace genetic clusters, make inference about ancestral origin of durum wheat, screen

genomes for signatures of natural selection and perform statistical corrections in genome-wide

association studies (Pritchard et al. 2000b, Marchini et al, 2004; Price et al. 2006; Frichot

et al. 2013), individual admixture coefficients were estimated using classical algorithms based

on least-squares regression of alleles frequencies in genomic population (Robert and Hiorns,

1965; Cavalli-Sforza and Bodmer, 1971). Statistical inference of ancestry proportions for durum

wheat genotypic data was implemented in R package LEA using sparse nonnegative least-square

optimization function (sNMF).

1. Modeling ancestry coefficients.

Genotypic data of durum wheat for 919 individuals at 8366 loci. The data was stored in

genotypic matrix (Y), where each entry was the number of derived allele at jth locus for ith

individual. Autosomes in diploid durum wheat, derived number of alleles at jth locus was 0,

1 or 2. Three bit of information were used for encoding each 0, 1 or 2 value as indicators of

heterozygote or homozygote locus. That is value 0 was encoded as 1 0 0, 1 as 0 1 0 and 2 as 0 0

1. Binary coding usage recommended entries summed up to 8366 for each row of transformed

data matrix in the implemented sparse nonnegative matrix factorization procedure. Admixture

model expected that genotypic data originated from an admixture of K ancestral populations

(from K principal component retained from principal component analysis of genomic data).

Given K populations, probability that ith individual carried jth derived alleles at lth locus was

8



3. METHODOLOGY.

written as

pil(j) =
K∑
k=1

qikgkl(j), j = 0, 1, 2 (1)

where qik represented fraction of ith individual genotype that emanated from K ancestral pop-

ulation and gkl(j) represented the homozygote (j = 0, 2) or heterozygote (j=1) frequency at lth

locus in population K. Based on the binary coding, equation 1 was written as

P = QG (2)

where P = (pil) was a 919 x 3.8366 matrix, Q = (qik) was 919 X 9 matrix, and G = gkl(j) was

a 9 x 3.8366 matrix. Q matrix recorded ancestry proportions for each individual in the sample.

2. Least square estimates of ancestry proportions.

Inference of ancestry coefficients was implemented by least-square (LS) optimization algorithms

(Engelhardt and Stephens, 2010). Estimates of Q and G matrices were derived after minimizing

the least squares criterion

LS(Q,G) = ||Y −QG||2F (3)

where ||M||F was the Frobenium norm of a matrix M (Berry et al. 2007). Least-square solutions

were given by singular value decomposition of the matrix Y, when no constraints were imposed

on Q and G, thus the resulted matrices Q and G contained scores and loadings of PCA.

Ancestry coefficients were derived from matrices Q and G constrained with nonnegative entries

such that
K∑
k=1

qik = 1,

2∑
j=0

gkl(j) = 1 (4)

Estimation of ancestry coefficients and genotypic frequencies was equivalent to performing non-

negative matrix factorization of the genomic data matrix Y based on the constraints on equation

3. In sNMF, estimates of Q and G were computed using alternating nonnegativity-constrained

least squares (ANLS) algorithm (Berry et al. 2007; Kim and Park, 2011). The least-square al-

gorithm was divided into two phases. The 1st phase was characterized by assigning nonnegative

values to matrix Q’s entries, whose iterated cycles continued until convergence. Computation

of nonnegative matrix G was also a feature of phase 1 which minimized the quantity

LS1(G) = ||Y −QG||2F , G ≥ 0 (5)

Subsequent to suggested solutions for linear regression problems, matrix G was derived by

equalizing all nonnegative entries to zero. The resulted solution was then normalized so that

its entries satisfied equation 4. Second phase of the cycle was marked by computation of a

9



3. METHODOLOGY.

nonnegative matrix Q which minimized the quantity

LS2(Q) = ||
(

GT

√
αe1 ×K

)
Q−

(
YT

01 × n

)
||2F (6)

where e1×K was a row vector that contained all entries equal to 1, 01×n was a vector of length

919 with all entries equal to 0, α was a nonnegative regularization parameter. This minimization

question was settled based on the block principal pivoting approach reported by Kim and Park

(2011). The established solution, Q, was then normalized which ensured row entries summed up

to 1. Termination of iterations was basically dependent on a stationarity criterion recommended

from the Karush–Kuhn–Tucker conditions (Kim and Park 2011) and on when the corresponding

difference between two consecutive values of the criterion were less than a tolerance threshold

of ε = 10−4.

For α > 0, the approach resulted in performing sNMF for the data matrix Y. Values of α >

0 were tested, because variances of Q and G approximated for smaller data sets could be

diminished, insignificant approximations could be forced to zero, and numerical behavior of the

ANLS minimization procedure could be improved. Time spent to access memory was optimized

practically by the programming features used in sNMF.

3. Cross entropy criterion.

To be able to assess the quality (error) of ancestral estimation, a cross validation procedure

was implemented which calculated the cross-entropy criterion. The algorithm depended on

evaluating cross-entropy criterion which was a value based on forecast for entire genomic data

and on disguised genotypes from sparse nonnegative matrix factorization (sNMF) output (Wold

1978; Eastment and Krzanowski 1982). The genomic data was split into two portions, training

and test sets by the algorithm. The test set was created by randomly choosing and highlighting

certain proportion (5% in the current study) of the entire genomic data and flagging as missing

values. The resulted probabilities for the claoked entries were assessed based on the sNMF

outputs retrieved from training sets illustrated by the subsequent formula

ppredil (j) =

K∑
k=1

qikgkl(j), j = 0, 1, 2 (7)

Comparison was made between forecasted values and cloaked values, Yil, by evaluating the

mean of −logppredil (yil) on every SNPs in the test data set. Statistically, estimates of cross-

entropy criterion were provided by the quantity on equation (8) following,

H(psample, ppred) =
2∑
j=0

psample(j)− logppredil (j), j = 0, 1, 2 (8)

Cross-entropy between psample and ppred was represented by equation (8). Number of ancestral

10
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populations (K) and regularization parameter (α) were chosen with the goal of minimizing the

cross-entropy criterion. The cross-entropy criterion had standard error of order
1√
nL

, where nL

represented the number of masked genotypes. The yardstick was cross-entropy estimation for

entire genomic data being always lower than that for disguised genotypic data. A smaller value

of cross-entropy meant a better run in terms of strength of forecast. The criterion was supportive

in comparing and highlighting the best run in the cross-entropy estimation for cloaked data from

sNMF output.

3.1.2 Climatic explanatory analysis

Objectives of performing explanatory analysis on climatic data were:

• to examine variation pattern in the data.

• to assess the correlation structure of data.

• to evaluate potential confounding factors which could have influence on results interpre-

tation.

• to select variables which will be used for further analysis.

• to perform descriptive statistics on selected climatic variables.

• to rearrange selected climatic variables by country.

Variance structure for climatic data

To have an understanding of summary variability pattern across the data, principal component

analysis (PCA) was performed on the set of correlation matrix of predictors (climatic variables).

It was a dimension reduction algorithm for climatic variables, by extracting variables of low

dimensions in form of components from a high dimensional data set, with goal to capture as

much information as feasible. This was implemented using the princomp function in R. The

output of analysis was proportion of variance explained by each component, shown by use

of scree plot graphical tool. Number of principal components retained was deduced by the

number of components which were before the point where the curve’s slope leveled off clearly

(elbow), since these components tend to explain as much variation as the original variables.

PCA had advantages in that, visualization became more meaningful with fewer variables. PCA

supported in making predictors independent and avoid correlation problem between variables
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(multicollinearity problem). It also visaed interpretation of variables using two-dimensional

score plot.

Correlation structure for climatic data

To have insight on pattern of correlation for climatic variables, Pearson correlation was appraised

between environmental predictors using cor function in R statistical software. The results of

evaluation was correlation matrix visualized with correlogram graphical tool.

To be able to assess feasible climatic confounding effects, very highly correlated environmental

gradients (pairs of variables whose correlation coefficient magnitude were between 0.9 and 1.0),

were appraised using function findcorrelation from Caret package in R statistical software. This

was because, the closer the correlation between two variables were close to 1, the more related

their behavior and the more correlated one is with respect to the other. Extremely high correla-

tion between climatic variables was referred to as multicollinearity. This tabled impact on result

interpretation, since precision of established coefficients were reduced, which intend weakened

statistical power of analysis. The p values might not be trusted in examining statistical signif-

icance of climatic variables. Model justification became a problem if many p values were not

statistically significant. Estimated coefficients also became extremely sensitive to trivial pertur-

bations in the analysis, since approximated coefficients could vary widely depending on which

other predictors were present in the analysis. This suggested difficulties in specifying the correct

model. Therefore violation in establishing appropriate relationship between allele-frequencies

and each checklisted predictor.

Variable selection for climatic data

Presence of very highly correlated predictors in climatic data resulted in difficulties in appropri-

ate model specification, together with model justification if the majority of predictor p values

did not appear to be significant. These portrayed the need to catalog predictors correlated below

correlation coefficient magnitude threshold of 0.90. Variables selection for subsequent analysis

was based on the high correlation filter approach. If predictors were very highly correlated with

one another, any one of these predictors were used as proxies for all others. Pairs of predictors

with correlation coefficients magnitude higher than the threshold of 0.90 were reduced to only 1,

by comparing their means and retaining the predictor with higher mean. Predictors which were

correlated at a correlation coefficient magnitude threshold of 0.90 were evaluated using the func-

tion findcorrelation and filtered out. Results of the variables correlated below the correlation

coefficient magnitude threshold of 0.90 were observed using correlogram graphical tool. These
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variables were then used for further analysis. High correlation filter algorithm had advantages

that, it did not rely on any machine learning algorithm. It very extremely computationally easy

to adopt.

Summary statistics on selected climatic variables

Summary statistics such as minimum values, maximum values, means, medians and standard

deviations were appraised for the selected climatic variables.

Cluster analysis for climatic data

To have insight on whether these selected climatic variables were rearranged to form any pat-

tern based on their country of collection, clustering analysis was performed using the K-means

clustering approach. This approach assigned observations to 5 clusters randomly and computed

centroids for each clusters. Five because the study was interested in organizing the climatic

variables into 5 countries namely Algeria, Egypt, Libya, Morocco and Tunisia. The algorithm

iterated through reassigning data points to clusters whose centroids were closest and computed

new centroids for each clusters. The iterations process continued until the within variance

cluster disparity seemed to be null.

3.2 Allele-environment association analysis

3.2.1 Latent Factor Mixed Models

Mixed model algorithm used in gene-environment association study, examined adaptation of

SNPs to environmental gradients in five Northern African countries inbred lines of the model

plant species durum wheat. Durum wheat was genotyped using DartSeq marker containing

8366 SNPs. Preliminary analyses on exploration of both climatic and genotypic data sets were

performed. Analyses on climatic data set extracted 19 climatic variables from an initial total of

55, using high correlation filter procedure. Analyses on genotypic data was reliant on population

ancestry using ancestry estimation program sNMF (Frichot et al., 2014), which tabled nine

clusters (nine principal components) which described the desirable genetic variation in durum

wheat. In succeeding analyses of testing for association between alleles and environmental

gradients, latent factor mixed model was adopted. These nine clusters were then used as

number of latent factors to perform genome scans for selection.

Latent Factor Mixed Models (LFMMs) were statistical linear regression models with genotypic

13



3. METHODOLOGY.

matrix as response variables and environmental gradients for a set of individuals as explana-

tory variables, that struggled to examine unobserved latent factors that modeled confounding

effects due to genetic variations such as population ancestry, not explained by adaption to their

ecological inhabitat. When these confounding effects were extinguished , desirable association

between allele frequencies and environmental variables were elucidated as evidence for selection

at particular loci.

For allele frequencies, (Yij) and a set of environmental variables, (Xi), we had standard tests

being based on regression models as below:

Yij = λj + βTj Xi + εij (9)

where Yij were allele frequencies for ith individual at jth locus, βj were environmental effects

and εij independent residuals, i= 1,..., 919, j=1,...,8366.

Principal component analysis was related to factor analysis through maximum likelihood ap-

proximations (Tipping and Bishop, 1999; Engelhardt and Strphens, 2010)

Yij = λj + CTi Dj + εij (10)

where Yij were allele frequencies for ith individual at jthlocus, Ci ∼ N(0, σCi) and Dj ∼ N(0, 1)

respectively with K (number of retained principal components) dimensions suggested by scores

and loadings of principal components, εij were uncorrelated residuals suggested by K dimensions

(K ≤ n) with i= 1,..., 919, j=1,...,8366.

Latent factor mixed models followed from equations (9) and (10) as

Yij = λj + βTj Xi + CTi Dj + εij (11)

where Yij were allele frequencies for ith individual at jth locus, βj were environmental ef-

fects, Ci and Dj scores and their loadings respectively, εij independent residuals, i= 1,..., 919,

j=1,...,8366.

Latent factor mixed model considered in the current study was recommended as:

 Yij |Ci, Dj , βj , λj , σ
2 ∼ N(Uij , σ

2)Ii,j , where Uij = λj + βTj Xi + CTi Dj + εij . Likelihood.

λj |σ2λj ∼ N(0, σ2λj ), βjl|σ2βl ∼ N(0, σ2βl), Ci|σ2Ci
∼ N(0, σ2Ci

IK), Dj ∼ N(0, IK), P rior

(12)

where:

• Yij the response variable, was a genotypic matrix of allele frequency entry records of ith

subject at jth locus, i = 1, ..., 919, j = 1, ..., 8366, 919 and 8366 being the total sample

size and the total number of loci respectively.
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• σ2λj ∼ Γ−1(1 +
L

2
,
1

2

∑
j λ

2
j + 1), σ2βl ∼ Γ−1(1 +

L

2
,
1

2

∑
l β

2
jl + 1),

σ2Ci
∼ Γ−1(η +

nK

2
,
1

2

∑
iC

T
i Ci + η).

• Ii,j an indicator variable equal zero when the genotype data were missing at locus j for

individual i, and equal to 1 otherwise.

• λj was a locus-specific mean.

• βj were vectors of regression coefficients.

• Xi were vectors of environmental covariates modeled as the fixed effects.

• Ci and Dj were scores and their loadings respectively. The matrix term CTi Dj modeled

that part of the genetic variation unaccounted for by ecological adaptation.

• εij iid
∼

N(0, σ2)

In Bayesian system, unknown parameters were evaluated by posterior means. They were exam-

ined by use of Markov Chain Monte Carlo (MCMC) algorithm (Gilks et al., 1994) and generated

samples from the full conditionals using the Gibbs sampler. Sampled averages were considered

as the posterior means of the parameters of interest.

Genome scan for selection used five particular statistical models fitted using LFMMs as imple-

mented in the R package LEA (Frichot at al. 2014). These five models represented five specific

runs of the program with distinct initial values. Each model coincided with specific local optima

of the likelihood function and were described by particular set of z-scores.

A Gibbs sampler algorithm was implemented to simultaneously estimate scores (Ci) and loadings

(Dj), environmental effects (βj), and means (λj), which were LFMMs parameters. A total of

10 000 Gibbs sampling iterations were run after a burn-in period of 5000 iterations. Model

parameters were initialized to zero, that is Ci = 0K,n, Dj = 0K,p, βj = 0p,d, λj = 0p,1. Residual

variance, σ2ij parameter was updated at each iteration using the current residual variance. Other

model parameters were updated through Gibbs sampling iterations. At the first iteration when

model parameters were initialized, potential missing values in the genotypic matrix Yij were

imputed for t=1, ...,10 000 as follows

Yij ← C
(t−1)T
i D

(t−1)
j + βt−1

j Xt−1
i

Variance parameter σ2ij was then updated after that first iteration as follows

σ
2(t)
ij = V ar(Yij − C(t−1)T

i D
(t−1)
j −X(t−1)

i β
(t−1)
j )
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Hyperparamters were then sampled as follows

σ
2(t)
Ci
∼ P (σ2Ci

|C(t−1)
i , η), σ

2(t)
βj
∼ P (σ2βj |βj

(t−1)), σ
2(t)
λj
∼ P (σ2λj |λj

(t−1))

Samples from each locus were:

σ
(t)
λj
∼ P (λj |C(t−1)

i , D
(t−1)
j , β

(t−1)
j , σ

2(t)
λj

, σ
2(t)
ij ), σ

(t)
βl
∼ P (βj |C(t−1)

i , D
(t−1)
j , σ

(t)
λj
, σ

2(t)
β1

, · · · , σ2(t)βl
, σ

2(t)
ij )

Samples for each ith individual were:

C
(t)
i ∼ P (Ci|D(t−1)

j , σ
(t)
λj
, βj

(t), σ
2(t)
Ci

, σ
2(t)
ij )

Samples for each jthlocus were:

D
(t)
j ∼ P (Dj |σ(t)λj , β

(t)
j , C

(t)
i , σ

2(t)
ij )

Parameter estimates were appraised as follows:

Ci = mean(C
(5001)
i , · · · , C(10000)

i ), Dj = mean(D
(5001)
j , · · · , D(10000)

j ),

βi = mean(β
(5001)
i , · · · , β(10000)i ), λj = mean(λ

(5001)
j , · · · , λ(10000)j )

Z-score was evaluated as follows:

Zj =
mean(β

(5001)
j , · · · , β(10000)j )

(V ar(β
(5001)
j , · · ·β(10000)j ))1/2

Fitted latent factor mixed model evaluated the extend to which each SNPs was associated

with each environmental gradient. While interest was in parameter estimates, primary interest

was reliant in determining whether estimates were non-zero. Several algorithms for hypothesis

testing are likelihood ratio statistics, wald statistics and score statistics. Z-scores statistics were

used in the current study, since it does not require estimation of the parameters being tested.

In order to establish combined p-values adopted in testing association between SNPs and cli-

matic gradients, which could portray collective significant results rather than series of non

significant outcome, z-scores at each locus were combined for the five repetitions of latent

factor mixed model by Stouffer method (Brown 1975, Whitlock 2005). Stouffer algorithm rec-

ommended each test assigned weights proportional to inverse of their squared standard error.

Merit of combining z-scores using Stouffer method was the relative ease involved in introducing

weights.

Median of z-scores substituted mean of z-scores at each locus. Bias established by the merge

of five recognizable z-scores from the five model runs were revised by initiation of an inflation

factor, which established the basis of genomic control. Inflation factors were constant values, λ ,

purposed to recycle test statistics ensuring inflation due to population ancestry and confounding

factors were mitigated. The intention for rescaling approach was to customize test statistics

which resulted to flat histograms for significant values. Significant values were appraised from

chi-squared distribution with one degree of freedom. Their test statistics were nominated as
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squared z-scores in the rest of the current study. For chi-squared tests, recycled statistics

was
Z2
l

λ
, where Zl was score evaluated at lth locus, with invariant degree of freedom for test

statistics. This approach revised baseline hypothesis of Ho : Z2
l = 1 and customized it with a

new null-hypothesis, Ho : Z2
l = λ, where λ was approximated from the data.

In testing for association between several SNPs with each climatic gradient, multiple testing

comparisons were performed. Several tested null hypotheses portrayed significant outcome even

if all the hypotheses were false. These were referred to as false discoveries. False discovery rate

(FDR) was described as an expected proportion of false positives among a checklist of positive

tests. Tests were calibrated at a specific level of significance to suggest largest possible catalog of

loci at that level. FDRs were then controlled at an expected level of 10% using false discovery

rate control approach examined by Benjamini-Hochberg, 1995. Each individual p value was

compared to its Benjamini-Hochberg critical value, q ∗ (1 : Lj)/Lj , where q was the chosen

expected false discovery rate, 1 : Lj were the rankings and Lj was the total number of tests

performed.

The cut-off for significance was established at the largest p value that had a lower Benjamini-

Hochberg critical value (significant). All other p values smaller than this cut-off point were

also tabled significant, even those whose p values were not less than their coincided Benjamini-

Hochberg critical value.

Benjamini-Hochberg algorithm for controlling false discovery rates was preferred as it was less

sensitive than other algorithms for controlling multiple comparison issues, since if number of

tests were increased and the distribution of p values was same in the newly incremented tests as

in the fundamental one, same proportion of significant results were recommended by Benjamini-

Hochberg which was not the scenario for other methods. Test p values behaved as uniformly

distributed random variables with corrected null hypotheses. Graphical techniques of displaying

histograms of corrected p values were vital (Balding 2006). Results of the analyses were observed

using graphical technique of Manhattan plots.

This model had the advantage that it efficiently estimated random effects due to population his-

tory when computing gene-environment correlations, though its limitation was in appropriately

shortlisting number of latent factors that was used in running the LFMMs.
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3.2.2 Statistical software

All the analyses performed in the current study were performed using R statistical software

version 3.4.4, RStudio for windows and latex.
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4 Results

4.1 Exploratory data analysis

4.1.1 Genetic exploratory analysis

Suggested number of latent factors

Results of principal component analysis on genotypic data were visualized by use of scree plot

graphical tool as presented on Figure 2. Number of principal components retained was based on

number of principal components on the steep curve before the bend and before the curve even-

tually leveled off, since estimates of eigenvalues presented measures of the amount of original

total variance explained by each of the new derived variables (principal components), as sum

of all eigenvalues equals sum of variances of SNPs. Scree plot illustrated only nine principal

components whose eigenvalues were situated within the sharp decent before the bend, since

those principal components at and after the bends had smaller comparable sizes. Nine princi-

pal components represented nine ancestral populations which explained variation in the entire

genomic data and were suggested as the number of latent factor used for allele-environment

analysis.

Figure 2: Scree plot for percentage of variance explained by SNPs.
q
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Scores of principal components 1 and 2 for genomic data were plotted in a scatter plot shown

on Figure 3. Such a scatter plot readily showed that there seemed to had been no grouping in

genomic data, since individuals did not appear to be distinctly different in the score plot based

on countries. There was no observable trend of variation of individuals through out genomic

data. This presumed it was not feasible to classify individuals based on countries.

Figure 3: Scatter plot of principal components scores for genomic data.

Population ancestry for the tabled latent factors.

1. Modeling ancestry coefficients and least square estimates of ancestry proportions.

Outputs of estimated ancestry proportions based on least-squares procedure were Q and G

matrices. The Q-matrix was an ancestry matrix that contained admixture coefficients, precisely

recorded ancestry proportions for every individual in the sample. It was a 919 × 9 matrix, where

919 was the number of individuals in the study and 9 the number of ancestral populations.

Graphical illustration of ancestry estimates obtained for 8366 genotypic data set of durum

wheat was shown on Figure 4, which showed estimated ancestry coefficient using sNMF with

K=9 ancestral population, a regularization parameter α = 10, and a cross entropy = 0.0905.

It was observed that individuals were not separated by their ancestral populations as there did
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not seem to be any visible distinct cluster within the populations. Thus, we could ascertain

that individuals seemed to have had same ancestor. Table 2 was a representation of how

the individuals in the current study were allocated to the different clusters (nine ancestral

populations). The G-Matrix which was the other output of the least-square algorithm was the

genotypic allele frequency matrix used in the allele-environment analysis.

Figure 4: Bar chart of ancestry coefficients for the best run and K = 9 populations.

Table 2: Clustering of individuals in K=9 ancestral population.

Number of clusters 1 2 3 4 5 6 7 8 9

Number of Individuals 178 139 123 55 145 27 116 98 38

3. Cross entropy criterion.

To be able to select a value for K, sNMF for each value of K from 1 to 20 was projected.

Figure 5, illustrated the cross-entropy value obtained for each value of K. K = 9 was the best

value based on the cross-entropy criterion because the cross-entropy did not follow the trend

of sharp decrease for K greater than 9. There appeared to be consecutive minimal increases

and decreases after values of K greater than 9. The analyses were completed by the displayed

Q-matrices associated with each run on Figure 5. The best run was shortlisted based on the

run with the minimal cross-entropy after comparing the cross-entropy of all the runs. Table 3

showed that run 4 for K=9 ancestral population was the best run, since it had the lowest entropy
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of 0.0905. The cross-entropy for the training set was 0.0832 which was lower than that for the

tested set of 0.0924, hence met the benchmark of the criterion.

Figure 5: Value of the cross-entropy criterion for 20 sNMF runs (genomic dataset).

Table 3: Cross-entropy evaluated with K=9 ancestral populations for 10 runs

Number of runs 1 2 3 4 5 6 7 8 9 10

Cross entropy 0.0912 0.0932 0.0909 0.0905 0.0920 0.0918 0.0925 0.0934 0.0916 0.0930

4.1.2 Climatic explanatory analysis

Variance structure

Visual output of Principal component analysis on climatic data was presented on the scree plots

on Figure 6. The left paneled scree plot depicted five principal components, since five principal

components were visible before the curve’s slope clearly leveled off (elbow). This plot illustrated

that about 5 components explained nearly 95.6% of variance in the climatic data set. In order

words, the 55 predictors were reduced to 5, without compromising on explained variance using

principal component analysis.
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Figure 6: Scree plots illustrating proportion and cumulative proportion of variance explained by
climatic variables (predictors).

The right paneled scree plot on Figure 6, showed confirmatory check on the number of com-

ponents which explained the proportion of variance in the climatic data set. This plot showed

that 5 components resulted in variance close to about 96%. The number of components selected

were therefore 5 as illustrated in the appendix.

Retained principal components were interpreted reliant on the Pearson correlation appraised

between the principal component scores and each of the 55 climatic variables by the cor

function in R statistical software. The computed correlations were tabled on the appendix and

interpretations followed subsequently with description of climatic variables on Table 1.

Principal component 1 (PC1)

Principal component 1 (PC1) was very highly negatively correlated with tmin3, tmin4, tmin5,

tmax2, bio1 and bio11 with correlation coefficient of magnitudes -0.9016, -0.9204, -0.9288, -

0.9041, -0.9676 and -0.9066 respectively. It was depicted that there seemed to have been

strongly negatively correlation between PC1 and tmin1, tmin2, tmin6, tmin7, tmin8, tmin9,

tmin10, tmin11, tmin12, tmax1, tmax3, tmax4, tmax5, tmax10, tmax11, tmax12, bio6, bio8

and bio10 with correlation coefficient of magnitudes -0.8012, -0.8468, -0.8800, -0.7762, -0.7807,

-0.8561, -0.8916, -0.8600, -0.7953, -0.8791, -0.8780, -0.7914, -0.7506, -0.8926, 0.8855,-0.8590, -

0.8012, -0.7487 and -0.7785 respectively. It was observable that PC1 was moderately negatively

correlated with tmax6, tmax9 and bio9 with correlation coefficient of magnitudes of -0.5122,

-0.6856 and -0.6437 respectively. There seemed to had almost been weakly negatively correla-

tion between PC1 and tmax8, bio5, bio15 with correlation coefficient of magnitudes -0.3442,

-0.3003 and -0.4951 respectively. It was deduced that there did not seem to be any linear rela-

tionship between PC1 and bio3,tmax7 with correlation coefficient of magnitudes of-0.1146 and
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-0.2663. There seemed to have existed a strongly positively correlation between prec5, prec6,

prec7, bio14, bio17, bio18 and PC1 with correlation coefficient of magnitude of 0.8457, 0.8595,

0.7541, 0.7561, 0.8210 and 0.7401 respectively. There was also moderately positively correlation

between prec3, prec4, prec8, prec9, prec10, prec11, bio12 and PC1 with correlation coefficient

of magnitudes 0.5771, 0.6783, 0.6756, 0.6457, 0.6026, 0.5236 and 0.6660 respectively. It was il-

lustrated that there was weakly positively correlation between prec1, prec2, prec12, bio7, bio13,

bio16, bio19 and PC1 with correlation coefficient of magnitudes 0.4827, 0.4914, 0.4250, 0.3111,

0.4580, 0.4741, and 0.4706 respectively. There did not seem to be any positively linear relation-

ship between bio2, bio4 and PC1 with correlation coefficient of magnitudes 0.1633 and 0.2867

respectively.

Principal component 2 (PC2)

There were observed strongly positively correlations between prec1, prec3, prec12, bio13, bio16,

bio19 and PC2 with correlation coefficient of magnitudes 0.7236, 0.5709, 0.7566, 0.7469, 0.7383

and 0.7317 respectively. There were depicted moderately positively correlation between tmin1,

tmin12, prec2, prec10, prec11, bio12, bio15 and PC2 with correlation coefficient of magnitudes

0.5042, 0.5248, 0.6813, 0.5058, 0.6894, 0.5053, 0.5752, 0.6873 respectively. Deduced weakly

positively correlation seemed to have existed between tmin2, tmin3, tmin4, tmin10, tmin11,

prec4, bio11 with PC2 with correlation coefficient of magnitudes 0.4684, 0.3958, 0.3185, 0.3220,

0.4130, 0.4279 and 0.3226 respectively. No positively linear relationship appeared to have existed

between tmin5, tmin6, timn7, tmin8, tmin9, tmax12, prec5, bio1 and PC2 with correlation

coefficient of magnitudes 0.1406, 0.0693, 0.0667, 0.1631, 0.2447, 0.1443, 0.1878 and 0.0133

respectively. There appeared to have been a strongly negatively correlation between bio2,

bio4, bio5, bio7 and PC2 with correlation coefficient of magnitudes -0.7033, -0.6890, -0.7384,

-0.8284 respectively. There also seemed to be weakly negatively correlation between prec7,

prec8, bio10, bio14, bio17 and PC2 with correlation coefficient of magnitudes -0.4603, -0.3310,

-0.4613, -0.4564 and -0.3502 respectively. There appeared to be any depictable negatively linear

relationship between prec6, prec9, bio3, bio8, bio9, bio18 and PC2 with correlation coefficient

of magnitudes -0.2196, -0.1195, -0.1740, -0.1869, -0.2916 and -0.1726 respectively.

Principal component 3 (PC3)

There seemed to have been any positively linear relationship between tmin1 to tmin 9, bio 6,

bio8 and PC3 with correlation coefficient of magnitudes 0.0151, 0.0225, 0.0280, 0.0217, 0.0610,

0.0523, 0.1099, 0.1217, 0.0690, 0.0078 and 0.1082 respectively. There appeared to have been any
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negatively linear relationship between tmin10 to tmin12, tmax1 to tmax3, tmax11 to tmax12,

prec5 to prec9, bio1, bio4, bio9, bio10, bio11, bio14, bio15, bio17, bio18 and PC3 with correlation

coefficient of magnitudes -0.0003, -0.0319, -0.0244, -0.2693, -0.2665, -0.3448, -0.2976, -02932, -

0.1714, -0.1254, -0.1000, -0.1076, -0.2234, -0.2163, -0.00921, -0.2464, -0.2643, -0.1469, -0.0995,

-0.0939, -0.1194, -0.0969. PC3 appeared to have had weakly negatively correlation with tmax3,

tmax4, tmax5, tmax10, prec1, prec4, prec10, prec11, prec12, bio3, bio7, bio12, bio13, bio16

and bio 19. They had correlation coefficient of magnitudes -0.3449, -0.3708, -0.3669, -0.3595,

-0.4266, -0.4263, -0.4723, -0.3423, -0.4605, -0.3868, -0.3740, -0.4551, -0.4497, -0.4475, -0.4688

respectively. There were established moderately negatively correlation relationships between

tmax6 to tmax9, prec2 to prec3, bio2, bio 5 and PC3 with correlation coefficients of magnitude

-0.5020, -0.5389, -0.5528, -0.5480, -0.5047, -0.5004, -0.5154, -0.5415 respectively.

Principal component 4 (PC4)

There appeared to be any negatively linear relationship between tmin1 to tmin4, tmin10 to

tmin12, tmax6 to tmax9, prec1, prec2, prec4, prec6 to prec8, prec10 to prec12, bio1, bio5

to bio7, bio12 to bio14, bio16 to bio19 with correlation coefficients of magnitudes -0.1080, -

0.1388, -0.1075, -0.1889, -0.2109, -0.0663, -0.0475, -0.0739, -0.2243, -0.2325, -0.0957, -0.1178,

-0.0277, -0.0091, -0.2201, -0.0696, -0.1353, -0.2009, -0.1535, -0.0659, -0.0971, -0.2211, -0.1074,

-0.0816, -0.1301, -0.0457, -0.0708, -0.0851, -0.1697, -0.2485, -0.0723 respectively. It seemed

there were weakly negatively correlation between tmin5, tmin6, tmin9, prec5, prec9, bio9, bio10

and PC4 with correlation coefficient of magnitudes -0.3085, -0.4425, -0.4260, -0.3023, -0.3385,

-0.4701 and -0.4475 respectively. There appeared there was moderately negatively correlation

between tmin7, tmin8, bio4 and PC4 with correlation coefficient of magnitudes -0.5846, -0.5617,

-0.5865. There was any shown positively linear relationship between tmax5, tmax10, tmax11,

prec3, bio8, bio11, bio15 with PC4 with correlation coefficient of magnitudes 0.0604, 0.1360,

0.2707, 0.0058, 0.0501, 0.1177 and 0.2890 respectively. There were suggested weakly positively

correlation between tmax1 to tmax4, tmax12, bio2 with PC4 with correlation coefficients of

magnitudes 0.3150, 0.2875, 0.2675, 0.2429, 0.3337, 0.4534 respectively. There was an implied

strongly positively correlation between bio3 and PC4 with correlation coefficient of magnitude

0.8606.

Principal component 5 (PC5)

There were recommended moderately positively correlation between prec9, bio18 and PC5 with

correlation coefficients of magnitudes of 0.5631 and 0.5431 respectively. There were tabled
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weakly positively correlation between prec7, prec8, bio 14, bio 17 and PC5 with correlation

coefficients of magnitudes of 0.3772, 0.4308, 0.3794, 0.3689 respectively. There seemed there

were any portrayed positively linear relationship between tmin1 to tmin5, tmin9 to tmin12,

tmax1 to tmax3, tmax9 to tmax12, prec6, prec10, bio1, bio3, bio6, bio8, bio11 with PC5

with correlation coefficients of magnitudes of 0.2805, 0.1632, 0.0794, 0.0094, 0.0440, 0.0850,

0.1949, 0.2585, 0.2638, 0.1899, 0.0197, 0.0048, 0.0350, 0.1209. 0.1899, 0.1822, 0.2876, 0.1547,

0.0776, 0.2099, .02781, 0.0413, 0.1761 respectively. There did not seem to be any recommended

negatively linear relationship between tmin6 to tmin8, tmax4 to tmax8, prec1 tp prec5, prec11,

prec12, bio2, bio4, bio5, bio7, bio10, bio12, bio13, bio15, bio16, bio19 and PC5 with correlation

coefficients of magnitudes -0.0118, -0.1296, -0.1224, -0.0044, -0.0126, -0.0148, -0.1159, -0.1283,

-0.0391, -0.1706, -0.0882, -0.0358, -0.2094, -0.0536, -0.0776, -0.2804, -0.1122, -0.2555, -0.0801,

-0.0910, -0.0045, -0.0700, -0.2487, -0.0811, -0.0444 respectively.

For all the principal components retained, some climatic variables did not seem to suggest any

type of linear relationship with the respective principal components. Therefore, aggregately, the

principal components were undefined and not used in allele-environment association analysis.

Figure 7, showed a visual output of principal component 1 by principal component 2. Total vari-

ance is equal to the sum of the variances of individual variables. The first principal component

accounts for the 50.85% of the total variation, whereas the first two components cover almost

73.64% of the total variability. Scatter plot suggest that the individuals were not separated by

country, since no pattern of clusters were evident for each group of countries.

Figure 7: Scatter plot of principal component 1 by principal component 2, with country effect
for climatic data.
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Correlation structure

To have understanding of correlation pattern of climatic data, visualized correlation matrix,

computed by Pearson correlation between these climatic variables, were presented by use of

correlogram graphical tool in Figure 8. Correlations were illustrated in two ways. The red color

showed negative correlation whereas the blue color positive correlation. The size and intensity

of color, gave an indication of the correlation. Correlation coefficients whose magnitudes were

between 0.90 and 1.00, 0.70 and 0.89, 0.50 and 0.69, 0.30 and 0.49, and between 0.00 and 0.29

were very highly correlated, highly correlated, moderately correlated, weakly correlated and no

linear relationship (no relationship) respectively as reported by J. Rumsey (2016).

Figure 8: Correlogram illustrating correlation matrix for climatic variables.

Outputs of very highly correlated (correlation coefficient whose magnitude is between 0.9 and

1), were presented on Table 6 in the appendix. Correlations between pairs of predictors were

computed for a correlation coefficient magnitude threshold of 0.90. Means of each of these pairs

were also computed and compared. Predictors with lower means were discarded, retaining ones

with higher means. Below were listed independent variables responsible for probable climatic

confounding effects. bio1, tmin5, tmax2, tmax10, tmax3, tmin4, tmax11, tmin6, bio11, tmin3,

tmax1, tmin10, tmax4,prec6, tmin9, tmin11, tmax5, tmin2, bio17, tmin7, bio6, tmin12, tmax9,
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prec7, bio12, prec3, prec9, tmax6, prec11, prec1, prec2, bio16, bio19, prec12, tmax8, tmax7.

Description of these variables were demonstrated on Table 1.

Variable selection for climatic data

Figure 9, is a correlogram which showed filtered out variables which were not correlated more

than a correlation coefficient magnitude threshold of 0.9 using function findcorrelation from

Caret package in R statistical software. These filtered out climatic variables were the variables

that were used in the allele-environment association analysis. These variables were tmin1,

tmin8, tmax12, prec4, prec5, prec8, prec10, bio2, bio3, bio4, bio5, bio7, bio8, bio9, bio10, bio13,

bio14, bio15, bio18. Description of these variables were presented on Table 1, above.

Figure 9: Correlogram illustrating correlation matrix for climatic variable at correlation below
threshold 0.9.

Summary statistics of selected climatic variables

Results of evaluation of summary statistics such as minimum values, means, medians, maximum

values and standard deviations, for these correlated environmental variables at a correlation

coefficient below correlation coefficient magnitude threshold of 0.9, were presented on Table 4.

Description of the variables were on Table 1.
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Table 4: Summary statistics for environmental variables correlated below threshold of 0.9.

Variable Minimum Mean Median Maximum Std Dev

tmin1 -60.00 37.43 37.00 97.00 26.47836
tmin8 114.0 194.1 197.0 266.0 28.0506

tmax12 72.0 142.3 140.0 237.0 28.67522
prec4 0.00 35.92 37.00 99.00 17.87187
prec5 0.00 28.96 33.00 62.00 14.31776
prec8 0.000 7.317 6.000 29.000 5.517535
prec10 0.000 36.63 37.00 89.00 14.07705
bio2 66.0 115.1 119.0 173.0 22.88504
bio3 27.00 38.17 39.0 52.00 4.957282
bio4 2415 6269 6443 8110 871.935
bio5 230.0 334.7 329.0 446.0 28.29171
bio7 137.0 297.4 297.0 410.0 41.51772
bio8 32.0 115.6 107.0 232.0 39.75605
bio9 120.0 249.1 251.0 325.0 22.47946
bio10 185.0 252.2 253.0 331.0 22.0311
bio13 1.0 57.9 57.0 174.0 30.54938
bio14 0.00 3.83 3.00 14.00 3.310628
bio15 26.00 53.31 55.00 109.00 15.97353
bio18 0.00 30.83 30.00 64.00 15.75293

Cluster analysis on climatic data

Table 5 illustrated comparison of clusters to countries. K-means clustering on climatic data

with 5 clusters of sizes 66, 108, 337, 158, 250. The table showed data that belonged to Algeria

got grouped mainly into cluster 2, 3 and 4, Egypt mostly into cluster 5, Libya substantially

into cluster 1, Morocco largely into clusters 1, 4 and 5, and Tunisia basically into clusters 3 and

5. The algorithm wrongly classified 2 data points into cluster 2 and 27 data points into cluster

5, that belonged to Algeria. 6 data points that belonged to Egypt were wrongly classified into

cluster 1.

A data point that belonged to Libya was wrongly classified into cluster 5. 12 and 16 data points

were wrongly classified into cluster 2 and 3 respectively, that belonged to Morocco, and 25 and

26 data points that belonged to Tunisia, were wrongly classified to clusters 2 and 4 respectively.

29



4. RESULTS

Table 5: Comparing clusters of climatic variables with country.

Cluster DZA EGY LBY MAR TUN

1 2 6 8 50 0
2 71 0 0 12 25
3 165 0 0 16 156
4 82 0 0 49 26
5 27 28 1 56 139

Total 347 34 9 183 346

4.2 Allele-environment association analysis

4.2.1 Latent factor mixed models

Results of latent factor mixed models were visualized using histogram of p values. The prin-

cipal goal of latent factor mixed models analysis was to arrive at sets of corrected p values,

confirming the fact that potential confounding effects that resulted from population ancestry or

other sources not accounted for by adaptation to their inhabitats were overpowered. Histograms

of corrected (adjusted) p values, appeared like plateaus with peaks close to zero. Manhattan

plots tabled at the appendix were presented to demonstrate possible SNPs which were identified

associated with the respective ecological variables. SNPs with highest peaks above significant

genome-wide line (red horizontal line of Manhattan plots visualized in the appendix) were por-

trayed as strongly associated meanwhile those above the suggestive genome-wide line (blue

horizontal line of Manhattan plots observed in the appendix) were recommended as associ-

ated with the respective climatic variables. Manhattan plots of the various climatic variables

considered in the current study were observed at the appendix.

For all the 19 environmental gradients adopted in the LFMMs analysis, it was observed that,

all the adjusted p values histograms seemed to have flat peaks close to zero. These appeared to

demonstrate uniform distributions of the adjusted p values. Thus, it was tabled that probable

confounding effects in the analyses were extinguished.
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Figure 10: Histograms of p values for minimum temperature of January and August.

Left and right panels of Figure 10, suggested heavily left skewed distributions with peak closest

to zero for unadjusted p values. These suggested, individuals of durum wheat were sampled

from dissimilar distributions. Originally, any SNPs were shortlisted to be associated by any of

panels, since none was observed to have had raw p values<0.05 (significant unadjusted p values).

Roughly 50 SNPs were observed to obtain adjusted p values<0.05, but were not suggested to be

highlighted as associated with the climatic variables, since they did not appear to have adjusted

p values < Benjamini-Hochberg critical values.

Figure 11: Histograms of p values for maximum temperature of December and precipitation of
April.

Figure 11 tabled left skewed distributions for both right and left panels. Virtually 123 and 263

SNPs and almost 371 and 1158 SNP were suggested as associated with minimum temperature of
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december and precipitation of april respectively, since these 123 and 236 SNPs obtained raw p

values<0.05 and 371 and 1158 SNPs appraised adjusted p values < agreed Benjamini-Hochberg

critical values.

Figure 12: Histograms of p values for precipitation of May and August.

Raw p values of left panel of of Figure 12 recommended almost uniform distribution whereas

the right panel of same figure portrayed left skewed distribution with peak close to zero. Ap-

proximately 221 and 906 SNPs were depicted as associated with precipitation of May, since

221 SNPs obtained raw p values < 0.05 and 906 SNPs examined adjusted p values < con-

curred Benjamini-Hochberg critical values. There were any recommended SNPs associated to

precipitation of August, as there were any SNPs that established either raw p values < 0.05 or

evaluated adjusted p values < coincided Benjamini-Hochberg critical values.
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Figure 13: Histograms of p values for precipitation of October and mean diurnal range.

There seemed to be an observed almost uniform distribution of raw p values at the left panel of

Figure 13 with a heavily left skewed distribution of SNPs illustrated by raw p values at the right

panel of same figure. Nearly 221 and 906 SNPs were tabled as associated with precipitation of

October, since 221 SNPs obtained raw p values < 0.5 and 906 appraised adjusted p values <

coincided Benjamini-Hochberg critical. There did not seem to be any SNPS recommended as

associated with mean diurnal range, since any SNPs did not obtain either raw p values <0.05

or established adjusted p values < accorded Benjanmini-Hochberg critical values.

Figure 14: Histograms of p values for Isothermality and temperature seasonality.

Figure 14 illustrated virtually uniform distributions of raw p values for both climatic variables.

There were recommended associations between SNPs and both climatic variables, since 446 and
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285 SNPs evaluated raw p values < 0.05 and 995 and 796 SNPs approximated adjusted p values

< corresponded Benjamini-Hochberg critical values for isothermality and temperature seasonal-

ity respectively. Thus 995 and 796 SNPs were the demonstrated candidate loci associated with

isothermality and temperature seasonality respectively.

Figure 15: Histograms of p values for maximum temperature of warmest month and temperature
annual range.

It was observed from Figure 15 that, raw p values of SNPs showed almost uniform distributions

for both climatic variables. Approximately 582 and 653 SNPs were tabled associated with

maximum temperature of warmest month and temperature annual range respectively, since

they assessed raw p values < 0.05. Nearly 1233 and 1135 SNPs were recommended candidate

loci with maximum temperature of warmest month and temperature annual range respectively,

since they established adjusted p values < coincided Benjamini-Hochberg critical values.
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Figure 16: Histograms of p values for mean temperature of wettest and driest quarters.

Almost observable uniform distribution was recommended by raw p value of SNPs at left panel

of Figure 16 with a seemly left skewed distribution of SNPs with peaks close to zero at the right

panel. Roughly 511 and 204 SNPs were tabled associated with mean temperature of wettest

quarter and mean temperature of driest quarter respectively, since they both established raw p

values < 0.05. About 963 and 1377 candidate loci were observed in both panels of Figure 16,

since they approximated adjusted p values < corresponded Benjamini-Hochberg critical values.

Figure 17: Histograms of p values for mean temperature of warmest quarter and precipitation
of wettest month.

Raw p values of SNPs in left panel of Figure 17 demonstrated virtually right skewed distribu-

tion with peak close to zero and almost uniform distributions was illustrated at the right panel.
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Nearly 1992 and 1050 SNPs assayed raw p values < 0.05, thus tabled associated with mean

temperature of warmest quarter and precipitation of wettest month respectively. Moreover,

782 and 878 SNPs were presented as candidate loci for mean temperature of warmest quarter

and precipitation of wettest month respectively, since they both appraised corrected p values <

established Benjamini-Hochberg critical values. It was depicted that 1210 and 172 SNPs pre-

liminarily recommended associated were not portrayed as candidate loci for mean temperature

of warmest quarter and precipitation of wettest month respectively. Thus 1210 and 172 SNPs

were the suggested false discoveries for mean temperature of warmest quarter and precipitation

of wettest month respectively.

Figure 18: Histograms of p values for precipitation of driest month and precipitation seasonality.

Raw p values of SNPs at left panel of Figure 18 suggested almost uniform distribution with a

right skewed distribution presented by raw p values at the right panel of same figure. Roughly

851 and 1603 SNPs evaluated raw p values < 0.05, thus tabled associated with precipitation of

driest month and precipitation seasonality respectively. Nearly 1050 and 901 SNPs established

adjusted p values < coincided Benjamini-Hochberg critical values. Therefore, about 1050 SNPs

were flagged candidate loci for mean temperature of warmest quarter and almost 901 suggested

candidate loci precipitation of wettest month. It was deduced that virtually 702 SNPs were

check listed as false discoveries, since an excess of practically 702 SNPs that adopted raw p

values < 0.05 did not table appraised adjusted p values < corresponded Benjamini-Hochberg

critical values.
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Figure 19: Histograms of p values for precipitation of warmest quarter.

Figure 19 suggested right skewed distribution of raw p values of SNPs with precipitation of

warmest quarter. Almost 2171 SNPs examined raw p values < 0.05, thus portrayed associated

with precipitation of warmest quarter. Among the 2171 SNPs flagged associated with precipita-

tion of warmest quarter, virtually 779 SNPs were recommended candidate loci for precipitation

of warmest quarter. It was deduced that 1392 SNPs which were initially suggested as associated

were not flagged candidates, thus tabled false discoveries.
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5 Discussion and Conclusion

5.1 Discussion

The goal of the current study was to examine association between alleles and environmental

gradients. Alleles was the outcome variable of 919 × 8366 matrix. Environmental gradients

coincided to the predictors. Latent factor mixed model was adopted in allele-environment

analysis.

5.1.1 Genotypic data

Preliminary exploratory analysis on genetic data, based on principal component analysis, re-

vealed nine principal components which explained nine clusters within the genetic population

(figure 2). Score plot of the first two principal components inclusive of country effects, suggested

genes were not separated by their countries of origin, since there did not seem to be any visible

clusters of genes from same countries (figure 3). It was of interest to examine the ancestry

of these nine clusters. Appraisal was feasible by use of ancestry matrix graphical technique

which was a plot that described ancestry proportions of each individual in the population under

study (figure 4). It was depicted that nine clusters appeared to have had similar ancestors

as the ancestry map did not table any visible isolation of distinct clusters. A cross-entropy

validation algorithm was implemented to ascertain the number of sub genetic populations that

described the entire genetic population. The approach was employed using sNMF program in

LEA package in R statistical software (Frichot et al., 2015). An aggregate of 20 values of K

were projected, with 20 coincided cross-entropy values. It was shown that there was an initial

sharp descent pattern for the first nine values of K, with succeeding alteration of increments

and decrements of the remaining values of K (figure 5). It was deduced that nine factors were

suggested by the sNMF program. Run 4 was observed as the ideal run, since it recommended

the least cross-entropy (table 3). The procedure seconded the tabled nomination of nine genetic

clusters by principal component analysis for genetic data. The evaluated nine cluster of genetic

data were employed as portrayed number of latent factors in allele-environment analysis using

latent factor mixed models.

5.1.2 Climatic gradients

A total of 55 ecological variables were present in climatic data. Employing these entire cli-

matic predictors in alleles-environment analysis posted issues. These problems included high
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computational price to perform learning and inference, data visualization and interpretation

and feasible over fitting. In resolving these bottlenecks, preliminary analysis was done based on

principal component analysis on correlation matrix. It was depicted that five principal compo-

nents explained almost 96% of variability in the climatic data (figure 6). It was noticed from

the score plot of the first two principal climatic component that, there did not appear to be in

any trend of spread of individuals in the different countries. Individuals from different countries

did not form any observable cluster (figure 8). However, since interpretation was required be-

tween alleles and each ecological gradient, using the first principal components that preserved

the majority of the relevant information in the climatic data, will not satisfy the study moti-

vation. High correlation filter approach was implemented on climatic variables. A correlogram

was the graphical tool used to visualize possible correlation that existed between environmental

variables (figure 9). Pairs of climatic variables with correlation coefficient magnitude threshold

of 0.9. were discarded with one with higher mean retained. Climatic variables with correlation

coefficient magnitude of threshold below 0.9 were retained (figure 10). An aggregate of 19 envi-

ronmental variables were retained as the predictors used in alleles-environment analysis (figure

10). Summary statistics of these climatic variables were computed and presented on table 6.

It was also of interest to examine how individuals were grouped in the different countries. K-

means clustering procedure was used to depict the clustering pattern (table 7). It was observed

that the majority of the individuals were correctly group in their respective countries with some

minimal wrong groupings.

5.1.3 Latent factor mixed models

Fundamental motivation of LFMMs analyses were to obtain histograms of adjusted p values

which seemed to describe uniform distribution. This trend of uniform distribution seemed to

be visualized from figures (11) to (20). These suggested that potential confounding effects were

extinguished. Various distributions of raw p values were illustrated from figures (11) to (20).

Probable associated SNPs with respective climatic variables adopted in the current analysis

were also visualized from figures (11) to (20). Feasible false discoveries were highlighted on

figures (19) and (20).

5.2 Conclusion

SNPs flagged associated with the various climatic variables adopted in LFMMs analysis (candi-

date loci), were those which recommended achievable association with the 19 ecological gradients
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after confounding effects were overpowered. Among the 8366 SNPs considered in the current

study, none were associated with minimum temperature for January, August and mean diurnal

range . Nearly 371 SNPs were selected as candidate loci for maximum temperature of Decem-

ber. Roughly 1158 , 1024, 1173 and 906 SNPs were archived candidate loci for precipitation

for April, May, August and October respectively. Virtually 955, 796, 1233 SNPs were balloted

candidate loci for isothermality, temperature seasonality and maximum temperature of warmest

month respectively. Approximately 1135, 963 and 1377 SNPs were cataloged candidate loci for

temperature annual range, mean temperature of wettest quarter and mean temperature of dri-

est quarter respectively. Practically 782, 878 and 1050 SNPs were checklisted candidate loci for

mean temperature of warmest quarter, precipitation of wettest month and precipitation of driest

month respectively. Finally, approximately 901 and 779 SNPs were flagged candidate loci for

precipitation seasonality and precipitation of warmest quarter respectively. These associations

were observed on the Manhattan plots in the appendix.
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6. APPENDIX

6 Appendix

Retained principal components expressed as a linear combination of climatic

variables in the current study.

PC1 = −0.1515× tmin1− 0.1601× tmin2− 0.1705× tmin3− 0.1740× tmin4− 0.1756× tmin5

− 0.1664 × tmin6 − 0.1468 × tmin7 − 0.1476 × tmin8 − 0.1619 × tmin9 − 0.1686 × tmin10 −

0.1626 × tmin11 − 0.1504 × tmin12 − 0.1662 × tmax1 − 0.1709 × tmax2 − 0.1660 × tmax3 −

0.1497×tmax4−0.1419×tmax5−0.0969×tmax6−0.0504×tmax7−0.0651×tmax8−0.1296×

tmax9 − 0.1688 × tmax10 − 0.1674 × tmax11 − 0.1624 × tmax12 + 0.0913 × prec1 + 0.0929 ×

prec2 + 0.1091× prec3 + 0.1283× prec4 + 0.1599× prec5 + 0.16253× prec6 + 0.1426× prec7 +

0.1277×prec8+0.1221×prec9+0.1139×prec10+0.0990×prec11+0.0804×prec12−0.1830×

bio1+0.0309×bio2−0.0217×bio3+0.0542×bio4−0.0568×bio5−0.1515×bio6+0.0588×bio7−

0.1416×bio8−0.1217×bio9−0.1472×bio10−0.1714×bio11+0.1259×bio12+0.0866×bio13+

0.1430×bio14−0.0936×bio15+0.0897×bio16+0.1552×bio17+0.1399×bio18+0.0890×bio19.

PC2 = 0.1424× tmin1 + 0.1323× tmin2 + 0.1118× tmin3 + 0.0900× tmin4 + 0.0397× tmin5 +

0.0196×tmin6+0.0188×tmin7+0.0461×tmin8−0.0691×tmin9+0.0909×tmin10+0.1166×

tmin11 + 0.1482 × tmin12 + 0.0407 × tmax1 + 0.0092 × tmax2 − 0.0448 × tmax3 − 0.1105 ×

tmax4−0.1462×tmax5−0.1891×tmax6−0.2121×tmax7−0.1976×tmax8−0.1218×tmax9−

0.0349 × tmax10 + 0.0151 × tmax11 + 0.0408 × tmax12 + 0.2044 × prec1 + 0.1924 × prec2 +

0.1613× prec3 + 0.1208× prec4 + 0.0531× prec5− 0.0620× prec6− 0.1300× prec7− 0.1303×

prec8− 0.0337× prec9 + 0.1429× prec10 + 0.1947× prec11 + 0.2137× prec12 + 0.0038× bio1−

0.1986× bio2− 0.0491× bio3− 0.1946× bio4− 0.2085× bio5 + 0.1427× bio6− 0.2340× bio7−

0.0528×bio8−0.0823×bio9−0.0935×bio10−0.0934×bio11+0.1625×bio12+0.2109×bio13−

0.1289×bio14+0.1941×bio15+0.2085×bio16−0.0989×bio17−0.0487×bio18+0.2067×bio19.

PC3 = 0.0064× tmin1 + 0.0096× tmin2 + 0.0119× tmin3 + 0.0093× tmin4 + 0.0260× tmin5 +

0.0223×tmin6+0.0468×tmin7+0.0461×tmin8+0.0294×tmin9−0.0001×tmin10−0.0136×

tmin11 − 0.0104 × tmin12 − 0.1148 × tmax1 − 0.1136 × tmax2 − 0.1470 × tmax3 − 0.1580 ×

tmax4−0.1564×tmax5−0.2139×tmax6−0.2297×tmax7−0.2356×tmax8−0.2335×tmax9−

0.1532 × tmax10 − 0.1268 × tmax11 − 0.1250 × tmax12 − 0.1818 × prec1 − 0.2151 × prec2 −

0.2132× prec3− 0.2013× prec4− 0.0730× prec5− 0.0534× prec6− 0.0426× prec7− 0.0459×

prec8− 0.0952× prec9− 0.1817× prec10− 0.1459× prec11− 0.1963× prec12− 0.0922× bio1−

0.2197× bio2− 0.1648× bio3− 0.0393× bio4− 0.2308× bio5 + 0.0033× bio6− 0.1594× bio7 +

0.0461×bio8−0.1050×bio9−0.1126×bio10−0.0626×bio11−0.1940×bio12−0.1917×bio13−
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0.0424×bio14−0.0400×bio15−0.1907×bio16−0.0509×bio17−0.0413×bio18−0.1998×bio19

PC4 = −0.0522×tmin1−0.0671×tmin2−0.0520×tmin3−0.0914×tmin4−0.1493×tmin5−

0.2141×tmin6−0.2828×tmin7−0.2717×tmin8−0.2061×tmin9−0.1020×tmin10−0.0321×

tmin11 − 0.0230 × tmin12 + 0.1524 × tmax1 + 0.1391 × tmax2 + 0.1294 × tmax3 + 0.1175 ×

tmax4+0.0292×tmax5−0.0358×tmax6−0.1085×tmax7−0.1125×tmax8−0.0463×tmax9+

0.0658 × tmax10 + 0.1310 × tmax11 + 0.1614 × tmax12 − 0.0570 × prec1 − 0.0134 × prec2 +

0.0028× prec3− 0.0044× prec4− 0.1462× prec5− 0.1065× prec6− 0.0337× prec7− 0.0655×

prec8− 0.1637× prec9− 0.0972× prec10− 0.0742× prec11− 0.0319× prec12− 0.0470× bio1 +

0.2193× bio2 + 0.4163× bio3− 0.2837× bio4− 0.1070× bio5− 0.0519× bio6− 0.0395× bio7 +

0.0242×bio8−0.2274×bio9−0.2165×bio10+0.0570×bio11−0.0630×bio12−0.0221×bio13−

0.0342×bio14−0.1399×bio15−0.0412×bio16−0.0821×bio17−0.1202×bio18−0.0350×bio19

PC5 = 0.1859× tmin1 + 0.1082× tmin2 + 0.0526× tmin3 + 0.0062× tmin4 + 0.0292× tmin5−

0.0078×tmin6−0.0859×tmin7−0.0811×tmin8+0.0563×tmin9+0.1291×tmin10+0.1713×

tmin11 + 0.1748 × tmin12 + 0.0555 × tmax1 + 0.0131 × tmax2 + 0.0032 × tmax3 − 0.0029 ×

tmax4−0.0083×tmax5−0.0098×tmax6−0.0768×tmax7−0.0851×tmax8+0.0232×tmax9+

0.0801 × tmax10 + 0.1259 × tmax11 + 0.1208 × tmax12 − 0.0259 × prec1 − 0.0250 × prec2 −

0.1131 × prec3 − 0.0584 × prec4 − 0.0237 × prec50.1906 × prec6 + 0.2499 × prec7 + 0.2855 ×

prec8 + 0.3732× prec9 + 0.1024× prec10− 0.1388× prec11− 0.0355× prec12 + 0.0514× bio1−

0.0501 × bio20.1391 × bio3 − 0.1858 × bio4 − 0.0744 × bio5 + 0.1843 × bio6 − 0.1693 × bio7 +

0.0274×bio8−0.0531×bio9−0.0603×bio10+0.1167×bio11−0.0030×bio12−0.0464×bio13+

0.2514× bio14− 0.1648× bio15− 0.0537× bio16 + 0.2445× bio170.3599× bio18− 0.0294× bio19.
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Table 6: Correlated predictors at correlation coefficient magnitude threshold of 0.90

Compare row 37 and column 5 with corr 0.923
Means 0.645 vs 0.491 so flagging column 37

Compare row 5 and column 4 with corr 0.969
Means 0.615 vs 0.485 so flagging column 5

Compare row 14 and column 22 with corr 0.931
Means 0.6 vs 0.48 so flagging column 14

Compare row 22 and column 15 with corr 0.959
Means 0.592 vs 0.476 so flagging column 22

Compare row 15 and column 23 with corr 0.94
Means 0.582 vs 0.471 so flagging column 15

Compare row 4 and column 6 with corr 0.922
Means 0.581 vs 0.467 so flagging column 4

Compare row 23 and column 47 with corr 0.924
Means 0.557 vs 0.462 so flagging column 23

Compare row 6 and column 9 with corr 0.959
Means 0.566 vs 0.459 so flagging column 6

Compare row 47 and column 3 with corr 0.946
Means 0.543 vs 0.454 so flagging column 47

Compare row 3 and column 10 with corr 0.964
Means 0.536 vs 0.45 so flagging column 3

Compare row 13 and column 24 with corr 0.987
Means 0.521 vs 0.447 so flagging column 13

Compare row 10 and column 9 with corr 0.955
Means 0.514 vs 0.443 so flagging column 10

Compare row 16 and column 17 with corr 0.963
Means 0.526 vs 0.439 so flagging column 16

Compare row 30 and column 53 with corr 0.972
Means 0.512 vs 0.436 so flagging column 30

Compare row 9 and column 2 with corr 0.91
Means 0.498 vs 0.432 so flagging column 9

Compare row 11 and column 2 with corr 0.974
Means 0.456 vs 0.429 so flagging column 11

Compare row 17 and column 21 with corr 0.92
Means 0.519 vs 0.428 so flagging column 17

Compare row 2 and column 1 with corr 0.981
Means 0.444 vs 0.424 so flagging column 2

Compare row 53 and column 50 with corr 0.958
Means 0.453 vs 0.423 so flagging column 53

Compare row 7 and column 8 with corr 0.988
Means 0.456 vs 0.42 so flagging column 7

Compare row 1 and column 42 with corr 0.999
Means 0.386 vs 0.42 so flagging column 42

Compare row 1 and column 12 with corr 0.992
Means 0.367 vs 0.423 so flagging column 12

Compare row 21 and column 18 with corr 0.91
Means 0.451 vs 0.423 so flagging column 21

Compare row 50 and column 31 with corr 0.999
Means 0.372 vs 0.424 so flagging column 31

Compare row 48 and column 28 with corr 0.919
Means 0.545 vs 0.424 so flagging column 48

Compare row 54 and column 33 with corr 0.942
Means 0.385 vs 0.42 so flagging column 33

Compare row 27 and column 35 with corr 0.9
Means 0.482 vs 0.419 so flagging column 27

Compare row 18 and column 20 with corr 0.93
Means 0.466 vs 0.417 so flagging column 18

Compare row 35 and column 25 with corr 0.905
Means 0.483 vs 0.41 so flagging column 35

Compare row 25 and column 26 with corr 0.966
Means 0.473 vs 0.406 so flagging column 25

Compare row 26 and column 52 with corr 0.979
Means 0.441 vs 0.4 so flagging column 26

Compare row 52 and column 55 with corr 0.995
Means 0.428 vs 0.398 so flagging column 52

Compare row 55 and column 49 with corr 0.988
Means 0.4 vs 0.396 so flagging column 55

Compare row 49 and column 36 with corr 0.987
Means 0.371 vs 0.398 so flagging column 36

Compare row 20 and column 41 with corr 0.994
Means 0.409 vs 0.398 so flagging column 20

Compare row 41 and column 19 with corr 0.998
Means 0.385 vs 0.399 so flagging column 19
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Candidate loci demonstrated in Manhattan plots.
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