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Abstract – Genotypic and phenotypic correlations are necessary for constructing indirect selection indices. Bayesian analysis, 
therefore, was applied to obtain posterior distributions of the correlations, and the estimates were compared with those under a 
frequentist approach. Three a priori distributions for standard deviation components based on uniform distribution, positive values 
from t- distribution, and positive values from normal distribution were examined, while a priori distribution for correlation was taken 
as a uniform distribution. The prior based on uniform was best found using the deviation information criterion. Data from sorghum 
genotypes evaluated in complete blocks in 2010-2011 in Northern Kordofan, Sudan, resulted in a posterior mean of 0.48 for genotypic 
correlation between seed yield and seed weight with posterior standard deviation of 0.24. Due to a wider inference base and the fact 
that it makes use of prior information, we recommend the Bayesian approach in estimation of genotypic correlations. 
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INTRODUCTION  
Genotypic and phenotypic correlations between plant 

traits are used as measures of their association (Ahmad et al. 
2010). Estimates of genotypic and phenotypic correlations 
between traits are useful in planning and evaluating breeding 
value (Desalegn et al. 2009). Knowledge of genotypic and 
phenotypic association among economically valuable traits 
can help plant breeders in identifying efficient breeding 
strategies for development of high yielding wheat cultivars 
(Abbasi et al. 2014). Though estimation of genotypic 
correlations and phenotypic correlations is straightforward, 
evaluation of their precision in terms of standard errors and 
significance testing is quite cumbersome (Singh et al. 1997). 
Over the course of experimentation, crop improvement 
programs gather information on genotypic and experimental 
error variability, which can be used in the Bayesian approach. 
In the Bayesian framework, one integrates prior information 
with the likelihood of current data and draws inferences in 
terms of conditional distribution of parameters of interest, 
given the data. In this process, an estimate of the parameter 
is assessed as posterior mean and precision as posterior 

standard deviation (Gelman et al. 2004). In contrast, the 
commonly used frequentist approach does not make use 
of such information. Singh et al. (2015) have presented a 
systematic approach for Bayesian analysis of trials conducted 
in complete or incomplete block designs. The priors discussed 
in their work have been incorporated in this study. This 
paper focuses on the Bayesian approach for estimation of 
genotypic and phenotypic correlations from crop variety 
trials and compares them with a frequentist approach. 

The frequentist approach is normally based on estimation 
of variance components using a mixed model. The MIXED 
procedure in SAS software (SAS Institute 2011) provides 
REML estimates of variance and covariance components 
among model factors and allows both fixed and random effects 
to be fitted in a mixed model analysis (Littell et al. 1998). 
Plant breeders have traditionally estimated genotypic and 
phenotypic correlations between traits using a multivariate 
analysis of variance (MANOVA) or a REML method (Hussain 
et al. 2012). From the Bayesian perspective on genotypic and 
phenotypic correlations, posterior inference can be drawn 
using Markov Chain Monte Carlo (MCMC) methods (Tierney 
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1994). Schisterman et al. (2003) investigated estimation 
of the correlation coefficient using the Bayesian approach 
and its applications in epidemiological research and found 
it useful for evaluating relationships between variables with 
measurement errors. More details on Bayesian estimation 
of correlation may be found in Liechty et al. (2004) for 
models providing a framework for representing and learning 
about dependence structures. The objective of this study is 
to estimate genotypic and phenotypic correlations and their 
standard errors using Bayesian and frequentist approaches 
when data on traits have been collected from a crop variety 
trial conducted in a randomized complete block design. 
The necessary computing codes are also provided using 
R2WinBUGS and R-packages.

MATERIAL AND METHODS

Experimental data 
A set of 18 sorghum genotypes were evaluated in a 

randomized complete block design (RCBD) with four 
replications. The experiment was carried out in the 2010-
2011 season at El Obeid Research Station, Agricultural 
Research Corporation (ARC), Northern Kordofan, Sudan. 
Plot-wise data on grain yield in kg ha-1 (GY) and 1000 seed 
weight in gm (SW) were recorded. 

Estimation of genotypic and phenotypic 
correlation 
Frequentist approach

In this approach, we consider estimation of genotypic 
correlation from a randomized complete block design 
(RCBD) data on two traits – X (for example, yield) and Y 
(for example, seed weight). The ρgxy denotes the genotypic 
correlation between traits X and Y in a population of inbred 
lines. We consider v inbred lines are randomly selected from 
the population of interest and are evaluated in an RCBD 
with r replications in a single environment. The responses 
Xij  and Yij from the plot of the ith genotype of the jth  replicate 
are modeled as:

                ( xijyij ) = ( μx

μy
) + ( βjx

βjy
) + ( gix

giy
) + ( εijx

εijy
)              (1)

where for the two traits X and Y, μx and μy are general means, 
βjx and βjy are effects of the jth block, gix and giy are effects of 
the ith genotype sampled, and εijx and εijy are random errors, 
respectively (Singh and Hinkelmann 1992).

The parameter vector ( μx

μy
) is assumed to be fixed. 

However, we make the following assumptions for the 
other vectors: 

1-  ( βjx

βjy
) is bivariate normally distributed with mean 

vector ( 0
0 ), a variance-covariance matrix ( σ  2

βx    σ 
 
βxy

σ 
βxy    σ 

 2
βy ), and 

independent of (βj'x
βj'y ) for j ≠ j', j = 1,...,r.  

2-  ( gix
giy ) is bivariate normally distributed with mean 

vector ( 0
0 ), a variance-covariance matrix ( σ  2

βx    σ 
 
βxy

σ 
βxy    σ 

 2
βy ), and 

independent of (gi'x
gi'y ) for i ≠ i', i = 1,...,v.

3- ( εijx
εijy ) is bivariate normally distributed with mean 

vector ( 0
0 ), a variance-covariance matrix ( σ  2

ex    σ 
 
exy

σ 
exy    σ 

 2
ey ), and 

independent (εi'j'x
εi'j'y), where i ≠ j', j ≠ j'. 

4- The vectors ( gix
giy ), ( βjx

βjy ), and ( εijx
εijy ) are pairwise 

independent of each other (Singh and Hinkelmann 1992).

Given the above background, the genotype correlation 
between traits X and Y is estimated as: 

     

         

 

ρ̂gxy = σ̂gxy

σ̂gxσ̂gy
                        (2)

where σ̂gxy is the estimated genotypic covariance between 
traits X and Y,  σ̂gx is the estimated genotypic standard 
deviation for trait X, and  σ̂gy is the estimated genotypic 
standard deviation for trait Y. Thus, the estimate of ρg is 
obtained in terms of the estimates of the variance and 
covariance components σ  2

gx, σ 
 2
gy and σgxy. The variance 

components σ  2
gx and σ  2

gy can be estimated by using the 
residual (otherwise known as “restricted”) maximum 
likelihood (REML) method (Patterson and Thompson 1971, 
Singh et al. 1997). From the covariance  σgxy obtained, we 
can construct a new variable Z with the plot-wise values as 

                 Zij = Xij + Yij,                               (3)

where,

Zij = μz + βjz + giz + εijz,

where

μz = μx + μy, βjz = βjx + βjy

giz = gix + giy, εijz = εijx + εijy

(i = 1,..., v, j = 1,...,r)

The genotypic variability of variable Z, denoted by 
σ  2

gz, is expressed as:

σ  2
gz = Var(giz) = Var(gix + giy), or σ  2

gz = σ  2
gx + σ  2

gy + 2σgxy (4)
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Thus, the covariance component σgxy can be written in 
terms of variance components as

   σ gxy = (σ  2
gz – σ  2

gx – σ  2
gy)/2                                (5)

We now apply the REML method on Zij values of Z to 
obtain an estimate σ̂ 2

gz of σ̂ 2
gy. Substituting the estimates of 

the three variance components in (5), we get an estimate 
σ̂ 

gxy where

σ̂ 
gxy =(σ̂ 2

gz – σ̂ 2
gx – σ̂ 2

gy)/2

Substituting the estimates of σ  2gx , σ 
 2
gy, and σgxy in (2), we 

obtain the estimate ρ̂gxy = σ̂ 
gxy/(σ̂

 2
gx σ̂

 2
gy)

1/2 

In order to compute phenotypic correlation, we consider 
the additive model for the phenotypic value - phenotypic 
value = genotypic value + environmental effect. After 
ignoring the variation in controlled factors, if any, we can 
write the phenotypic variances and covariance as follows:

σ  2
px = σ  2

gx + σ  2
ex

σ  2
py = σ  2

gy + σ  2
ey

σpxy = σgxy + σexy

Using equation (3), the covariance σexy can be obtained 
from the variance components σ  2

ex, σ 
 2
ey and σ  2

ez, where z = 
x + y using

  σexy = (σ  2
ez – σ  2

ex – σ  2
ey)/2                       (6)

Thus, the phenotypic correlation ρpxy and the environmental 
correlation ρexy  between the traits X and Y are expressed as:

ρpxy = σpxy/(σpxσpy) and ρexy = σexy/(σexσey)         (7)

Standard error of the estimates of phenotypic and 
environmental correlation can be obtained using Singh 
et al. (1997) with the delta method. Similar approaches 
have been described by Miller et al. (1958) using the 
corresponding variance and covariance components 
(Fikreselassie et al. 2012). The approach presented here 
is based on a univariate approach to variables X, Y, and 
Z=X+Y. An alternative approach is to use a multivariate 
formulation implemented in several software programs. 
In our experience, multivariate approaches more often 
resulted in non-convergence than the univariate approach 
(e.g., REML method) did. The variance components for X 
and Y were also used to estimate the broad-sense heritability 
of the traits on a mean basis, using the expression (h    2x = σ  
2
gx /(σ 

 2
gx + σ  2

ex /r) for trait X (as for trait Y), where r is the 
number of replications; see also Singh el al. (2015). The 
estimation under the frequentist approach was carried out 
using Genstat software (Payne 2014). 

Bayesian approach 
Knowledge of a priori probability distribution of 

parameters of interest is required for making estimates 
under the Bayesian paradigm (Kizilkaya et al. 2002). To 
introduce the subject, consider the Bayesian approach for 
estimation of a single parameter θ using an observed data 
vector y = (y1,...,yn). One introduces a degree of belief in the 
parameter θ in terms of its probability distribution function, 
for example g(θ), called a priori distribution of θ, or simply 
a prior for θ. The inference about θ is obtained in terms 
of the probability distribution of θ  given the data y and is 
expressed as p(θ | y)∞g(θ) f (y | θ) and called the a posteriori, 
or simply a posterior, density function of θ,which is obtainable 
from the famous Bayes’ Theorem available in standard 
texts (Ntzoufras 2002, Rowe 2003, Gelman et al. 2004,  
Robert and Casella 2004). Using this a posteriori density, 
one can obtain the expected value of θ as an estimate of θ, 
standard error, and its Bayesian confidence intervals. The 
posterior distributions for each of ρβxy, ρgxy, and ρexy can be 
obtained using the following expression for the situation of 
a general case of s parameters θ1, θ2,..., and θs. Let us denote 
the vector  θ = (θ1, θ2,..., θs). Furthermore, let the bivariate 
data (x, y) be generated on a pair of variables (X, Y) from 
the probability density function denoted by f(x, y | θ). The 
a posteriori distribution of θk (k = 1, 2…, s) based on an 
assumed joint a priori distribution g(θ) of θ is given by:

p(θk|(x,y))∞ʃ...ʃg(θ)f(x,y|θ)dθ1dθ2...dθk–1dθk+1...dθs

The priors used include uniform, half normal, and gamma 
distributions for genotypic and phenotypic standard deviation 
components and uniform distribution for the correlations. 
Wong et al. (2003) proposed a prior probability model for 
the precision matrix in the case of multivariate responses. 
For responses from an RCBD, mixed linear models were 
used to estimate the variance components (Vargas et al. 
2013).  In the present context, the parameters of model 
(1) are μx, μy, βjx, βjy, gix, giy (the effects), σβx, σβy, σgx, σgy, 
σex, σey (the standard deviations), and ρβxy, ρgxy and ρexy (the 
correlations). Priors are needed for standard deviations and 
correlations in the above. Following Gelman (2006), we 
used non-informative priors for scale parameters involved 
in these correlation parameters as uniform, positive half-t, 
and positive half-normal families of distributions (Crossa 
et al. 2010). The following sets of prior distribution were 
considered.

P1: the priors for block, genotypic, plot-error standard 
deviations σβx, σβy, σgx, σgy, σex, and σey ~U(0, 100) and the 
priors for block, genotypic, and environmental correlations 
ρβxy, ρgxy and ρexy ~U(-0.99, 0.99).  
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P2: the priors for block, genotypic, plot-error standard 
deviations σβx, σβy, σgx, σgy, σex, and σey ~positive half normal 
(0, τ–1), and the priors for block, genotypic, and environmental 
correlations ρβxy, ρgxy and ρexy ~U(-0.99, 0.99). Here the 
precision parameter τ = σ–1 is the inverse of the variance. 

P3: the priors for block, genotypic, plot-error standard 
deviations

σβx, σβy, σgx, σgy, σex, and σey ~positive half -t(0, c, υ), 
and the priors for block, genotypic and environmental 
correlations ρβxy, ρgxy and ρexy ~U(-0.99, 0.99). Here c is a 
non-centrality parameter and υ is the degree of freedom of 
the t-distribution. 

Since there are multiple priors, the best prior distribution 
was selected using a discrepancy criterion, the deviance 
information criterion (DIC), commonly considered for prior 
model selection (Gelman et al. 2004, Griffin and Brown 
2012). The inference on the correlations was drawn using 
the best prior. We used the R2WinBUGS package and R- 
codes given in the Appendices. The number of iterations 
was set at 100,000 with three chains, and 5000 simulation 
values were taken for statistical summaries on the posteriors. 
Unlike the univariate approach in the frequentist method, 
here we used a multivariate (bivariate) framework in the 
Bayesian computations. In the bivariate case, the calculations 
were carried out by defining the priors at each element of 
the variance-covariance matrix. Alternatively, particularly 
with more than two traits, one may use Wishart distribution.  

RESULTS AND DISCUSSION 

Selection of priors 
Choices of priors for Bayesian analysis were made 

from the statistics given in Table 1. Deviance information 
criteria (DIC) values were 1158.02 for P1, 1168.11 for P2, 
and 1631.9 for P3.  However, the prior set P1 has the lowest 

numerical value of DIC (1158.02); we took P1 for estimation 
of the genetic parameters.  

Genotypic and phenotypic variance components 
and heritability

Table 2 shows the frequentist estimates of the genotypic, 
phenotypic, and environmental variances and their estimated 
standard errors, as  described in Singh and El-Bizri (1992) 
and the asymptotic 95% confidence intervals. Bayesian 
estimates are based on the best priors set (P1) selected 
using the DIC. The posterior means of genotypic and 
environmental variance components were higher than the 
associated estimates in the frequentist version. Estimates of 
broad-sense heritability on a mean basis followed a similar 
trend, with Bayesian vs frequentist approach estimates as 
0.94 vs. 0.95 for GY and 0.67 vs. 0.70 for SW. 

Genotypic, phenotypic, and environmental 
correlations

For the frequentist approach, Table 3 presents estimates, 
estimated standard errors, and asymptotic confidence intervals 
of the genotypic, phenotypic, and environmental correlations 
between GY and SW, whereas for Bayesian and frequentist 
approaches, it presents their posterior means, standard 
deviations, and medians, along with credible and confidence 
intervals. Genotypic, phenotypic, and environmental 
correlations between GY and SW under the frequentist vs. 
Bayesian approach were 0.547 vs. 0.475, 0.377 vs. 0.328, 
and 0.226 vs. 0.216, respectively. A comparison between 
means and median showed that the Bayesian posterior 
distributions of these correlations are slightly skewed. The 
precision levels of various correlations were reasonably 
close for the two approaches.  

Sorghum genotypes considered in the trial showed 
significant genetic variability for grain yield (GY) and 1000 
seed weight (SW). The study makes use of prior information 
in terms of distributions of various variance components 
that may be made available from an ongoing series of crop 
variety trials.  How the information can be utilized has been 
shown by the Bayesian approach, which integrates the prior 
information with the likelihood of the current datasets, 
so as to draw inferences on genotypic, phenotypic, and 
environmental correlations. Variable degrees of differences 
between the Bayesian and frequentist approaches have been 
found in the precision levels of the estimates of variance-
component-based parameters in other studies (Singh et al. 
2015). In the case of the Bayesian approach, the precision 
associated with a parameter depends on the priors used. The 
merit of the Bayesian approach depends on the premise of 
its allowing for a realistic coverage of the distribution of 

Table 1. Discrepancy statistics for selection of the priors for the 2010-11 
dataset 

Prior  models D D̂ pD DIC
P1 1122.62 1087.23 35.39 1158.02
P2 1137.84 1107.83 30.01 1167.84
P3 1596.13 1559.88 36.25 1632.38

Where D =posterior mean of (- 2 × log-likelihood). D̂ = - 2 × log-likelihood at pos-
terior means of parameters. pD = effective number of parameters, DIC= Deviance 
information criterion. Priors set are: 
P1: σβx, σβy, σgx, σgy, σex, and σey ~U(0, 100) ; ρβxy, ρgxy and ρexy ~U(-0.99, 0.99).  
P2: σβx, σβy, σgx, σgy, σex, and σey ~positive half normal (0, τ–1); ρβxy, ρgxy and ρexy ~U(-
0.99, 0.99).
P3: σβx, σβy, σgx, σgy, σex, and σey ~positive half -t(0, c, υ); ρβxy, ρgxy and ρexy ~U(-0.99, 0.99).  
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various parameters used as priors. The Bayesian approach 
may not necessarily result in a lower posterior standard 
deviation of a parameter in comparison to the standard error 
of estimate of the parameter in the frequentist approach. 
Such investigations need to be carried out on other datasets 
to make an assessment of trends in the precision obtained 
by these two approaches. The most commonly used priors 
for variance components in terms of the standard deviation 
components have been used (Gelman 2006), but classes 
of other relevant priors (Crossa et al. 2010) may also be 
included to examine support from data using the deviance 
information criterion.  The simulation in the Bayesian 
approach using the R2WinBUGS software (Spiegelhalter et 
al. 2002) enables evaluation of the posterior distribution of 
the derived correlations in terms of variance and covariance 
components, unlike the frequentist methods where the 
simplification of the distribution is commonly made as 
asymptotic approximation (Singh and El- Bizri 1992). The 
R2WinBUGS software facilitated summaries in terms of 
posterior mean and median to make inferences regarding the 
symmetry of the distributions and the percentiles in reporting 
the credible intervals. Bayesian computation can also use 
the information from the experimental units that have data 
on additional units for only a single trait (broken samples) 
to estimate the genotypic and phenotypic correlations and 
the variance components for those traits. Furthermore, study 
in Bayesian estimation should be extended to multivariate 

cases (with more than two traits) in future investigations in 
plant breeding. Accordingly, heterogeneity in environmental 
variances and in genotype variances should also be the 
aspect of a future study by considering suitable models for 
heterogeneity of variances.

In summary, this study presents the Bayesian approach for 
estimation of genotypic and phenotypic correlations between 
traits from crop variety trials using the priors on standard 
deviation components and correlations obtainable from a 
series of previously conducted trials.  The R2WinBUGS 
software was used for Bayesian estimates of genotypic and 
phenotypic correlations using experimental design data.  
Uniform distribution based on the priors set was found to 
be best, which led to precision similar to the frequentist 
approach. Due to its sound inference base, the Bayesian 
approach with WinBUGS and R codes is recommended 
for use in estimation of genotypic correlation in plant 
breeding trials. 
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Table 2. Estimates of variance components and broad-sense heritability on a mean basis for grain yield and 1000 seed weight under the frequentist 
and Bayesian approach for the 2010-11 dataset 

  Frequentist approach Bayesian approach

 Parameters Estimate SE
95% confidence interval Posterior Posterior Posterior 95% credible interval

Lower Upper mean SD median Lower Upper

G
ra

in
 

yi
el

d(
G

Y
) σ  2

ex 1071 212 655 1487 1155 238.8 1125 778.9 1712

σ  2
gx 4642 1685 1339 7945 5315 1735 5050 2625 9196

h    2x 0.95 0.022 0.91 0.99 0.94 0.023 0.95 0.89 0.97

10
00

 se
ed

 
(S

W
)

σ  2
ey 18.06 3.58 11.04 25.08 20.13 4.34 19.53 13.28 30.48

σ  2
gy 10.46 5.21 0.25 20.67 12.26 7.08 10.93 2.548 29.09

h    2y 0.7 0.119 0.47 0.93 0.67 0.15 0.69 0.3 0.87

SE: Standard error. SD: standard deviation. The SE and 95% confidence intervals for the frequentist approach estimates are based on asymptotic normal approximation.

Table 3. Estimates of genotypic (ρg),phenotypic (ρp), and environmental (ρe) correlations between grains yield (GY) and 1000 seed weight (SW) under 
frequentist and Bayesian approaches for the 2010-11 dataset 

 Frequentist approach Bayesian approach   

Correlations Estimate SE
95% confidence interval Posterior Posterior Posterior 95% credible interval

Lower Upper mean SD median Lower Upper
Genotypic (ρg) 0.547 0.224 0.108 0.986 0.475 0.224 0.502 -0.05 0.867
Phenotypic (ρp) 0.377 0.139 0.105 0.649 0.328 0.14 0.334 0.038 0.583
Environmental (ρe) 0.226 0.133 -0.035 0.487 0.216 0.133 0.220 -0.054 0.466

SE=standard error. SD= standard deviation. The SE and 95% confidence intervals for the frequentist approach estimates are based on asymptotic normal approximation.
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Appendix A. R-codes for Bayesian analysis of genotypic, phenotypic, and environmental correlations 

#load packs
library(lattice(
library(coda(
library(R2WinBUGS(
#Data file has columns for replicates (Rep), genotypes (Geno), grain yield (GY) and thousand seed weight (SW)
data<- read.table(“DataFile.txt”, header=TRUE(
rp<- data$Rep   # rp for replication vector
gn<- data$Geno  # gn for genotype vector
z <- array(0, dim=c(72,2))
z[,1]<- data$GY
z[,2]<- data$SW
NB<- 4
NG<- 18
N<- NB*NG
print(cbind(z,rp,gn))
print(cbind(NB, NG, N )) 

mn <- matrix(0,1, 2)
mn[1:2]<- colMeans(z[,1:2])
data<- list(“z”,”rp”,”gn”,”N”, “NB”, “NG»)
data
inits1<-  list(m=c(2,1), b=structure(.Data=c(rep(.01,NB), rep(0.01,NB)), .Dim=c(NB,2)) , g=structure(.Data=c(rep(.021, NG), rep(0.01,NG)),.
Dim=c(NG,2)), sig1.e=1, sig2.e=.5, rhoe=.0, sig1.b=1, sig2.b=.5, rhob=.0, sig1.g=1, sig2.g=.25, rhog=.41 )

inits2<-  list(m=c(2,1), b=structure(.Data=c(rep(.01,NB), rep(0.01,NB)), .Dim=c(NB,2)),g=structure(.Data=c(rep(.021, NG), rep(0.01,NG)),.
Dim=c(NG,2)), sig1.e=1,sig2.e=.5,rhoe=.0, sig1.b=.51, sig2.b=.5, rhob=.0, sig1.g=1, sig2.g=.25, rhog=.01)

inits3<-  list(m=c(2,1), b=structure(.Data=c(rep(.01,NB), rep(0.01,NB)), .Dim=c(NB,2)),g=structure(.Data=c(rep(.021, NG), rep(0.01,NG)),.
Dim=c(NG,2)), sig1.e=1,sig2.e=.5, rhoe=.0, sig1.b=1.2, sig2.b=.5, rhob=.0, sig1.g=1, sig2.g=.25, rhog=-.11 )

inits <- list(inits1, inits2, inits3)
inits

parameters <- c(“m”, “Sig2.b”, “Sig2.g”, “Sig2.e”, “sig2p”, “h2”, “rhog”,”rhoe”, “rhop”)
parameters

gencorr.sim <- bugs(data, inits, parameters, “GCorr.bug”, n.chains=3, n.iter=100000, n.sims=5000, bugs.directory= “C:\\Programs\\Win-
BUGS14”, debug=TRUE)
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Appendix B. WinBUGS codes for Bayesian analysis of genotypic correlation 

# Text file GCorr.bug

model{
  for (i in 1 :N){  z[i,1:2] ~ dmnorm(mu[i,1:2], Tau.e[1:2,1:2])
                  for(j in 1:2){ mu[i,j]<- m[j] + b[rp[i],j] + g[gn[i],j] }   }
# Bivariate errors: variance-covariance matrix (Other option is via Wishart distribution)
Sig2.e[1,1]<- sig1.e*sig1.e
Sig2.e[2,2]<- sig2.e*sig2.e
Sig2.e[1,2]<- rhoe*sig1.e*sig2.e
Sig2.e[2,1]<- rhoe*sig1.e*sig2.e
Tau.e[1:2, 1:2]<- inverse(Sig2.e[1:2,1:2])
 # priors of error sigmas and rhos
  sig1.e ~ dunif(0, 100)
  sig2.e ~ dunif(0, 100)
    rhoe ~ dunif(-0.99, 0.99)
# two univariate overall means, as fixed effects, m[1:2]
 for(i in 1:2) { m[i] ~ dnorm(0.0, 1.0E-06) } 
# Bivariate  block effects: variance-covariance matrix (Other option is via Wishart distribution)
 m0[1]<- 0 ;  m0[2]<- 0
for (i in 1: NB){b[i,1:2] ~ dmnorm(m0[1:2], Tau.b[1:2,1:2]) }
Sig2.b[1,1]<- sig1.b*sig1.b
Sig2.b[1,2]<- rhob*sig1.b*sig2.b
Sig2.b[2,1]<- rhob*sig1.b*sig2.b
Sig2.b[2,2]<- sig2.b*sig2.b
Tau.b[1:2, 1:2]<- inverse(Sig2.b[1:2,1:2])
 # priors of error sigmas and rhos
  sig1.b ~ dunif(0, 100)
  sig2.b ~ dunif(0, 100)
    rhob ~ dunif(-0.99, 0.99)
# Bivariate genotype effects: variance-covariance matrix  (Other option is via Wishart distribution)
for (i in 1: NG){g[i,1:2] ~ dmnorm(m0[1:2], Tau.g[1:2,1:2]) }
Sig2.g[1,1]<- sig1.g*sig1.g
Sig2.g[1,2]<- rhog*sig1.g*sig2.g
Sig2.g[2,1]<- rhog*sig1.g*sig2.g
Sig2.g[2,2]<- sig2.g*sig2.g
Tau.g[1:2, 1:2]<- inverse(Sig2.g[1:2,1:2]) 
# priors of error sigmas and rhos
     sig1.g ~ dunif(0, 100)
     sig2.g ~ dunif(0, 100)
  rhog ~ dunif(-0.99, 0.99)     
 # Prediction of parameters of interest-- phenotypic variances and correlation, broad-sense heritability on mean-basis
 sig2p[1]<- sig1.g*sig1.g + sig1.e*sig1.e
 sig2p[2]<- sig2.g*sig2.g + sig2.e*sig2.e
 rhop<- (rhog*sig1.g*sig2.g + rhoe*sig1.e*sig2.e)/sqrt(sig2p[1]*sig2p[2])

 h2[1]<- sig1.g*sig1.g / (sig1.g*sig1.g + sig1.e*sig1.e/NB)
 h2[2]<- sig2.g*sig2.g / (sig2.g*sig2.g + sig2.e*sig2.e/NB)
                         }
# end of BUGS codes


