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Abstract:   

Agent-based models are used in a huge diversity of contexts, which complicates the establishment 

of a shared understanding of model validity and adequate methods for model construction, inference 

and validation. Starting from the tenet that model validity can only be judged with respect to a well-

defined purpose and context, we conceptualise validation as systematically substantiating the 

premises on which conclusions from simulation analysis for a specific context are built.  

We revisit the premises of empirical and structural validation and argue that validation should not 

be understood as an isolated step in the modelling process. Rather, sound conclusions from 

simulation analysis require context-adequate choices at all steps of simulation analysis. 

To facilitate communication, we develop a protocol of guiding questions to analyse the modelling 

context, choose appropriate methods at each step, document the premises involved in a specific 

simulation analysis, and demonstrate the adequacy of the model for its context. 
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1 Introduction 

The increasing application of agent-based simulation models (ABM) for policy analysis in 

environmental and land system sciences, among other fields, demands improving and formalising 

methods of their validation (Heppenstall et al. 2021; Elsawah et al. 2020; An et al. 2020; Niamir et 

al. 2020b; Brown et al. 2016; Filatova, 2015; Filatova et al., 2013; Heckbert et al., 2010; Marshall 

& Galea, 2015; Rand & Rust, 2011; Siebers et al., 2010; Midgley et al., 2007).  

A variety of approaches for constructing valid ABM have been suggested (e.g. Augusiak et al. 2014; 

Brenner & Werker, 2007; Deichsel & Pyka, 2009; Moss & Edmonds, 2005; Grimm et al., 2005) and 

many examples for formal empirical validation and calibration of ABM exist: Indirect inference 

methods for ABM calibration in financial economics (Chen et al., 2012); pattern-oriented modelling 

as de-facto standard in ecological modelling (Grimm et al., 2005; Thiele et al., 2014);  Approximate 

Bayesian Computation for individual-based models (van der Vaart et al., 2015), micro-validation in 

energy economics (Niamir, et al. 2020a), automatised calibration for innovation diffusion models 

(Jensen & Chappin, 2016) and real estate market interactions (Filatova 2015; Magliocca et al., 

2016; de Koning and Filatova, 2020); robust parameter uncertainty reduction in agricultural 

economics (Arnold et al. 2015; Troost & Berger 2015a, Berger et al. 2017). 

A consensus or a formal guideline which method to choose for a specific ABM application context 

that transcends disciplines, has, however, not yet been established, even within the more confined 

field of ABM in environmental and land system sciences (An et al. 2020; Polhill & Salt 2017; 

Filatova 2015).  

Empirical output validation, i.e. comparing model predictions to observations of a real-world 

system, is widely regarded as the ideal of validation because it entails reproducible protocols and 

quantitative, replicable and transparently communicable results. However, it has also been clearly 

demonstrated that overreliance on goodness-of-fit to observations is misleading and inadequate if 

the underlying (statistical) assumptions for empirical validation are not fulfilled in a specific 

research context (e.g. Oreskes et al. 1994; Polhill & Salt 2017). 
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As inherently structure-rich models, ABM are often used in contexts where simpler, statistical 

approaches are not applicable and as a consequence also the prerequisites for (system-level) 

empirical validation are typically not fulfilled (Berger & Troost 2014). The importance of structural 

validation and sensitivity analysis for such contexts has been widely recognised (Moss & Edmonds 

2005; Troost & Berger 2015a; Marshall & Galea, 2015; Polhill & Salt 2017). Structural validation, 

i.e. ensuring adequate correspondence of model structure and processes with their real-world 

counterparts, is often less formalised. When using empirical validation for model components at the 

micro level, similar statistical prerequisites have to be considered as in empirical macrovalidation. 

While formal approaches for conducting sensitivity analysis have been clearly formulated (e.g. 

Saltelli et al. 2008), it is not necessarily obvious which uncertainties and criteria for robustness 

should be considered and how they relate to the encompassing modelling process (Ligmann-

Zielinska et al. 2020). 

The recognition that models are by definition abstractions from reality and ultimately their absolute 

truth cannot be proven empirically (Oreskes et al., 1994; Quine, 1951) has led the scientific 

community to replace the condition for model validity from ‘corresponds to the real system’ to ‘is 

adequate for its intended purpose’ (e.g. Forrester & Senge, 1980; Gass, 1983; McCarl & Apland, 

1986; Oreskes et al., 1994; Barlas, 1996; Kydland & Prescott, 1996; Rykiel, 1996; Beck et al., 

1997; Jakeman et al., 2006; Augusiak et al., 2014; Edmonds et al. 2019). This means that the 

conditions for a valid, i.e. adequate, model and simulation analysis are context-dependent. They do 

not only depend on the characteristics of the system to be modelled, but also on the availability of 

data describing the system and its behaviour as well as the research question to be answered. 

ABM are used for a large variety of purposes and contexts (Edmonds et al. 2019; Lippe et al. 2019; 

Schulze et al. 2017). Hence, on the one hand, formalising ABM validation cannot mean prescribing 

one statistical validation procedure to all ABM. On the other hand, context-dependency of validity 

does not mean ‘anything goes’. There are fundamental principles that are essential for a valid 

analysis in certain contexts. There is a vast body of literature that suggests, justifies, discusses or 

criticises specific approaches for model selection, calibration, testing and analysis. Often, however, 

the modelling contexts for which these methods are applicable are not explicitly delineated, because 

they are implicit in the disciplinary context or even ignored. 

In this article, we argue that, under a paradigm of adequacy, validity cannot be assured by the one 

confined, isolated step of the modelling process – typically located after calibration and before 

predictive simulations – which is commonly called validation. Instead, it requires context-adequate 

and mutually consistent choices at all stages of the simulation analysis including the choice of 

model components, choice of methods for parameterisation, model inference (inverse modelling, 

calibration, estimation), testing and a consistent tracing, documentation and interpretation of 

uncertainties through the modelling process to finally ensure the validity of the conclusions drawn 

from the analysis. 

The ABM community has successfully adopted the ODD protocol (Grimm et al., 2020, 2010) for 

formal model documentation. Schmolcke et al. (2010) and Grimm et al. (2014) have suggested the 

TRACE format for formally documenting the modelling process.  Though TRACE highlights that 

all the elements of a modelling process are relevant for assessing the validity of simulation analysis, 

it does not provide formal guidelines, which methods to use in which contexts. Our article, which 

has resulted from community discussions initiated in workshop W9 of the 2020 IEMSS conference, 

aims to fill this gap. 
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In the first part of this article, we conceptualise validation as “challenging and substantiating the 

premises on which the conclusions from simulation analysis are built”. We revisit premises 

typically used in simulation analysis and discuss in how far they are tested, respectively in how far 

they are actually presupposed by empirical and structural validation, uncertainty analysis, model 

selection, empirical parameter estimation and result interpretation. 

On this basis, in the second part, we develop a protocol to help modellers keep it adequate (KIA): a 

protocol of guiding questions to characterise the modelling context for choosing adequate model 

components and methods of parameterisation, testing and uncertainty analysis step by step. The 

KIA protocol is intended to (a) guide modellers during the research process, (b) provide a template 

structure for transparently documenting the rationale for modelling choices, (c) serve as a checklist 

for reviewers and stakeholders (addressees of simulation results) when assessing the validity of a 

documented study and its conclusions, (d) foster efficient communication between authors and 

reviewers, and (e) help in structuring the scientific discussion on the merits of validation and 

calibration methods. 

 

2 Validation: Arguments for model validity and their premises 

If there is one cross-disciplinary consensus in the scientific literature on model validation, it is that 

model validity cannot be established in general, but only with respect to a specific purpose for 

which the model is intended to be used. Model validity is the adequacy of a model for its intended 

purpose (e.g. Forrester & Senge, 1980; Gass, 1983; McCarl & Apland, 1986; Oreskes et al., 1994; 

Barlas, 1996; Kydland & Prescott, 1996; Rykiel, 1996; Beck et al., 1997; Jakeman et al., 2006; 

Augusiak et al., 2014; Edmonds et al. 2019).  

The purpose of any scientific simulation analysis is to answer a research question. Scientific 

answers result as conclusions from scientific argumentation and are accepted if the conclusions can 

be validly derived from accepted premises (McCloskey, 1983; Hands 2001). Scientific 

objectiveness is ensured by transparently subjecting all premises and deductions to critical scrutiny 

and peer review (Klappholz & Agassi, 1959; Caldwell 1991). 

In its most generic form, scientific arguments that employ simulation modelling conform to the 

following logical proposition (Troost & Berger 2020): 

Major premise A: “If a simulation s fulfils conditions U and Results in Y for inputs X, we can 

conclude Z.”  (∃s: U(s) ∧ R(s, x, y) ) ⇒  Z 

Minor premise B: “Our simulation t results in Y for inputs X and fulfils conditions U.”  R(t, x, y) ∧ 

U(t) 

Conclusion: “We conclude Z”.    ⸫Z   by A ∧ B and modus ponens. 

Premise B is a conjunction of two premises. The first premise “R(t,x,y): Our model results in Y for 

inputs X” is supported by result analysis. Showing that the second premise (“U(t): Our simulation 

analysis fulfils conditions U”) holds is what is typically understood as validation. 

A typical example: We conclude (Z) "Climate change will increase poverty among farming 

households" if R(t, x, y): “Simulated farm agent income is lower in climate change scenarios than in 

the baseline”. The necessary condition U(s) is very often formulated as: “The model employed in 
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our simulation analysis provides sufficiently reliable predictions of Y(X) in the real system.” 

Empirical output validation and structural validation test whether a simulation t fulfils this (or a 

very similar) formulation of U(s) but they, in turn, rely on further necessary premises. These 

premises will be discussed in the following two subsections. Recognising the uncertainty in the 

simulation process, the third subsection discusses the role of uncertainty analysis for sound and 

robust conclusions (showing sufficient reliability). In the fourth subsection, we highlight that 

simulation analysis may also rely on differently formulated conditions U(s) that allow for more 

useful conclusions in some contexts. 

2.1 Premises of empirical validation and inverse modelling 

The key underlying premise of empirical output validation is: “Predictive performance of a model 

in observed situations can be generalised to the target situations (i.e. the system situations relevant 

for the research question)”. This premise is trivially fulfilled if the target situation is part of the 

observed situations (in-sample setting). For contrast, whenever the simulation purpose is prediction 

or counterfactual simulation, the target situations (life after climate changed, in our example) have 

not been (fully) observed. The same holds implicitly for ‘explanation’ where the objective typically 

is to find a generalisable explanatory model (Edmonds et al. 2019).  

Generalisation of behaviour from observations to unobserved target situations needs to involve 

statistical considerations in order to avoid propagating spurious, unsystematic relationships (Hansen 

& Heckman 1996):  Direct generalisation of statistical relationships, including X-Y relationships 

and predictive performance, is only possible if the sample is redundant enough to control for 

sampling error and the target situations are part of a statistical population for which the observed 

sample is representative (representative sample setting). 

Sampling error is the unavoidable, unsystematic error caused by using a sample and not the full 

population. It can potentially be reduced by increased sampling rates (Williams et al. 2022). Non-

representativity occurs due to a biased sample, which can be caused by different, sometimes subtle 

reasons, including attrition, self-selection, survivorship or failure bias, observer bias, and 

unobserved heterogeneity (Vandecasteele & Debels 2007; Gangl 2010; Gormley & Matsa 2014; 

Jager et al. 2020; Smith 2020). While some minor biases may be corrected by statistical means, 

structural breaks, non-stationarity or regime shifts – such as climate change – substantially alter 

statistical X-Y relationships causing extreme sample bias: Observed and target situations are so 

fundamentally different that they must be considered different statistical (sub)populations (non-

representative sample setting) and direct generalisation is not possible (Perron 2006; Andersen et al. 

2009; Leamer 2010; Filatova et al. 2016). 

It is very important to realise that these preconditions apply to any form of model inference by 

inverse modelling (i.e. calibration, empirical model selection or parameter estimation) using 

observed behaviour. In all cases, ignoring sampling error and bias leads to the generalisation of 

unsystematic, confounded or unstable relationships (overfitting) that cause inaccurate and 

misleading out-of-sample predictions (Browne 2000; Forster 2000; Hansen & Heckman 1996).  

In non-representative sample settings, simulation of system behaviour for unobserved situations has 

to rely on structural knowledge about internal system processes (see next section). Nevertheless, a 

sample can still be useful here: Structural knowledge often admits alternative model formulations or 

parameterisations (candidates). Even if a sample is not representative of the target situations, it can 

be used to discriminate between the candidates if it is representative (and sufficiently redundant) in 
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a domain in which the candidates imply clearly distinguishable behaviour. Generalisation to a target 

situation then relies exclusively on structural knowledge embodied in the chosen candidate, whereas 

observed behavioural data only contributes indirectly by selecting this candidate (indirect 

generalisation)1. Importantly, the predictive accuracy measured in the sample cannot be 

straightforwardly generalised to the target situation in these cases. 

Using a sample to reliably discriminate between candidates or detect statistical relationships 

presupposes structural and practical identifiability (Bellman & Åström, 1970; Cobelli & DiStefano, 

1980; Stigter et al. 2017; Guillaume et al. 2019): Structural identifiability means that different 

candidates are not observationally equivalent, i.e. do not imply the same system behaviour in the 

observed domain. Even a fully representative and redundant sample is not able to distinguish 

between models that predict the same output for the same input.2   

Practical identifiability means that the variation in the observational data in connection with 

auxiliary assumptions (e.g. on representativity and the form of model errors) is sufficient to 

unambiguously attribute effects to the individual parameters of a given model structure. Sampling 

error, confounded input variation (correlated variables, multicollinearity), unobserved heterogeneity, 

and omitted variable bias are key obstacles for unambiguous model selection and parameter 

estimation. More complex models require more data or more restrictive prior assumptions on 

parameters to be practically identifiable (Brown 2000; Burnham & Anderson 2004; Polhill & Salt 

2017). Two model structures or parameter sets that cannot be discriminated by given data are 

termed ‘equifinal’ (Beven & Freer 2001). 

2.2 Premises of structural validation and structure-based model choice 

As argued above, structure-based simulation is essential to anticipate behaviour for target situations 

for which direct generalisation from observed data is not possible and to derive structural 

explanations of system behaviour. Structure-based simulation deduces system reaction from 

existing knowledge about system components and their interactions. It is sometimes argued that 

such a deductive process does not create new information. However, as Frisch (1931) argued, the 

key contribution of quantitative modelling is to analyse the interplay of processes and compare the 

magnitudes and directions of their individual effects in relation to each other in order to deduce the 

behaviour of the whole system. This anticipated or emergent behaviour is new information that was 

not obvious from looking at existing knowledge on individual processes in isolation. 

The key premise of structure-based modelling and structural validation is: “A model that contains a 

sufficiently complete and accurate representation of the internal structure and processes of a system 

is expected to predict system behaviour well.” 

Sufficient completeness is often complicated by incomplete knowledge of the system and its 

potential reconfigurations. In addition, modellers are typically forced to strike a balance between 

completeness and efficiency striving to include all relevant processes, while omitting unimportant 

ones that complicate the model construction (Forrester & Senge, 1980).  

                                                 

1
 Similarly, indirect generalisation occurs if the output variable of interest has not been observed itself and a model is 

indirectly tested using another related output variable. Generalisation of the variable of interest then relies on the 

premise that the structural knowledge embodied in the model correctly relates the two variables.   

2  Structural identifiability in our understanding subsumes also problems of endogeneity often encountered in 

econometrics. 
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Sufficient accuracy in the representation of individual processes is the subject of micro-validation 

(Moss & Edmonds 2005; Windrum et al. 2007; Midgley et al. 2007; Arnold et al. 2015; Ghaffarian 

et al. 2021). Some structural processes and their parameters may be directly observable and 

measurable. Others, however, may have been generalised from observed subsystem behaviour by 

inverse modelling and estimation. The premises for empirical estimation and validation of process 

models at the micro level are the same as at the macro (full system) level: sample representativity, 

identifiability and control of sampling error.  The inclusion of estimated model components into a 

composite model requires ensuring that the observations from which they have been generalised are 

representative for all contexts for which they are applied in the composite system.  

2.3 Uncertainty analysis: The premises for robust conclusions 

In practice, all system knowledge and data used in simulation analysis are subject to uncertainty. 

Just showing that one particular model results in a specific output for a particular input is hence not 

convincing: It invites the immediate criticism that a plausible alternative model may show different 

results. Rather, it is an essential component of U(s) to show that the final conclusions towards the 

research question are robust and not affected by uncertainty and bias (van Asselt, 2000; Walker et 

al. 2003; Saltelli et al. 2013; Fischhoff & Davis 2014; Berger & Troost 2014; Troost & Berger 

2015a; Marchau et al. 2019).  

This implies, firstly, that implications of uncertainty in structural knowledge and uncertainty in 

model inference from data must be carefully assessed. In predictive analysis, the uncertainty in the 

anticipated input for a target situation needs to be considered, additionally.  Secondly, the type and 

degree of uncertainty and bias that are compatible with conclusion Z must be carefully specified in 

the major premise.  

2.4 Alternative basic premises 

Not every scientific argument using simulation analysis is based on the premise that the model 

provides reliable predictions of Y(X) in the real system. Edmonds et al. (2019) have noted that 

some types of analysis (e.g. theoretical exposition) do not require any immediate claims about the 

relation of the model to reality at all or put more emphasis in representing stakeholder’s views of 

the system. 

A subtler relation is discussed by Troost & Berger (2020, p. 6f.), who use the following hypothetical 

ABM application:  

“Economic policy analysis often works in a normative context: Policy makers need to justify 

actions with respect to established societal values, norms or ideologies. For example, they might 

work in a political setting, in which the state is supposed to safeguard minimum living incomes but 

only to interfere in economic processes if market participants are not at all able to help themselves.  

Assume that in this context analysts build their ABM to simulate the adaptation of farmers to 

climatic change and model each farm agent decision as a rational optimisation problem with perfect 

anticipation of (projected) climatic impacts on production and market conditions. In addition, farm 

agents are embedded into a social network of mutual solidarity, in which agents less affected by 

climatic extreme events indiscriminately help the severely affected ones. Analysing their 

simulations, the analysts find that their optimising farm agents become food insecure under 

projected impacts. They conclude that if perfectly-foresighted, optimising agents in a perfectly 
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functioning social solidarity network do not fare well, real-world farmers are even more unlikely to 

do so and should receive government help.” 

As Troost & Berger (2020) observe, the model would likely not pass conventional structural and 

empirical validation: Key modelled processes do not correspond to our best knowledge of their real-

world counterparts. (In reality farmers do not behave as fully rational optimisers with perfect 

foresight and networks typically discriminate by family ties, ethnicity, etc.).  The model will almost 

surely overestimate observed farm incomes in the past. Nevertheless, the conclusions would 

withstand such criticism, because accurately predicted farmer or network behaviour is not a relevant 

premise of the argument here. 

In this case, the premise that would need to be challenged in validation is that the model calculates 

the best possible reaction in economic terms. Empirically this could be done, for example, by 

searching for observed cases for which the model predicts worse than observed outcomes. One 

might also identify other unexpected deviations, e.g. larger farm holdings having higher per-area 

incomes than smaller ones, which might be observed in the data but not in the model (or vice versa) 

and that are not expected to be caused by imperfect optimisation of real-world farmers alone. 

Nevertheless, even if the intention is not to show accurate prediction, premises on representativity, 

sampling error and identifiability also apply here. Structural validation could, for example, assess 

whether assumed constraints are overly pessimistic or alternative production, safety or income 

options that might become available with climate change have been omitted. 

Troost & Berger (2020) further observe that if, for contrast, the analysts find that their 

computational agents fare well, it would be a logical fallacy to conclude that real-world agents will 

fare well based on the same premises.  Such an argument would require different premises that are 

much more difficult to support using a model with a clear upward bias. Both cases use the same 

model in the same empirical context towards the same motivating research question. This illustrates 

that to judge a model’s adequacy we require a very precise definition of its empirical context and 

the exact argumentative premise it is supposed to support. 

 

3 A protocol for context-adequate agent-based simulation  

Summarising the previous section, sound conclusions from simulation analysis require (i) a 

logically valid structure for a scientific argument targeted at a carefully defined research question; 

(ii) a convincing use of models and methods of analysis to support the premises of the argument; 

(iii) a transparent evaluation whether preconditions for the use of chosen models and methods hold 

in the specific modelling context. 

This modelling context consists of the purpose (research question) and the available knowledge and 

data about the modelled system. We identified eleven dimensions to be derived from the modelling 

context which influence an adequate choice of models and methods. In order to improve clarity 

about distinct possible reasons for similar method choices, it is useful to make a distinction between 

dimensions that can be derived directly from the research question alone (Fig. 1 a-f), and those that 

require a more in-depth analysis of the relationship between research question and system 

knowledge and data during the modelling process (Fig. 1 g-k) 
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In the following sections, we sketch a protocol (Fig.1), a set of questions for each stage of 

simulation analysis, that helps characterise the modelling context (3.1) and guide the choice of 

context-adequate methods (3.2) based on these dimensions. Where available, we list formal 

methods of analysis with useful references and highlight the premises for their applicability. The 

protocol is organized in 12 steps and emphasises the documentation and consistent propagation of 

uncertainty through the modelling process, to ensure that the robustness of final conclusions can be 

comprehensively assessed (3.3).  

Fig. 1: Tracing the influence of the modelling context on adequate decisions in and conclusions 

from simulation analysis. Conceptual basis and structural overview of the protocol. (Note: Numbers 

refer to steps in the protocol. Colours of arrows help to visually trace crossing connections, but 

have no deeper significance.) 

 

3.1 Context: Defining the modelling context 

The first step is to characterise the modelling context: the precise research question and the 

knowledge and data that is available about the system being modelled. 

3.1.1 Precisely define the research question (Step 1) 

A research question typically arises from a larger debate, discourse, or decision problem: for 

example, a public, political or scientific debate, a participatory planning problem or an economic 

decision problem. A research question to be addressed by the simulation analysis is supposed to 

contribute to this debate, even if answering it may not necessarily resolve the whole debate.  Useful 
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contributions can comprise very different questions (Edmonds et al. 2019; Epstein 2008): E.g. 

detailed, precise forecasts of future states of the world, statistical testing of explanatory models, but 

also exploring and stress-testing possible consequences of decision options (Berger & Troost 2014; 

Lempert 2019) or purely theoretical questions concerning hypothetical models themselves 

(theoretical exposition in the sense of Edmonds et al. 2019). It is paramount to be clear about what 

precise question the simulation analysis is supposed to answer, respectively what precise argument 

it could contribute to the debate. 

3.1.2 Characterise requirements implied by research question (Step 2) 

Table 1 (a) provides guiding questions for identifying six dimensions of the modelling context from 

the research question itself without yet considering data or system knowledge: The most basic 

consideration is the focus of interest: Does it lie in anticipating system output for specific situations 

or in describing or understanding system structure? Carefully defining the target situations is a 

necessary precondition for judging the degree of generalisation in the next step. Required 

resolution, required transparency as well as computational resource constraints impose limits on a 

priori model selection. Judging the robustness of conclusions requires understanding the required 

precision and accuracy (tolerable uncertainty) in simulation outcomes. At this point, it is often not 

yet possible to formulate this quantitatively (e.g., 2% deviation is acceptable), and should be done 

in terms of consequences on conclusions (e.g., uncertainty should not affect ranking of policy 

alternatives by evaluation criteria).  

3.1.3 Identify knowledge and data about structure and behaviour of the modelled 
system (Step 3) 

In addition to the research question, the modelling context is defined by the available information 

about the simulated system in the form of structural and process knowledge, available observations 

of system behaviour (input-output trace data) as well as – in the case of an output-focus – the 

anticipated system input data for target situations. The next step is to identify which data, 

information and knowledge are available, can be obtained with reasonable effort or will remain 

unattainable for the analysis (e.g. input-output observations of far future system states) (Tab. 1b).
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3.2 Context-adequate model and parameter selection and uncertainty 
documentation 

Appropriate simulation models can be selected in two steps: In a first structural step, a set of 

candidate models and candidate parameter sets is constructed or identified whose theoretical 

characteristics comply with structural system knowledge and the requirements implied by the 

modelling context. A set of multiple candidates fulfilling the requirements represents the prior 

model uncertainty3. In a potential second step, inference by inverse modelling on data of observed 

system behaviour can possibly be used to ascribe empirical likelihood to the candidates, rank them 

and narrow down the candidate set, reducing prior to posterior model uncertainty (Beck et al. 

1997).  

Under suitable conditions, the two steps complement each other: The first step is key to ensure that 

only adequate candidates are considered in inverse modelling. Omitting this theory-based 

preselection can only be adequate if the simulation analysis is output-focused and the modelling 

context allows for the direct generalisation of statistical relationships (namely the expected 

predictive accuracy) to the target situations (representative and sufficiently redundant data). Only in 

this specific case, expected out-of-sample predictive accuracy and practical identifiability can be 

derived solely from the data and are sufficient criteria for model selection (Polhill & Salt 2017). 

Nevertheless, even for these direct generalisation cases, incorporating structural knowledge in 

chosen candidate models becomes more essential the scarcer the data: a defensible structure-based 

error model specification and pre-selection of candidate models increases practical identifiability. 

For the second step, it is key to ensure the adequacy of the inverse modelling process itself. Do the 

necessary preconditions discussed in section 2.1 hold in the given modelling context? Is the specific 

method chosen appropriate for the context? Is uncertainty properly considered and documented? If 

not, model inference by comparison to observed system behaviour is clearly not adequate. 

3.2.1 ABM as composite models: Structuring component context (Step 4) 

Regarding the application of agent-based simulation, the first thing to ask in structural model choice 

is certainly whether an ABM suits the given modelling context. ABM are typically composite 

models (model systems), which are composed of lower-hierarchy models that mirror relevant 

subsystems and processes. For example, they typically contain a model of individual agent 

behaviour based on the internal state of and external influence on the agent. This submodel for 

agent behaviour in turn may itself be a composite of lower-hierarchy components, e.g. for learning, 

demographics and economic decisions (Schlüter et al. 2017). ABM also typically contain models of 

agent interactions, e.g. communication, markets, auction, collective action or network models 

(Schreinemachers & Berger 2011). In addition, many ABM in natural resource management link to 

biophysical components that model responses of natural systems (e. g. a crop field or watershed) to 

agent intervention (Arnold et al. 2015).4  

System behaviour in an ABM emerges not only from the interactions between agents, but 

conceptually also from the interactions of individual model components. In general, such structure-

                                                 

3  While we use terminology (prior, posterior uncertainty) borrowed from Bayesian statistics here, this does not mean 

that this uncertainty can necessarily be cast into a formal prior probability distribution. More often than not, it 

cannot and it may well only be qualitative descriptions of uncertainty (cf. also Beck at al. 1997 for this general use). 
4  Whether the overall composite model is labeled as ABM or the ABM is itself considered part of the integrated 

composite is irrelevant. The discussed considerations apply in both cases. 
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rich composite models are typically used for structure-focused analysis or for output-focused 

analysis when direct generalisation from observed data is not possible (Nolan et al., 2009; Voinov & 

Shugart 2013). In direct generalisation contexts, prediction is often achieved more efficiently with 

statistical or machine learning models (Polhill & Salt 2017).5 

The adequacy of a composite model relies on (i) an assembly of components that together fulfil the 

relevant premises for the overall research question to be answered, (ii) a careful assessment of the 

adequacy of each lower hierarchy component for its intended role in the composite, and (iii) a 

consistent consideration of the uncertainty in each component at the composite level (Arnold et al. 

2015).   

It is important to realise that each component has its specific own question to answer and has its 

own specific modelling context, which may differ considerably from the modelling context of the 

composite as a whole or that of other components. For example, even if the overall modelling 

context is not apt for direct statistical inference, this does not rule out that within-model contexts of 

lower hierarchy components exist in which representative samples even allow for the use of 

machine learning components.  For example, we may not yet have observed how a specific group of 

farmers behaves and fares in a warmer climate, so we cannot empirically measure the predictive 

performance of a composite model that simulates potential future farmer behaviour and welfare. We 

may, however, be able to include a plant growth component into this composite model that can be 

tested based on observations and experiments in a range of warmer and colder regions if we 

consider this range representative for potential future growth conditions (Troost et al. 2020). 

The next step hence is to structure the overall modelling task into subcomponents and then 

recursively revisit the steps of the protocol also for each component individually.6  The whole 

process may require iteratively moving back and forth between composite and components through 

steps 4-10 until an adequate composite structure for the overall modelling context has been 

established (Tab. 2, step 4). 

3.2.2 Representativity of data and degree of generalisation (Step 5) 

The next step (Tab.2, step 5) in choosing an adequate model or model component is to contrast the 

observed or observable data with the target situation to determine the degree of generalisation and 

extrapolation implied: Can the observed sample of system behaviour be considered representative 

for the target situations?  Are there regime shifts, non-stationarities or structural breaks or can 

statistical relationships be considered stable between observed and target situations? Are all relevant 

system states represented in the data with sufficient probability? This analysis requires a basic 

system conceptualisation (not yet a full conceptual model) that allows judging the system’s degree 

of openness, internal stability, complexity and stochasticity.  

3.2.3 Choosing structurally adequate candidate models and prior parameter ranges 
for each component (Step 6) 

Table 2 contains guiding questions for assessing the adequacy of model candidates and parameter 

ranges for a (component) modelling context from a structural point of view. The third column 

                                                 

5 This does not imply ABM cannot be used for direct generalisation contexts. There may often just be more efficient 

approaches. 

6  Especially for inverse modelling it may be useful to subdivide the composite into observational units that do not 

necessarily have to correspond to lower hierarchy models, but may also use different boundaries if that, for 

example, allows exploiting better identifiability by subsystem input-output datasets. 
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indicates selected literature sources that expand on the relevant theory or suggest formal tests for 

the assessment of the questions. 

Logical consistency, correct technical implementation, and fit to the required resolution and 

resource constraints are obvious preconditions for candidate models that have to be carefully 

assessed even if the component context allows for direct generalisation. 

For adequate structure-based model selection, it is useful to first sketch a comprehensive conceptual 

system model, even if not all system process can or finally have to be included in the simulation 

model. This conceptual sketch can serve as a benchmark to check a candidate’s match of the 

domain of applicability and sufficient completeness of processes for the target situations (Parker et 

al. 2008). It has to be ensured that model structure and parameters fixed in the candidate are also 

expected to be constant (no change over time) and invariant (unaffected by policy, treatment, 

change to target situation) (Lucas 1976; Engle & Hendry 1993; Hendry 1996). Relevant changes 

between situations must be captured as exogenous input or result from internal feedback in the 

model. It is not always possible to explicitly simulate all potential real-world feedback in the model 

itself, but it should then at least be possible to capture potential feedback as changing boundary 

conditions that may then later be assessed in uncertainty analysis (Troost & Berger 2015b; Troost et 

al. 2022).  

Expected deviations, i.e. the part of the system behaviour that is not explained or predicted by the 

model from a theoretical point of view, should be consistent with the precision and accuracy 

required by the research question.  Research questions requiring accuracy with respect to an 

absolute reference necessitate not only a high degree of model completeness with respect to all 

systematic processes, but also with respect to probability distributions for unsystematic effects as 

well as reliable system input data for target situations. Research questions requiring accuracy only 

with respect to the relationships between simulated target situations demand model completeness 

only with respect to systematic differences. 

Simplifying assumptions (such as optimising agents in our example) may lead to systematic over- 

or underestimation (bias). This is not problematic as long as major conclusions drawn from the 

simulation analysis will not depend on such simplification (robustness to the relaxation of 

simplifying assumptions, no model artefacts).7 Conclusions that are based on comparing model 

results to asymmetrical, one-sided thresholds even get stronger if the methodological approach is 

biased against them. Conversely, they are weakened by biases in their favour, especially if these 

cannot be precisely quantified and corrected.8 

                                                 

7 The “Lucas critique” (Lucas 1976) is a famous example in economics for a challenge to modelling practice based 

on these grounds. 
8 This principle mirrors the conservative rationale in statistical hypothesis testing: Type II errors, false-negatives, are 

preferred over type I errors, false-positives. 
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3.2.4 Documenting prior and input data uncertainty and assessing structural 
identifiability (Steps 7, 8) 

Structure-based model selection typically results in a number of plausible model structures and 

parameter values and this prior uncertainty should be documented (even if not all plausible 

alternatives can be implemented and tested). The first step to determine whether data-driven model 

inference (calibration, model selection) can help reduce this prior uncertainty is to assess the 

structural identifiability of candidates in the observed range of data, i.e. analyse whether the 

behaviour of candidate models differ in the domain for which the data is representative. A variety of 

analytical and numerical approaches to assess structural identifiability exists (Guillaume et al. 2019; 

Chis et al. 2012) including numerical parameter screening methods from sensitivity analysis 

(Campolongo et al. 2007; Troost & Berger 2015a). 

In addition to uncertain model structures and parameters, also uncertain auxiliary assumptions must 

be documented and represented in parameters (e.g. error distributions for expected deviations, 

imputation to deal with incompleteness in the data, alternative choices in data curation, preparation 

or aggregation) that may decrease identifiability. Structural identifiability in the data can 

considerably differ between different groups of parameters or model components. For example, 

parameters that relate short-term agent behaviour to static characteristics can be estimated from 

sufficiently heterogeneous cross-sectional data, parameters that affect dynamic behaviour or 

accumulative development over several periods require panel data (Troost & Berger 2020). 

Parameters that affect the probability of low probability events can only be identified if enough low 

probability events have been observed (Filatova et al., 2016). Structural non-identifiability cannot 

be resolved by more of the same data, but requires either widening the range of situations observed 

or more dimensions of the data. Under certain conditions, unidentifiable parameters may be 

temporarily fixed to allow identification of other components. However, fixing has to be reversed 

for latter predictive simulation in order not to obscure model uncertainty (noninfluence in the 

observed domain does not necessarily mean noninfluence in the target situation, see example in 

Troost & Berger 2015a).   

3.2.5 Choosing adequate methods for model inference and measurement of 
predictive accuracy (Step 9) 

If structural identifiability is given or direct generalisation is possible, one can choose an adequate 

method for data-driven model inference. If not, it is often still useful to measure sample predictive 

accuracy of candidates and compare it against a null model to ensure the models do completely go 

astray.  

Inverse modelling employs algorithms to characterise the distribution of a loss function over 

candidates (exploration/estimation of posterior parameter distribution) or find the candidate with the 

optimal loss function value (optimisation, calibration).  Available methods considerably differ in the 

extent to which uncertainty in the selection process is characterised and to which prior uncertainty 

is considered (Table 3).
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3.2.5.1 Adequate choice of loss function or likelihood 

Loss functions are used to weight deviations between simulations and observations by severity. 

From a decision-theoretic point of view, loss functions should more strongly penalise those errors 

that would lead to stronger changes in conclusions. Hence, in principle loss functions can be 

specified to directly reflect the precision, accuracy, relativity and symmetry required by the research 

question and penalise misclassifications based on their practical implications (e.g. prefer models 

with stronger deviations overall, but high reliability in critical areas) (Manderscheid 1965; Berger 

1980; McCloskey 1985; Farahmand et al. 2017; Manski 2019). In direct generalisation cases and 

when sampling error has been controlled for (e.g. by cross-validation, see below), the measured loss 

can also be directly generalised to target situations. 

In indirect generalisation cases and structure-focused analysis, loss functions must reflect the 

impact of model errors on our confidence that the candidate reflects underlying system processes. In 

this case, loss functions should reflect the expected deviations of the model including sampling 

error, model bias and error correlation (Schoups & Vrugt 2010): Theoretically anticipated deviations 

of candidate models are considered less severe than deviations unlikely to occur if the model 

predicts according to its theoretically expected precision (Hansen & Heckman 1996; Blavatsky & 

Progrebna 2010). For example, if a model is designed to predict an upper bound, underestimation of 

observations should be penalised, overestimation not.9 

If the model is expected to be well-specified and implies a well-defined tractable stochastic error 

distribution, a parametric likelihood function can be formulated. Using parametric likelihoods in 

cases where their underlying assumptions are not fulfilled or in doubt leads to biased model 

selection and overconfident conclusions (Beven et al. 2008; Stedinger et al. 2008). Robust loss 

functions allow for occasional outliers potentially generated by processes not captured in the model. 

(Willmott & Matsuura 2005; Hyndman & Koehler 2006). If the model is expected to capture the 

essential systematic relationship, but the exact error distribution is unknown or intractable, 

summary statistics that capture relevant systematic relationships can be estimated on both, 

observations and model output. A loss function can then be applied to the difference in the summary 

statistics rather than the individual observations (Classical and Bayesian indirect inference: Chen et 

al. 2012; Beaumont 2010; Drovandi et al. 2015). Pattern-Oriented Modelling generalises this 

principle to incorporate more qualitatively described strong and weak statistical patterns (Grimm & 

Railsback 2012).  In other cases, qualitative criteria are used to define binary-valued acceptance 

functions (Spear & Hornberger 1980; Troost & Berger 2015a). 

Pure loss functions and likelihoods provide a relative ranking between candidate models, but their 

absolute values are specific to the sample used. Absolute goodness-of-fit measures (e.g. model 

efficiencies) take the sample variance into account in order to allow comparison between models 

estimated from different samples (Bennett et al., 2013; Hauduc et al., 2015). Implicitly, efficiency 

criteria compare models with a benchmark or null model that employs only basic information of the 

data. R2 and Model Efficiency, for example, contain the sample average as a null model. However, 

the sample average is only one possible choice for the null benchmark. Trend extrapolation, random 

allocation, or seasonal or group-specific averages can often be more adequate benchmarks 

                                                 

9 Bayes estimators allow combining a loss function for relevant errors in model application with a likelihood for the 

posterior probability of the model (Bassett & Deride 2019). 
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(Schaeffli & Gupta, 2007; Pontius & Millones 2011). As an alternative, Grimm & Railsback (2012) 

suggest to always explicitly include a benchmark null model among candidates.  

3.2.5.2 Adequate assessment of practical identifiability and posterior uncertainty 

It is paramount to document uncertainty in measured predictive accuracy and model rankings and to 

assess how reliable the data could discriminate between candidates. Classical least-squares or 

maximum likelihood-based parameter estimation identify one best fitting model and quantify 

posterior uncertainty in the form of confidence intervals for parameters. This quantification is very 

limited: It presupposes that both the likelihood and the model structure are certain and correctly 

specified and all considered candidate parameterisations are a priori equally likely (Stigler 2007). 

Moreover, while large confidence intervals point to low practical identifiability, they cannot 

conceptually be interpreted as posterior probabilities for parameters. Bayesian frameworks (Hobbs 

& Hilborn 2006) can overcome the latter limitations if formal prior probabilities and certain 

parametric likelihoods are specifiable.  

Predictive accuracy measured in a sample is a biased measure of expected predictive accuracy out-

of-sample: It favours models with a higher number of freely adaptable parameters, which increases 

the danger of overfitting. Adequate model inference requires correcting this bias: This can be 

achieved by the use of information criteria (AIC, BIC, DIC, WAIC) or appropriately specified prior 

probabilities in formal Bayesian frameworks (Burnham & Anderson 2004; Ward 2008; Vehtari et al. 

2017). Both, require parametric likelihoods. 

Cross-validation10 and bootstrapping are the essential non-parametric alternatives to obtain unbiased 

estimates of expected predictive accuracy from a sample (Browne 2000; Arlot & Celisse 2010; 

Bennet et al. 2013; Vehtari et al. 2017). Statistical diagnostics for influential observations (e.g. 

Cook’s distance) and multicollinearity in the data (e.g. variance inflation factors) common in 

econometric analysis should complement the analysis.

                                                 

10 The traditional separation of data into one training and one validation dataset is the most basic form of cross-

validation, but is subject to sampling error itself. K-fold cross-validation is the more robust extension.  
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3.3 Adequate derivation and interpretation of simulation results and 
uncertainty 

Figure 1 illustrated how an adequate modelling process structures, quantifies and potentially 

reduces uncertainty: The definition of a research question divides uncertainty regarding the 

research question from uncertainty about wider implications in the debate. Theory-based model 

selection structures the uncertainty about the research question into prior model uncertainty 

(represented by different candidate model structures and parameter ranges), input uncertainty 

(uncertainty in boundary and initial conditions), expected deviation (error terms, bias, aleatory 

uncertainty) and unmodelled uncertainty (alternative models not included in the analysis11, 

processes that have been ignored, potential exogenous events not considered, unformalised error 

terms, unforeseeable events, critical assumptions for which no alternatives are tested, etc.). If 

applicable and successful, model inference potentially reduces prior model uncertainty to posterior 

model uncertainty. If discrimination of candidate models by data is not possible, the posterior 

uncertainty remains the same as the prior uncertainty.  

In structure-focused analysis (description, explanation), the resulting posterior model uncertainty is 

already the final uncertainty to be interpreted for conclusions. In output-focused analysis 

(prediction, scenario analysis, exploration), posterior uncertainty and input uncertainty still need to 

be translated into output or predictive uncertainty for target situations (e.g. future or policy 

scenarios) by simulation experiments that include uncertainty analysis. 

In an adequate modelling process, in which uncertainty is properly analysed and propagated, the 

final posterior/predictive uncertainty and the unmodelled uncertainty describe the actual state of 

knowledge regarding the research question that can be defensibly extracted from the available data 

and structural system knowledge. This final model uncertainty can then be compared with the 

precision required by the research question for interpretation and derivation of conclusions.  

3.3.1 Interpretation of predictive accuracy and posterior uncertainty (Step 10) 

If sampling error has been properly controlled for (e.g. by cross-validation), expected predictive 

accuracy indicates how well the model predicts or explains the variation in the population of 

situations for which the sample is representative (subject to the importance weighting embodied in 

likelihood or loss function).  This is valuable information in its own right. However, care has to be 

taken when using this information to draw further conclusions, e.g. about the model being 

“sufficiently good” or the “correct” or “best explanation” (Oreskes et al. 1994). Even though 

absolute goodness-of-fit measures such as model efficiencies project predictive error onto an 

absolute scale between null model and perfect fit, defining any threshold to indicate ‘sufficient fit’ 

on this scale remains subjective or based on convention – similar to significance levels in statistical 

analysis – unless this threshold can be convincingly derived from the research question and its 

encompassing debate (Pontius & Millones 2011). The same holds for thresholds defined on 

posterior densities or relative differences in information criteria (Stephens et al. 2005). 

The well-known problems of induction, under-determination and theory-ladenness imply that 

proving by comparison to observation that a model is the 'true' model is ultimately impossible 

(Oreskes et al., 1994; Quine, 1951).  Expected predictive accuracy provides a relative ranking and 

                                                 

11 Brenner & Werker 2007 emphasise an inclusion of “all logically possible” parameter values and model structures 

consistent with structural and empirical knowledge. We recognise that this is often not feasible in practice, however, 

this needs to be recognised as unmodelled uncertainty and appropriately discussed when deriving conclusions.  

Electronic copy available at: https://ssrn.com/abstract=4161475



32 

 

allows to identify the “best” among the candidate models for the given sample. The more 

comprehensive the list of candidate models and parameterisations that has been tested and the more 

representative the sample, the higher can be the confidence in having identified a generalisable best 

model or parameterisation. As all other statistical relationships, measured expected predictive 

accuracy cannot be generalised to target situations across structural breaks. 

Uncertainty in inference can be quantified as a posterior probability for the candidates if a formal 

Bayesian framework with proper prior probabilities and appropriate likelihood has been used in 

inverse modelling. However, also in those cases where posterior probabilities or credible intervals 

cannot be derived, it is important to consider posterior uncertainty and recognise that the “best” 

model does not necessarily have or even approach a posterior probability of one (Troost & Berger 

2015a). The potential explanatory and predictive power of alternatives should not be neglected in 

interpretation. If the analysis is structure-focused and interested in which model provides the better 

explanation, it remains inconclusive whenever two alternative models cannot be robustly 

discriminated by data or needs to employ additional theoretical considerations, e.g. parsimony as a 

philosophical principle12 or correspondence to established theory, to justify a decision for one or the 

other model.  In output-focused analysis, subsequent predictive simulation should use the full 

posterior distribution, consider confidence or credible intervals or at least a representative ensemble 

of all candidates that show nonnegligible explanatory power (ensemble modelling, model 

averaging).  

3.3.2 Analysis and interpretation of predictive uncertainty (Step 11) 

Only in rare cases, it will be permissible to directly generalise expected predictive uncertainty from 

inverse modelling to the target situation (representative sample, negligible input uncertainty, one 

clearly best model). Generally, comprehensive uncertainty and sensitivity analysis is necessary. 

Uncertainty analysis must be global, i.e. cover the full range of potential input values including 

interactions and correlation between input factors (Saltelli & Annoni, 2010). A considerable number 

of approaches for efficient uncertainty analysis is available that adapt to different model 

complexities and available computational resources (Helton et al., 2006; Saltelli et al., 2008; 

Gramacy & Lee 2009; Troost et al. 2022). Stochastic models require sufficient repetitions and 

statistical comparison tests or, more efficiently, Common Random Numbers schemes to isolate 

systematic differences from stochastic ones (Stoute & Goldie 2008; Troost & Berger 2016). 

                                                 

12 Parsimony as a philosophical principle (simpler models are always to be preferred) differs from a pragmatic 

argument for parsimony in estimating models for prediction (simpler models are less prone to overfitting). 
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Predictive uncertainty for a target situation is a function of the uncertainty about the systematic 

effect of system input on behaviour that is captured in the set of models and parameterisations 

(posterior model uncertainty), the model error (bias and unsystematic aleatory uncertainty) and the 

uncertainty in system inputs (e.g. scenarios, boundary conditions) for target situations. Building on 

the considerations by Marchau et al. (2019) and Walker et al. (2003), Table 5 lists which forms of 

predictive simulation outputs are adequate depending on the level of uncertainty in each of these 

dimensions. Unconditional predictions require low uncertainty in all “locations” of uncertainty. 

Probabilistic predictions require probability information in all locations. Simulation analysis can 

however also provide useful insights if uncertainty is high in one or all locations. It is key that 

exploration of predictive uncertainty focuses on the output quantity, precision and resolution 

relevant to answering the targeted research question. When we compare two target situations, we 

can distinguish the apparent (or observable) difference, i.e. the difference between two predictions 

that includes unsystematic, stochastic effects, and the systematic difference, i.e. the difference 

between two predictions controlled for unsystematic effects. In many decision support situations, 

the systematic difference is much more relevant than the apparent one:  The future may not be 

precisely predictable, but for a good decision it is enough if the systematic differences caused by 

decision options can be pointed out (Berger & Troost 2014) and strategies that are robust under 

many different scenarios and assumptions can be detected (Marchau et al. 2019; Lempert 2019).
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3.3.3 Interpretation and conclusions (Step 12) 

The interpretation of results should compare the final uncertainty to the required precision and 

accuracy of the research question. If the required certainty is reached, conclusions that are 

consistent with the simulated output can be considered valid and sound. If uncertainty is too high, 

we have to conclude that the knowledge employed in the process is insufficient for the desired type 

of conclusions (Carauta et al. 2021). It should not be necessary to emphasise that this is an equally 

valuable and relevant result (Leamer 2010).  

The structure of the argument and the premises that are critical to support the conclusions must be 

clearly laid out. This involves the premises that are supported by simulation results, but also the 

auxiliary and hidden premises (prior model evidence, representativity of data, identifiability, 

posterior uncertainty).  

Both, unstructured uncertainty about wider implications and unmodelled uncertainty remain 

qualitative and unquantified in the modelling process. Nevertheless, they must be an important part 

of the interpretation: Conclusions must be qualified with respect to the information omitted from the 

modelling process. Hypotheses on how omitted processes or alternative system conceptualisations 

could affect conclusions must be discussed (Forrester & Senge, 1980).  Banerjee et al. (2016) argue 

for an explicit and structured section for ‘Speculation’ about external validity (generalisability) of 

results obtained from case studies. Especially, when using models to inform decision-makers in the 

face of deep uncertainty, transparent documentation of critical and potentially value-laden 

fundamental assumptions (see protocols in Kloprogge et al. 2011, Saltelli et al. 2013; Fischbach & 

Davis 2014; van der Sluijs 2017) and additional effort to assess the robustness of decision option 

outcomes to these assumptions is essential (assumptions-based planning, stress testing, red teaming; 

Lempert 2019; Marchau et al. 2019). 

 

4 Discussion and conclusions 

Adequate conclusions from simulation analysis require a careful analysis of the logical 

argumentative structure and the critical premises they build upon. Such premises rest on simulation 

outcomes, but are also implicit in the choice of models and methods of inference from data. 

Especially the latter is not always obvious to modellers, reviewers and addressees of simulation 

results. Even if – as we demonstrated – premises in the overarching argumentative structure vary, 

the preconditions for the use of specific methods of analysis are invariable and their violation makes 

the analysis inadequate. For example, empirical output validation and inverse modelling presuppose 

representativity of data, identifiability and control of sampling error. Moreover, specific methods 

such as maximum likelihood estimation rely on even more restrictive, not always obvious premises 

(see Table 3).    

A number of previous studies (e.g. Edmonds et al. 2019; Epstein 2008) highlighted how different 

modelling purposes require different data and methods. In the presented protocol we have moved 

beyond discrete typologies of model purpose and define concrete dimensions of research question 

and available system knowledge and data that together characterise the modelling context. 

Typologies of Edwards et al. (2019), and especially terms such as prediction, forecast, projection or 

exploration, whose understanding and usage differ between and sometimes even within disciplines 

(Bray & von Storch 2009), can be mapped onto these dimensions to allow for more precise 

communication (see Appendix A.1).  
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When understood comprehensively, the process of ensuring adequate model conclusions is, 

however, more complex and subtler than a single-step matching of context type to a method. Rather 

it is a process that is hierarchical, i.e. outcomes of earlier steps affect choices in later steps (e.g. 

inverse modelling should not be pursued without first ensuring representative data and structural 

identifiability). It is recursive, i.e. in composite models the context of each component must be 

assessed, and iterative, i.e. outcomes of subsequent steps may encourage receding a number of steps 

and reconsider choices:  For example, if the evaluation of structural identifiability, practical 

identifiability or predictive uncertainty leads to unsatisfactory results, it may be useful to go back to 

structure-based model selection or even to a redefinition of the research question. It may be further 

possible to answer a more restricted question that is already useful where the context does not allow 

to reliably answer the original question as presented above in our initial example.  

The KIA protocol that we suggest in this article is intended to guide modellers in making adequate 

choices during the process of simulation analysis and justify them with adequate argumentation. It 

provides a guideline to reviewers who can use it by starting from the final statement of conclusions 

and their premises and working backward to evaluate whether the steps taken during the modelling 

process adequately support the premises in the given context. Moreover, it is intended to structure 

documentation - as a checklist to ensure modelling context and justification for all relevant 

modelling decisions have been discussed in the main body of an article and as a template for well-

structured tabular documentation in an appendix. 

We strived to be general in redacting the protocol. We do not advocate one common method for all 

ABM, rather the dimensions of the modelling context that we introduced are intended to help 

identify which ABM applications share a similar modelling context and might learn from each other 

and which not. For example, Troost & Berger (2015a) and Carrella et al. (2021) both deal with 

unknown or intractable likelihoods for model inference. However, the former face both low 

structural and practical identifiability, while the latter assume few parameters and a large number of 

identifying summary statistics, i.e. high practical identifiability.  As both are explicit about the 

assumed modelling context, this can be read from their articles, but may still be easily overlooked. 

Our protocol is intended to highlight these differences and in this way avoid common pitfalls in 

discussions between modellers and reviewers about adequate and valid model use and inference: 

E.g. to avoid discussions about an appropriate loss function, when structural identifiability is the 

more important issue; to avoid overemphasis on separation of training and validation data, when 

validation data is not representative for target situations; to avoid discussions about unreliability of 

unconditional predictions when these are neither possible nor necessary; to avoid suggesting model 

simplification to increase practical identifiability when model complexity is required for structural 

reasons and direct generalisation is not adequate, etc. 

The KIA protocol mirrors and is compatible with established recommendations for a structured 

modelling process (e.g. Jakeman et al. 2006), but it emphasises the linkages and propagation of 

uncertainty between modelling stages and highlights general criteria for the choice of adequate 

methods at each stage. It concretises the principle “as empirical as possible, as general as 

necessary” coined for ABM by Brenner & Werker (2007). It incorporates the different levels of 

uncertainty of Walker et al. (2003) and Marchau et al. (2019), but also explains how this uncertainty 

comes about in the modelling process. Similar to Polhill & Salt (2017), it highlights the importance 

of structural model choice compared with purely data-driven model inference. While we have not 

extensively discussed stakeholder participation, the protocol is meant to be open to valuable 
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stakeholder input and feedback at any step of the process: e.g. in shaping the encompassing debate, 

defining the targeted research questions, providing information in model selection and inference 

and shared interpretation (Voinov et al. 2016; Barreteau et al. 2010).  

At this point, the KIA protocol itself is a theory-based hypothesis that requires practical testing. We 

propose it to the community of agent-based modellers for adoption in model construction, 

documentation, and review. Its use in practice will tell if it proves useful as guidance for model 

development and a communication device in documentation and review. Based on practical 

experience, it should then be reviewed and improved. 

The exhaustive discussion of many of the guiding questions listed in the tables would warrant their 

own articles. Our main intention here has been to comprehensively list them and highlight their 

interlinkages. We have linked many of the guiding questions with literature on more detailed 

explanation or formal assessment methods. This list of methods does not claim to be complete and 

it will certainly become outdated over time as new approaches for model testing, selection or 

estimation are developed to deal with the formulated questions. However, we hope that this protocol 

does not only spark interest in developing new methods, but also assists in clearly communicating 

the conditions for which they are suitable. 

We believe that the principles discussed here are applicable to any modelling endeavour and most 

disciplinary standards that have been established form special cases that are in principle covered by 

the protocol. In this sense, we expect that it can also provide guidance for non-ABM simulation 

when facing similar challenges. 
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Appendix A 

A.1 Mapping purposes to modelling contexts 

We believe that terms like prediction, forecast or projection, which are often ambiguous or defined 

differently between disciplines, as well as typologies of Edwards et al. (2019) can be communicated 

more precisely using the suggested dimensions of the modelling context.  

For example, the seven modelling purposes of Edmonds et al. (2019) could be coarsely mapped 

onto our characterisations of modelling context as follows: In ‘theoretical exposition’ and 

‘illustration’ the system under study is the model itself, with the former being output-focused 

(moving from an insufficient sample situation to an in sample-situation by exhaustive simulation) 

and the latter putting emphasis on transparency and interpretability. ‘Analogy’ does relate to a real 

system and is structure-focused with a low demand on precision and comprehensiveness, but high 

demands on transparency and interpretability. In the three latter cases, conclusions about the 

relationship of the model to the real-world are left-aside for a moment or discussed as unmodelled 

uncertainty. ‘Social learning’ and education can happen in all contexts, can be about the model, 

opinions of participants or the real system, output or structure, but requires transparency and 

interpretability. ‘Description’ corresponds to structure-focused, in-sample analysis. (Output-focused 

in-sample analysis – not mentioned by Edmonds et al. – could be termed ‘compression’: storing and 

reproducing observations in a more resource-efficient way than explicitly listing them.)  

‘Explanation’ is structure-focused, out-of-sample generalization.   ‘Prediction’ is any output-focused 

analysis in out-of-sample or non-representative sample settings. This wide scope of prediction still 

opens up a lot of room for misunderstanding and clearer definitions of modelling context and 

appropriate forms of simulation analysis (e.g. Marchau et al. 2019) can help in this context.  
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