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Abstract

In the Ethiopian Highlands, research projects were often measuring soil attributes of spatially
structured point data but soil variability at a watershed scale is not clearly defined. This study was
conducted to assess the correlation among selected soil attributes and to illustrate the spatial
pattern and dependence of neighboring observations. The 53.7 km? study watershed was divided
into a 500 m by 500 m square grid using arcgis and at the center of each grid soil samples from 0
to 25 cm depth were collected within 184 locations. The descriptive statistics revealed available
phosphorous (AP) had the largest coefficient of variation (CV = 104) while pH was the least varia-
ble. There was a positive link between elevation and SOC whereas bulk density (pd) and pH indi-
cated an inverse relationship with elevation and SOC. The value for nugget/sill of pd, pH and ele-
vation are less than 0.25, and depicts that it has strong spatial autocorrelation. The value for nugget/
sill of SOC, and TN found between 0.25 and 0.75, and indicate that they have moderate spatial au-
tocorrelation. With regard to AP, the value for nugget/sill is more than 0.75, which displays a weak
spatial autocorrelation. Semivariograms of pd, pH and elevation were best fitted to Gaussian mod-
el whereas SOC, TN and AP were best fitted to exponential function. Generally, the study verified
that soil measurements taken at the given scale through regular sampling interval were adequate
to capture the spatial dependence of numerous initial soil assessments in the study watershed.
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1. Introduction

Research has shown that soils continually undergo development and vary in space and time as a result of the
combined effects of physical, chemical, and biological processes that work at different scales and with different
intensities. This variability is a direct result of soil forming factors: climate, parent material, time, geomorphol-
ogy and living organisms [1]. Each factor may function independently or in combination with other factors and
over a wide range of spatial scales. Spatial scales reach from the micro-environment to the watershed and further
occurring at many scales, while temporal scales extent from seconds to centuries and longer. Various processes
occurring over different time steps and caused by various influences form different patterns of soil variability.
The spatial and temporal variability of soil attributes should be observed and quantified for a better understand-
ing of the influence of land management practices on soil function which ultimately leads to efficient site spe-
cific farming practices [2]. An efficient site specific farming practice is currently based on information about the
spatial and temporal variability of the soil and this information is useful for the farmers to make decisions with
regard to planting, fertilizing and harvesting [3].

Since the early 1900’s soil scientists have been aware of the spatial and temporal variability of the soil [4]-[6].
However, it was not until the late 1960’s and early 1970’s that soil scientists began to study soil variability in a
systematic way. Soil properties vary over space and time and can be assessed using classical descriptive statis-
tics and/or geostatistics [7]. Meanwhile, there are numerous factors such as surveying cost, accessibility, topo-
graphy etc. that limit the amount of spatial data needed to describe the variability of the soil in a resolution suf-
ficient for depicting a spatial process. However, previous studies conducted in agricultural lands documented
that available phosphorous showed the highest variation while pH the least variable soil property [2] [8]-[12].

Geostatistics incorporate information about the geographic position of the sample points during data pro-
cessing. In addition, the analysis and interpretation of spatial datasets described by semivariograms to predict the
values of soil attributes at unsampled locations by interpolation techniques forms an important part of geostatis-
tics [13]. The most indispensable part of soil information in geostatistics is that each observation relates to a par-
ticular position in time and space. Geostatistics is concerned with spatial data hence, an observed value is of lit-
tle interest unless location or time of measurement or both are known and considered in the analysis [14].

In the past three decades, the application of geostatistical methods by soil researchers primarily focused on
predicting spatial variability along a transect [6] [10] [15] or at fine resolution (plot-scale and/or field-scale)
[16]-[18]. However, the application of classical descriptive statistics and geostatistics methods in a rugged
mountainous agricultural watershed was rarely considered.

Although the level of spatial soil variability is scale dependent, assessing spatial soil variability is vital before
conducting site specific crop and soil management practices [19]. Typically, spatial variability of soil depends
on the specific soil studied but, such information for soil of Gumara-Maksegnit agricultural watershed is lacking
and hence, need to be assessed. Considering the different studies and results obtained, the aims of this research
were (1) to evaluate the correlation among various soil chemical and physical attributes and (2) to illustrate the
spatial pattern and dependence of soil attributes of neighboring observations.

2. Materials and Methods
2.1. Study Watershed Characteristics

The study was conducted in April 2010 on Gumara-Maksegnit watershed which has an area of 53.7 km? and lo-
cated in the northwestern Amhara region, Ethiopia between 12°24" and 12°31' North and between 37°33' and
37°37' East (Figure 1). In the study watershed, the problem of soil fertility, water shortage, costly agricultural
inputs and erosion are among a number of serious challenges, which makes small-scale rainfed agriculture a
risky enterprise.

The mean annual rainfall in the watershed was about 1170 mm at which more than 90% of the rainfall occurs
during the three month period, June to August. Meanwhile, the average daily maximum and minimum tempera-
tures were 28.5°C and 13.6°C, respectively. Diverse topography is a typical characteristic of the study watershed.
The elevation of the watershed varies from 1923 m at the outlet to 2851 m in the north and the mean elevation is
2237.54 m above sea level, which exhibit vast topographical variations over the research site (Figure 2).
Meanwhile, the majority of the study watershed (90% of the study area) is mountainous and consists of dis-
sected terrain with steep slopes, and the remaining 10% has an undulated topography with gentle slopes. The
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Figure 1. Overview of the project watershed area in the Northwest Amhara region, Ethiopia.

Reference: UTM_Zone 37N
Ellipsoid: WGS_1984

Figure 2. Contour map of the study watershed with the distribution of observed soil samples.
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slope of the study watershed ranges from nearly flat (less than 2%) to exceptionally steep (greater than 70%) in
the northern part of the watershed and the mean watershed slope is 22.06%. The study watershed was mainly
covered by agricultural land (63.5%) followed by forest (24.3%) and grassland 12.2%. The major crops grown
in the agricultural land included sorghum, teff (EragrostisTeff), fava bean, lentil, wheat, chickpea, linseed, fenu-
greek, and barley. Eragrostis Teff and sorghum were the main staple crops, whereas chickpea was grown at re-
sidual moisture in the lower regions of the watershed where clay soil textural classes were dominant and this
crop cannot grow at higher altitudes.

2.2. Geological Characteristics

The study area, which is part of the northern Highlands of Ethiopia, belongs to the Trapp series of Tertiary vol-
canic eruptions [20]. The physiographic structure of the study area is a result of its geological origin. The High-
lands and mountain ridges are created by uplifting of landmasses and the mountain peaks are the results of lava
emissions [20]. The geomorphic processes which took place for a long period of time had significantly reshaped
the area. The soil types are predominately Cambisol and Leptosol which are found in the upper and central part
of the watershed, whereas Vertisol is found in the lower catchment near the main outlet. Denkez mountain ridge
is the peak part of the watershed and it is a line of demarcation that separates the two main Ethiopian basin sys-
tems (Nile and Tekezi basins).

2.3. Soil Analyses

The study watershed was divided into a 500 m by 500 m square grid and approximately, at the center of each
grid soil samples were collected within 184 locations over a 53.7 km? watershed using auger and core cylinder
equipment. Garmin explorer GPS accuracy: (£3 m) was used for locating soil sampling points and measuring
elevation in the field. However, some sampling points were shifted a bit from the center of the grid due to diffi-
cult topographic conditions. Soil samples in the study watershed were collected during the latter part of the dry
season.

At each grid center, soil samples of about 2 kg were removed from the surface soil horizon, which might
range from 0 - 25 cm based on the surface soil depth, with the best available tool (bucket auger) for chemical
and physical analysis. Undisturbed core samples from 10 - 15 cm depth were taken to determine bulk density
(pd) following the procedure of [21]. The pH value of the soil was measured with a pH meter in the supernatant
suspension of 1:2.5 ratio (sample to water mixture)measured using glass electrode pH meter as described by
Peech [22]. Soil organic carbon was determined by wet oxidation method as described by De Vos et al. [23].
Available Phosphorus (AP) was extracted using sodium bicarbonate solution at pH 8.5 following the procedure
described by Olsen [24]. Total nitrogen (TN) was determined using the Kjedahl method as described by Jackson
and Barak [25].

2.4. Statistical Analyses

2.4.1. Classical Statistics

The physical and chemical soil data obtained in the study watershed were subject to descriptive statistics using
classical statistical analyses procedures to get minimum, maximum, range, mean, median, standard deviation
(sd), standard error of mean, skewness, kurtosis and coefficient of variation (CV) of soil attributes using R soft-
ware [26]. When the coefficient of skewness of a variable was greater than 1 the variable was transformed using
a natural logarithm to a nearly normal distribution before using geostatistical analysis [27].

2.4.2. Semivariograms

In the study of spatial patterns and processes, close observations are more likely to be similar than those far
apart however; variations are generally highly irregular and not exactly described by deterministic equations
[28]. A spatial correlation in spatially structured point data measured at sample locations can be described
through the semivariogram function. For N pairs of values of soil property A; separated by a distance h [29] the
semivariogram function is defined through the following equation:

=gy o TAG)- A+ @
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Semivariogram functions have many different forms and shapes and all semivariograms have a zero value at
the origin. Some of the semivariogram models for natural resources evaluation were comprehensively discussed
by Goovaerts [29]. GS+ [30] was used to obtain the semivariogram model of each observed soil attributes. The
proposed model with the least reduced sum of squares (RSS) was selected for spatial autocorrelation process.
The study also followed all the procedures described by Robertson [30], for finding the best fitted semivario-
gram models.

3. Results and Discussions
3.1. Assessing the Descriptive Statistics

The observed data for the parameters SOC, TN, AP, pH, bulk density, and elevation were subjected to classical
statistical analyses. The descriptive statistical summary for the measured soil physical and chemical properties
of the study watershed is presented in Table 1. Over the sampled watershed, mean values of SOC, pH, and TN
were 1.49% + 0.07%, 6.75% + 0.03, and 0.21% + 0.01%, respectively. The soil analyses also showed that the
value of bulk density ranged mainly from 0.83 (g-cm®) to 1.70 (g-cm™®) with the mean value of 1.28 + 0.01
(g-cm™3), while the mean value of AP was 14.20 + 1.09 (ppm) (Table 1). SOC, AP, TN and elevation had
skewness coefficient greater than 1, hence the natural logarithm was applies to stabilize the variance.

As a standardized measure of the variance, the coefficient of variation (CV) was used to describe the shape of
a frequency distribution of the observation [28]. Based on the CV values of the observed soil attributes, AP,
SOC, TN were the most variable soil properties, with CV greater than 37%. Observed bulk density (pd) was
moderately variable, with CV between 14% - 27%, whereas pH was the least variable (CV less than 7%). The
descriptive analyses also revealed that AP had the largest variation (CV equals to 104%). Similarly, [2] docu-
mented that AP showed the highest, whereas pH the least CV. In addition, previous researches also depicted low
coefficients of variation for pH compared to the other soil properties [8] [9] [11] [12].

3.2. The Effects of Elevation on Soil Properties

Considering the soil attributes/elevation relationships, one might expect that the spatial pattern and magnitude of
observed soil attributes should be strongly related to elevation of the watershed, since it dictates the flow direc-
tion and accumulation, drainage network, and slope gradient which eventually contributes to nutrient leaching,
soil erosion and sediment deposition. Investigating the relationship of SOC with elevation is crucial as SOC is a
major part of the terrestrial carbon reservoir which plays an important role in the global carbon (C) cycle [31]. In
the study watershed, there was a positive linkage between elevation and SOC (Table 2). These findings were in
line with that of Kidanemariam et al. [32] who reported a positive correlation between SOC and altitude. Soils
of the upper catchments had the highest SOC contents and various factors may affect the link between SOC and
elevation. Lower temperature and increased soil moisture probably reduce decompaosition rates and thus the ac-
cumulation of SOC at upper catchment of the study watershed. Similarly, research conducted by Kirschbaum
[33] showed that lower soil temperature usually decreased litter decay rates and soil organic matter decomposi-
tion rates [34]. Bulk density (pd) and pH indicated an inverse (p < 0.001) and TN a direct relationship (p < 0.001)

Table 1. Descriptive statistics summary for the selected soil attributes and elevation of the study watershed.

Soil attributes No. of samples Min. Max. Range Mean Median sd se (mean)  Skewness CV
pd (g-em™®) 184 0.83 1.70 0.87 1.28 1.28 0.19 0.01 0.09 147
SOC (%) 184 0.12 4.65 453 1.49 1.19 0.99 0.07 1.03 66.7
TN (%) 184 0.03 0.91 0.88 0.21 0.20 0.14 0.01 217 66.7
AP (ppm) 184 1.16 77.16  76.00 14.20 8.35 14.74 1.09 1.93 104
pH (H,0 1/2.5) 184 5.34 7.98 2.64 6.75 6.68 0.44 0.03 0.17 6.52
Elevation (m) 184 1933.00 2852.00 919.00 2242.00 2160.00 238.11 17.55 1.01 10.6

pd—Bulk density, SOC—Soil Organic Carbon, TN—Total Nitrogen, AP—Available Phosphorous, sd—Standard deviation, se (mean)—Standard er-

ror of mean, CV—Coefficient of Variation.
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with elevation. Meanwhile, SOC was significantly correlated with TN (p < 0.001) and negatively correlated with
bulk density and pH (p < 0.001) (Table 2).

3.3. Spatial Variability

The resulting semivariograms exhibits the existence of diverse spatial dependence for the study watershed
(Table 3). The value of relative nugget effect or nugget to sillratio (Co/Cy + C) displays the spatial autocorrela-
tion [35]. According to [16] the ratio of nugget to sill (Co/Cy + C) of less than 0.25, 0.25 to 0.75, and greater than
0.75 can reflect strong, moderate and weak spatial autocorrelation, respectively. The value for relative nugget
effect of bulk density, pH and elevation are less than 0.25, and depicts that it has strong spatial autocorrelation.
The values for relative nugget effect of SOC and TN are between 0.25 and 0.75, and indicate that they have
moderate spatial autocorrelation. With regard to AP the value for relative nugget effect is more than 0.75, and
depicts that it has weak spatial autocorrelation. Generally, all measured soil properties in the study site varied in
their spatial dependence and revealed a positive nugget effect with low sampling error (Table 3).

The resulting semivariograms on different directions including 0, 45, 90, 135 degrees for all soil attributes
showed that effective range and sill of semivariograms were uniform and there was no clear anisotropy, therefore
the spatial variability for the selected soil attributes were assumed to be identical in different directions (isotrop-
ic). The semivariograms of bulk density (pd), pH, and elevation were best fitted to Gaussian model while that of
SOC and TN were best fitted to exponential function (Table 3). Although the semivariogram of AP seemed that
it was best described by the exponential function, the resulting spatial structure clearly showed a pure nugget
effect. Meanwhile, the lag distances for the observed soil attributes were much longer than the sampling interval
(Table 3). Thus, the sampling design used in the study watershed for the selected soil attributes was adequately
revealed spatial distribution. As an illustration, the experimental semivariograms of bulk density, elevation, SOC,
TN, AP and pH for the best fitted model are displayed in Figure 3(a) to Figure 4(d), respectively.

Table 2. Correlation coefficient matrix of the selected soil attributes and elevation of the study watershed.

Soil Property AP (ppm) pd (g-cm®) Elevation (m) pH (H.0 1/2.5) SOC (%) TN (%)
AP (ppm)
pd (g-cm™®) -0.11 -
Elevation (m) -0.04 -0.46™"
pH (H20 1/2.5) -0.02 0.49™ -0.60™"
SOC (%) 0.13 -0.33™ 0.41™ -0.39™
TN (%) 0.26™ -0.28™ 0.25™ -0.40™" 0.42™"

Asterisks indicate correlation coefficient is significant at “p < 0.05; ~p < 0.01; “p < 0.001 (two-sided).

Table 3. The semivariogram parameters corresponding to the selected model of some soil attributes and elevation of the

study watershed.

Variable Model type Nugget [Co] Sill [Co +C] Range Ao (m) RSS r’ RNE [Co/(Co +C)]

pd (g-em™®) Gaussian 0.0209 0.1195 12110 1.14E-05 0.978 0.17

SOC (%) Exponential 0.395 0.791 9530 2.01E-03  0.942 0.50

TN (%) Exponential 0.234 0.736 12230 2.56E-03 0.935 0.32

AP (ppm) Exponential 0.89 1.78 21100.00 0.0172 0.64 0.50

pH (H.0 1/2.5) Gaussian 0.113 0.553 16460 1.13E-03  0.892 0.20

Elevation (m) Gaussian 0.0006 0.0636 12210 151E-06  0.993 0.01

RSS—Residual Sum of Squares, r>—Coefficient of determination, RNE—Relative nugget effect.
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Figure 3. Semivariogram of (a) Bulk density in g/cm® and (b) Elevation in m of the study watershed.
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Figure 4. Semivariogram of soil chemical properties of the study watershed (a) SOC %, (b) TN %, (c) AP (ppm) and (d) pH.

4. Conclusions

The spatial variation of the selected soil attributes sampled from 0 to 25 cm depth of the surface horizon in a
rugged mountainous agricultural watershed was explored and assessed using classical and geostatistical methods.
The descriptive statistics revealed that AP had the largest coefficient of variation while pH was the least variable.
The correlation analysis indicated that bulk density (pd) was significantly positively correlated with pH while,
negatively correlated with SOC and elevation. Considering the soil attributes/elevation relationships, the study
showed that the magnitudes of observed soil attributes were strongly linked to elevation of the watershed. SOC
and TN were moderately spatially dependent with the ratio of nugget to sill (Co/Cy + C) found between 0.25 and
0.75, whereas pH, bulk density and elevation were exhibited strongly spatially dependent with the ratio of nug-
get to sill less than 0.25. AP had weak spatial autocorrelation, and the value for nugget/sill is more than 0.75.
The semivariograms of SOC and TN were best fitted to the exponential function while bulk density, pH and
elevation were best fitted to the Gaussian model. In general, this study had verified that soil measurements taken
at the given scale through regular sampling interval were adequate for determining the spatial dependence of
numerous initial soil assessments across the different elevations of the study watershed. It could, therefore, be
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recommended that further study in spatial soil variability at a watershed scale should focus on method(s) of de-
termining the spatial pattern and spatial dependence of the soil attributes.
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