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Abstract—Soil salinity has become one of the major problems4
affecting crop production and food security in Mesopotamia, Iraq.5
There is a pressing need to quantify and map the spatial extent and6
distribution of salinity in the country in order to provide relevant7
references for the central and local governments to plan sustain-8
able land use and agricultural development. The aim of this study9
was to conduct such quantification and mapping in Mesopotamia10
using an integrated, multiscale modeling approach that relies11
on remote sensing. A multiyear, multiresolution, and multisen-12
sor dataset composed of mainly Landsat ETM+ and MODIS data13
of the period 2009–2012 was used. Results show that the local-14
scale salinity models developed from pilot sites with vegetated and15
nonvegetated areas can reliably predict salinity. Salinity maps pro-16
duced by these models have a high accuracy of about 82.5–83.3%17
against the ground measurements. Regional salinity models devel-18
oped using integrated samples from all pilot sites could predict19
soil salinity with an accuracy of 80% based on comparison to20
regional measurements along two transects. It is hence concluded21
that the multiscale models are reasonably reliable for assessment22
of soil salinity at local and regional scales. The methodology23
proposed in this paper can minimize problems induced by crop24
rotation, fallowing, and soil moisture content, and has clear advan-25
tages over other mapping approaches. Further testing is needed26
while extending the mapping approaches and models to other27
salinity-affected environments.28

Index Terms—Multiscale remote sensing, multiyear maxima,29
new processing algorithm, salinity models, soil salinity.30

I. INTRODUCTION31

A PPROXIMATELY, 60% of the cultivated land in the32

Mesopotamian plain in Iraq is seriously affected by salin-33

ity [1]; 20–30% has been abandoned in the past 4000 years [1],34

[2]. Because of soil salinity, yield of crops, especially, wheat35

of nonabandoned has declined by 20–50% by 1950s [2]. But36
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the severity and distribution of soil salinity varies with space 37

and time [2]–[4]. In order to prioritize any remediation effort 38

and better plan for agricultural improvements and food security, 39

it is of prime importance for Iraqi central and local govern- 40

ments to understand the distribution and severity of salinity in 41

Mesopotamia. 42

Soil salinity is a common form of land degradation in 43

irrigated areas located in dryland environments [5]–[8]. The 44

physical appearance of salinity is strongly influenced by soil 45

properties (e.g., moisture, texture, mineral composition, and 46

surface roughness) as well as type of vegetation cover (e.g., 47

halophyte and nonhalophyte, salt-tolerant and nonsalt-tolerant) 48

[5]–[8]. Remote sensing has been widely applied for mapping 49

and assessment of soil salinity in recent decades using veg- 50

etation indices (VIs) and combined spectral response index 51

(COSRI) [9]–[16], best band combination [17], [18], maximum 52

likelihood and fuzzy logic-based classifications [19]–[23], prin- 53

cipal component analysis (PCA), surface feature unmixing, 54

and data fusion [6], [7], [24]. Predictive models have been 55

developed for soil salinity using different regression analysis, 56

artificial neural network (ANN), and Kriging/CoKriging tech- 57

niques [9]–[16], [18], [24]–[26]. Very recently, along with 58

vegetation indices and reflectance of certain spectral bands, 59

evapotranspiration (ET) and land surface temperature (LST) 60

have been used to predict salinity in salt-affected areas 61

[16], [27]–[29]. 62

While these and other studies demonstrate the feasibility, 63

advantages, and potential of remote sensing to assess soil salin- 64

ity, there remain certain challenges. First, although in strongly 65

salinized areas, salt tends to concentrate on terrain surfaces 66

and can be easily detected by conventional remote sensing 67

tools; however, for low-to-moderate salinity (salt<10−15%), 68

spectral confusions with other different surface features may 69

arise leading to identification failure (either overestimation or 70

underestimation) [6], [7]; especially, when salt concentrates in 71

subsoil, optical remote sensing is restricted [8]. Second, soil 72

moisture, halophyte vegetation, and salt-tolerant crops such 73

as barley, cotton, and alfalfa can modify the overall spectral 74

response pattern of salt-affected soils, especially in the green 75

and red bands [6], [7], [30]. Third, lands in the states of fal- 76

low, noncrop interval in-between rotations, and crop rotations 77

tend to be interpreted as salinized areas if only soil bareness or 78

vegetation greenness of a single image is investigated. To avoid 79

these problems, some authors have suggested: 1) to use images 80

acquired at the end of dry or hot season or of multiple cropping 81

periods [7], [8], 2) to conduct regression analysis against VIs 82

[9]–[16] and geophysical measurement [8] in combination with 83
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soil sampling and analysis. These are, no doubt, useful sugges-84

tions to minimize the mentioned problems and accomplish a85

better mapping work. However, most of the available studies86

have employed single or multidate single images to assess salin-87

ity at local scale, and their approaches are not fully repeatable88

or extendable for regional-scale assessment due to spatial vari-89

ability and diversity in climate conditions, soil properties, and90

land use/management. It is, therefore, essential to develop new91

processing methods and approaches technically operational for92

regional-scale salinity mapping.93

The main objectives of this study are, hence, to develop an94

integrated methodology operational for regional salinity quan-95

tification and assessment based on the available approaches96

considering the above-mentioned problematic issues, to pro-97

vide relevant multiscale salinity maps for Iraqi governments,98

and finally, to lay a foundation for the successive regional-scale99

tracking of salinity change trends in space and time that may100

provide spatial reference for the governments to understand101

the impacts of land management on salinization processes in102

Mesopotamia.103

As well as for salinity assessment, remote sensing technol-104

ogy has also been widely applied in other dryland research.105

Some scientists have utilized annual maximum (peak) VIs106

such as Normalized Difference Vegetation Index (NDVI) [31]107

to compose cloud-free NDVI [32]–[35] for assessing dryland108

biomass [33]–[35] and land degradation [35]–[37] in the past109

decades. Others have used multiyear maximum (peak) and min-110

imum (trough) NDVI and LST to derive vegetation condition111

index (VCI) and temperature condition index (TCI) for mon-112

itoring droughts [38]–[40]. Clearly, annual maximum VI, if113

applied to salinity assessment, can resolve the problems related114

to cloud-cover and crop rotation (crops cultivated either in115

spring or summer) but cannot remove that resulted from fal-116

low state which may last a couple of years. However, multiyear117

maximum, if the observation period spans 3–4 years, can min-118

imize (if cannot completely resolve) these problems. LST is119

associated with soil moisture and water content [41]–[44], and120

high LST is related to low moisture [44]. Thus, multiyear max-121

imal LST is a promising indicator to minimize the problem122

related to soil moisture.123

Additionally, remote sensing-based multiscale modeling has124

gained a momentum in regional, continental or even global125

scale application [34], [45], [46] to extend plot measurements to126

local-scale (e.g., pilot site or watershed), and then to regional-127

or continental-scale [34], [46]. As Farifteh et al. [8] and Wu128

et al. [34] explained, such multiscale modeling is in fact an129

upscaling procedure to extend models developed from local130

studies to regional-scale assessment considering the spatial131

variability.132

From the above brief review, we reached an understanding133

that regional salinity mapping and assessment require inte-134

grated approaches which consider multidimensional (or mul-135

tiaspect) observation and analysis from surface (e.g., vegetated136

and nonvegetated areas) to subsoil (within a limited depth of,137

e.g., <150 cm), and from multiple biophysical characterization138

to traditional soil sampling. We propose, hence, in this paper a139

“multiyear maxima and multiscale modeling” methodology for140

salinity quantification in Mesopotamia, Iraq.141

II. MATERIALS AND METHODS 142

A. Study Area 143

Mesopotamia, “the land between rivers” in ancient Greek and 144

encompassing a surface area of about 135 000 km2, is a typ- 145

ical alluvial plain between the two famous rivers, Euphrates 146

and Tigris (Fig. 1) and the home of multiple ancient civiliza- 147

tions namley Sumerian, Akkadian, Babylonian, and Assyrian 148

[4]. As an arid subtropical region, the climate is characterized 149

by dry hot summers and cooler winters [2], [3], [29], where 150

annual rainfall is mostly below 200 mm, of which the average 151

is 110 mm in Baghdad and 149 mm in Basrah in the past three 152

decades. The mean maximum and minimum temperatures are 153

44◦C and 25.6◦C, respectively, in Baghdad, 46◦C and 29.15◦C 154

in Basrah in July–August, whereas they are 16.5◦C and 4.8◦C 155

in Baghdad, 19◦C and 8.4◦C in Basrah in December–January. 156

As a fluviatile plain, soils are extremely calcareous (20–30% 157

lime) alluvial silty loam or loamy silts [2], [3], typical 158

Fluvisols in terms of WRB (the World Reference Base for 159

Soil Resources), and mostly saline as a result of cumula- 160

tive salinization in the past 6000 years [2]–[4]. Archeological 161

evidence revealed that crop cultivation (e.g., wheat and bar- 162

ley) was started as early as 4000 BC in Mesopotamia [2], 163

[4]. Due to aridity, farming is impossible if not irrigated. 164

Irrigation increases soil moisture and crop production, nonethe- 165

less, leads to elevation of water-table or water-logging in the 166

area where there is no drainage or draining is slow [2]–[4]. 167

Consequently, salts accumulate in soils after evaporation and 168

transpiration year by year. According to Jacobsen and Adams 169

[4], salinity had already become a serious hazard in south- 170

ern Mesopotamia in the late Sumerian or early Akkadian 171

periods, e.g., around 2400–2300 BC, and led to a decline 172

in wheat production. The proportions of wheat and barley 173

were nearly equal in about 3500 BC but became 1 to 6 174

in 2400 BC in Girsu (nowadays Thi-Qar); wheat cultivation 175

was completely abandoned after 1700 BC and land produc- 176

tivity declined from 2537 l/ha before 2400 BC to 897 l/ha in 177

1700 BC in Larsa (also in Thi-Qar) as a consequence of salin- 178

ization. Salinity is hence an old problem that contributed to 179

the breakup of ancient civilization [4]. Unfortunately, saliniza- 180

tion has never stopped but progressively extended to the whole 181

Mesopotamian plain to the state as described in the beginning 182

of the paper. 183

As Buringh investigated [2], the most common salt in 184

saline soils is sodium chloride (NaCl) followed by other 185

chlorides (e.g., CaCl2, MgCl2, and KCl), and sulfates (e.g., 186

CaSO4·2H2O, Na2SO4.10H2O, and MgSO4). Saline-alkaline 187

soils may exist locally but real alkali soils (in black) are very 188

scarce in Mesopotamia. 189

B. Field Sampling Design and Data 190

To achieve our objectives, comprehensive observations and 191

measurements at different scales are required. The experi- 192

ment was hence designed to be conducted at three levels, i.e., 193

plot, local (pilot site), and regional scales, corresponding to 194

the proposed multiscale approach. Both local (pilot site)- and 195
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Fig. 1. Location of the five pilot sites and the whole study area, Mesopotamia, in Iraq.F1:1

regional-scale surveys were composed of plot level investiga-196

tion and measurements.197

Plot level survey included land use/cover investigation, crop198

types and performance observation (if possible), soil sampling,199

and apparent salinity measurement using a ground conductiv-200

ity meter, EM38-MK2 (Geonics Ltd.), in an area of 1 m × 1 m.201

EM38 meter is capable to measure the apparent soil salinity202

in both horizontal (with a measurement depth up to 50 cm)203

and vertical (up to 150 cm) directions, of which the read-204

ings can be respectively denoted as EMH (horizontal) and205

EMV (vertical) in millisiemens per meter (mS/m). Hence,206

EM38 meter can reveal salinity of both surface and subsoil.207

However, the apparent salinity has to be calibrated by labora-208

tory measured soil salinity. The false salinity caused by metal209

and/or soil moisture should be avoided while measurement is210

conducted.211

In order to be comparable with the pixels of high-resolution 212

satellite images such as Landsat and SPOT (e.g., 10–30 m), the 213

survey was planned to be conducted in three plots distributed 214

at three corners of a triangle, respectively, with a distance of 215

about 15–20 m from each other in the same patch of land. The 216

averaged values of the EM38 readings including both EMV and 217

EMH of the three corner plots would be taken to represent the 218

salinity of the center of the observed triangle. Soil samples for 219

laboratory chemical analysis were to be taken from soil profiles 220

at the depth of 0–30, 50–70, 90–110 and 120–150 cm, and from 221

surface (0–30 cm in depth) using auger tools in the plots where 222

EM38 was also measured. 223

Pilot site level survey was to serve for integrated pilot 224

study, e.g., salinity model development and mapping at local 225

scale. As recommended by the Iraqi government, five sites 226

namely Musaib, Dujaila, West Gharraf, Shat-Al-Arab, and Abu 227
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Fig. 2. Distribution of the sampling points for modeling and validation.F2:1

Khaseeb in the Mesopotamian plain (see Figs. 1 and 2 for loca-228

tion) were selected for pilot studies. It was planned that each229

pilot site should contain >5 soil profiles and >20 triangles of230

plots for surface survey if accessibility allowed.231

Regional survey, which was aimed at salinity model devel-232

opment and validation at regional-scale, was to be conducted233

along two transects in the whole Mesopotamian Plain.234

Based on the above design, field survey and sampling cam-235

paigns were conducted in the five pilot sites in the period236

September 2011–July 2012 and along two regional transects237

in Mesopotamia in April 2012 and June 2013. The sampling238

locations for plot level survey both in pilot sites and along239

the regional transects were randomly selected in the field in240

terms of accessibility. Due to limited budget, surface soil sam-241

ples were not taken in each plot but at least in one of the three242

corners. Soil salinity, expressed as electrical conductivity (EC)243

in decisiemens per meter (dS/m), was measured in laboratory244

using 1:1 dilution method. In total, 187 surface soil samples245

(0–30 cm) with laboratory analysis and 485 pairs of EM38246

measurements were obtained for this study. Sites, depths, and247

numbers of sampling are described in Table I.248

In order to extend plot level measurements to pilot site, and249

then to regional-scale salinity mapping, a multiyear dataset250

consisting of multiresolution and multisensor satellite imagery251

was prepared based on the availability of images. This dataset252

includes 33 spring (February–April) and summer (August)253

Landsat ETM+ images of the period 2009–2012, four SPOT 4254

images acquired in March 2010, and three RapidEye images255

dated April 2012, time-series of MODIS vegetation indices256

data (MOD13Q1), and LST (MOD11A1 and A2) from 2009257

to 2012.258

C. Local-Scale Modeling and Mapping259

As indicated in Section I, apart from the geophysical survey260

by EM38 meter to understand salinity in surface and subsoil,261

different remote sensing indicators that can characterize the 262

multiaspect surface biophysical features, e.g., VIs, LST, soil 263

brightness (albedo), and principal components (PCs), need to 264

be derived. 265

Instead of using one single image, a 4-year imagery dataset 266

registered both spring and summer acquisitions, which was 267

used to derive the multiyear maximal values of a set of VIs and 268

nonvegetation indices (NonVIs) for each pixel. This would help 269

avoiding some false alarm of salinity arising from fallowing, 270

crop rotation, and variation in soil moisture. This processing 271

can also largely remove the problem caused by the image gaps 272

left by the Scan-Line Corrector failure (SLC-Off) in the Landsat 273

ETM+ imagery since 2003. We assumed that it is always possi- 274

ble for a given piece of cropland to be cultivated in either spring 275

or summer with normal performance in the observed period 276

because fallow state lasts, in general, 2–3 years in Central and 277

Southern Iraq. 278

Image processing in combination with field survey would 279

allow the identification of the salt-tolerant areas, and the con- 280

centration of salt in subsoil, for example, areas with high 281

vegetation greenness but moderate salinity as revealed by the 282

readings of EM 38 or as measured by soil laboratory analy- 283

sis. Such areas have to be defined for a specific analysis since 284

salinity cannot be reflected by vegetation indices. 285

Furthermore, it is essential to separate vegetated and non- 286

vegetated areas, as the expression of salinity in remote sensing 287

images is different in these two types of areas. For exam- 288

ple, the low values of VIs in nonvegetated areas (e.g., bare 289

soil and desert) do not mean that they are all strongly salin- 290

ized (high salinity). As a matter of fact, salinity is negatively 291

correlated with VIs such as NDVI [11], [13], [28], [29], and 292

it tends to be overestimated in the nonvegetated areas just 293

based on VI-related models. We have to consider the inte- 294

grated information from multiple spectral and thermal bands, 295

e.g., spectral reflectance, LST, PCs, and the brightness of 296

the Tasseled Cap transformation (TCB) [47]–[49], for salin- 297

ity assessment in these areas. The rationale behind is that 298

the spectral reflectance and its multiband linear combination 299

(e.g., TCB and PCs) together with LST might be able to 300

highlight the subtle difference in soil brightness (or albedo) 301

corresponding to the difference in salinity in the nonvegetated 302

areas. 303

The procedure for local-scale study in the pilot sites is 304

presented as follows. 305305

1) Atmospheric correction using FLAASH model [50] for all 306

Landsat ETM+, SPOT, and RapidEye images. 307

2) Multispectral transformation: A set of most frequently 308

applied VIs such as NDVI [31], SAVI (soil-adjusted 309

vegetation index) [51], SARVI (soil-adjusted and atmo- 310

spherically resistant vegetation index) [52], and EVI 311

(enhanced vegetation index) [53] were produced from 312

the atmospherically corrected and reflectance-based satel- 313

lite imagery. We also introduced a new vegetation index 314

in this work, the generalized difference vegetation index 315

(GDVI) developed by Wu [54] and in the form of 316

GDVI = (ρnNIR − ρnR)/(ρ
n
NIR + ρn

n

R ) (1)
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TABLE IT1:1
LOCATION, DEPTH, AND NUMBER OF SOIL SAMPLES AND EM38 MEASUREMENTST1:2

where ρNIR is the reflectance of the near-infrared band317

and ρR is that of the red band, and n is the power, an inte-318

ger from 1 to n. When n = 1, GDVI = NDVI. As Wu319

concluded [54], when n = 2, GDVI is better correlated320

with LAI (leaf area index) in all biomes, and more sensi-321

tive to low vegetal biomes than other vegetation indices.322

However, with the increase of n (e.g., n = 3 and 4),323

GDVI becomes saturated and insensitive to densely veg-324

etated areas (e.g., wheat cropland, forest). High-power325

GDVI is thence only relevant for application in sparsely326

vegetated dryland biomes (such as rangeland and wood-327

land). Our earlier studies show that GDVI is a powerful328

salinity indicator [28], [29], [55]. We applied this index329

(n = 2) together with others in soil salinity modeling and330

mapping in this study.331

Regarding NonVIs, as well as NDII (normalized differ-332

ence infrared index) [56], TCB, PC1, and PC2, LST were333

derived from Landsat ETM+ images.334334

3) Derivation of the multiyear maxima of VI and nonVI335

images: An algorithm using IDL language was designed336

for this purpose. The multiyear maxima of VIs and337

NonVIs of the period of 2009–2012 were derived for each338

pixel in all pilot sites. For NonVIs, multiyear spring max-339

ima, i.e., the maxima during the crop growing period from340

February 01 to April 15 (note: barley is harvested in the341

end of April) were also produced.342

We have to mention that SPOT and RapidEye images343

do not contain any thermal band to derive LST and thus344

cannot be individually used for salinity modeling in our345

study. After resampling the pixels to 30 m, their VIs346

(NDVI, SAVI, and GDVI) and NonVIs (PC1 and PC2)347

were integrated into those of Landsat ETM+ to derive the348

maxima of VIs and NonVIs in each pixel.349

4) Extraction of the maxima of each VI and nonVI corre-350

sponding to the field sampling locations: Both maximal351

images of VIs and NonVIs were converted into TIF for-352

mat, and imported into ArcGIS to extract the maximal353

values corresponding to each sampling plot location.354

5) Division of the vegetated and nonvegetated areas:355

A thresholding technique was applied to the356

multiyear-maximal NDVI to determine the thresh- 357

old for division of the vegetated and nonvegetated areas 358

followed by a mask operation. 359

6) Linking multiyear maxima with plot-scale measurements: 360

The extracted maxima of VIs and NonVIs were cou- 361

pled with their correspondingly averaged plot-level EM38 362

readings or laboratory-measured soil electrical conductiv- 363

ity using SYSTAT, a software for statistical analysis and 364

modeling, for salinity model development using multi- 365

ple linear regression analysis at the confidence level of 366

95%. A positive correlation between salinity and LST, 367

PCs and TCB, and a negative correlation between salin- 368

ity and different VIs, especially GDVI and NDVI, were 369

observed. 370

Two types of salinity models were obtained: a) spe- 371

cific salinity models for vegetated and nonvegetated areas 372

resulted from multiple linear regression modeling that 373

was applied to two groups of samples located in vege- 374

tated and nonvegetated areas and b) integrated salinity 375

models in which all samples in the same pilot site were 376

input for modeling but vegetated and nonvegetated areas 377

were separately treated. 378

7) Evaluation and application of the salinity models: To 379

understand whether the models obtained are operational, 380

the specific and integrated models were, respectively, 381

applied back to the maxima of VIs and NonVIs of the 382

period 2009–2012 to produce local-scale salinity maps. 383

These maps were evaluated against the ground-measured 384

data by linear regression model [29], [34]. If the agree- 385

ment between the measured and predicted salinity is 386

≥80%, the models developed are considered operational 387

at local-scale and the salinity maps are reliable. 388

D. Regional-Scale Mapping 389
389

1) Regional-scale modeling: Models obtained from any 390

pilot site cannot be directly applied to regional-scale 391

salinity mapping due to lack of spatial representative- 392

ness. That is why we proposed here a “multiscale 393

modeling” approach to upscale plot-level measurements 394
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TABLE IIT2:1
SALINITY MODELS FOR THE PILOT SITES AND THE WHOLE MESOPOTAMIAT2:2

Note: EMV and EMH can be converted into EC (dS/m) from the regional transect sampling, i.e., EC = 0.0005EM2
V − 0.0779EMV + 12.655 (R2 =

0.8505); and EC = 0.0002EM2
H + 0.0956EMH + 0.0688 (R2 = 0.7911).

and high-resolution-derived models to regional-scale395

assessment. To do so, the data from different pilot sites,396

which are situated in different locations in Mesopotamia397

(Fig. 2), were integrated together for regional-scale mod-398

eling using the same multiple regression model.399

2) Upscaling test and regional salinity mapping: Since we400

will use MODIS data (VIs and LST) for regional salinity401

mapping, it is still not clear whether the models devel-402

oped from high-resolution data (e.g., Landsat and SPOT)403

are applicable to MODIS data. For this reason, the best404

salinity indicators as revealed in the previous steps, the405

multiyear maxima of GDVI, and the LST maxima of the406

crop growing period from February to April in 2009–407

2012 (of the frame 168-37) were linked, respectively, to408

the multiyear maxima of MODIS GDVI (calculated from409

MOD13Q1), and the maximal LST (MOD11A2) of the410

same period after resolution degradation of the Landsat411

data from 30 to 250 m and upgrading of LST data from412

1000 m to 250 m. This processing was aimed at minimiz-413

ing the information loss or unrealistic improvement [54].414

1000 random points covering all land cover types such415

as barelands (deserts, bare soils, and bare rocks), saline416

soils, urban areas, rangeland, and croplands were gener-417

ated. By removing those falling in roads and swamps, it418

was found that Landsat GDVI (GDVIL) is strongly corre-419

lated with MODIS GDVI (GDVIM) [R2 = 0.839 in (2)],420

and the same was obtained for Landsat LST and MODIS421

LST [R2 = 0.795 in (3)]422

GDVIM = 0.7837GDVIL + 0.1665 or GDVIL

= (GDVIM − 0.1665)/0.7837 (2)
423

LSTM = 0.7054LSTL + 90.496 or LSTL

= (LSTM − 90.496)/0.7054 (3)

Therefore, with relevant adjustment of MODIS GDVI and424

LST in line with (2) and (3), regional models developed425

from high resolution Landsat data are applicable to the426

adjusted MODIS data for regional salinity mapping.427

For such upscaling test, one may also propose the same 428

random processing for multiple Landsat scenes against 429

MODIS data to get the average to evaluate the extendabil- 430

ity. Since the land cover types are the same in the region, 431

the results should be more or less similar to what we have 432

obtained. 433

3) Validation: The regional salinity map derived from the 434

MODIS data was evaluated against the field samples from 435

two regional transects (blue points in Fig. 2) to check its 436

reliability and accuracy. 437

III. RESULTS AND DISCUSSION 438

After the above processing, both local- and regional-scale 439

salinity models obtained are listed in Table II, and local-scale 440

and regional-scale salinity maps are presented in Figs. 3 and 4 441

for discussion. 442

A. Salinity Models and Maps 443

As our test revealed in the Dujaila site [29], specific models 444

for vegetated and nonvegetated areas were not recommended 445

for salinity mapping due to their low reliability (e.g., < 37%). 446

Thus, what are presented in Table II are the integrated mod- 447

els taking all the samples into account, whereas vegetated and 448

nonvegetated areas were separated during the multiple linear 449

regression analysis in each pilot site. We see that among all 450

the VIs, GDVI or its variant such as ln(GDVI) is the most rep- 451

resentative indicator for vegetated areas, and LST (and NDII) 452

for nonvegetated areas in all pilot sites. By the way, for sites 453

Shat-Al-Arab and Abu Khaseeb, independent models were 454

not developed due to limited soil sample number (8 and 5, 455

respectively). 456

It is also noted that the salinity models obtained are different 457

from each other in all pilot sites; none of them can be directly 458

extended to regional-scale mapping due to spatial variability. 459

However, these models can reliably predict soil salinity with 460

an accuracy of about 82.57% in Dujaila and 83.01% in Musaib 461

against the field measured data. Hence, they were considered 462

operational for their respective pilot sites. 463
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Fig. 3. Salinity of the pilot sites: (a) Musaib and (b) Dujaila.

F3:1

Fig. 4. Present-state salinity map of Mesopotamia (expressed in EC classes as required by users).F4:1

For the regional-scale models, the multiple correlation coef-464

ficients R2 are relatively lower than those in pilot sites due to465

homogenization of samples from different pilot sites after inte-466

gration; nonetheless, they have higher applicability in regional-467

scale mapping.468

It is worth mentioning that most of the EM38 measurements 469

in spring (March–April) 2012 did not show any promising cor- 470

relation with VIs except for the Dujaila site perhaps due to 471

the problem of soil moisture after rainfall or irrigation while 472

measurements were undertaken in the field. For this reason, a 473
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Fig. 5. Agreement of the remote sensing-predicted salinity (ECRS) versus
field-measured salinity (ECLab).

F5:1
F5:2

supplemental sampling campaign was carried out in the dry474

season after crops harvesting (June–July 2012). These EM38475

readings show a good correlation with the multiyear maximal476

VIs and NonVIs in all pilot sites and were used for develop-477

ing salinity models by multiple linear regression analysis. NDII478

and LST are of both vegetation and nonvegetation characters,479

and were included in the integrated salinity modeling for both480

vegetated and nonvegetated areas.481

The local salinity maps of the present-state taking the sites482

Musaib and Dujaila as an example [Fig. 3(a) and (b)] are in a483

good agreement with ground data (R2 = 0.830 in Musaib, and484

0.826 in Dujaila). We consider that these maps are reliable.485

As for the regional salinity map (Fig. 4), the accuracy evalu-486

ation revealed that 23 of the 121 regional samples taken along487

two transects and the surface EC of 27 soil profiles in pilot sites488

that were not used for modeling were abnormal due to inter-489

nal problem of samples, most probably, derived from laboratory490

analysis (because the correlation among Cl−, Na+, and EC is491

very low, e.g., R2 = 0.047); however, the remaining 98 samples492

show a good accordance with remote sensing predicted salinity.493

The observation accuracy is 80.9%, and the statistical accuracy494

of the regional salinity map obtained by linear regression analy-495

sis at the confidence level of 95% is 80.02% (Fig. 5). Therefore,496

the regional map presented in Fig. 4 was considered reliable.497

The agreement between the measured and remote sensing498

predicted salinity as shown in Fig. 5 is higher in the high salin-499

ity part than low salinity one. This is probably due to the fact500

that coarse-resolution LST has lower sensitivity to low salin-501

ity. An overestimation of about 2–10 dS/m may occur in some502

places in the weakly salinized areas. However, the sensitivity503

to low salinity can be improved if high resolution LST data are504

available.505

One may have concern about the reasonability to use soil506

surface temperature, LST, as salinity indicator which was507

finally retained in the models for the nonvegetated areas. As508

Wu et al. [29] argued, it is commonly known that thermal509

conductivity of materials is temperature (T )-dependent, and510

the former is associated with electrical conductivity (EC).511

However, the interrelationship between the thermal and 512

electrical conductivities is complex and may change signifi- 513

cantly depending on materials, e.g., soil types. Some authors 514

[5]–[7] have explored the possibility to use the thermal band 515

to identify the salt-affected soils but they have not discussed 516

the mechanism behind. Abu-Hamdeh and Reeder [57] ascer- 517

tained the relationship between thermal conductivity and salin- 518

ity, and found that thermal conductivity decreases with the 519

increase in the amount of added salts at given moisture content. 520

Sepaskhah and Boersma [58] found that the apparent thermal 521

conductivity is independent of water content at very low water 522

contents. Consequently, in driest condition (at lowest moisture 523

or water content), thermal conductivity is associated with the 524

salt amount—salinity. We believe, therefore, that LST-based 525

models are relevant for mapping salinity in nonvegetated areas. 526

Concern may also be addressed on the applicability of the 527

models. It is clear that the models obtained from pilot sites 528

are not recommended for direct application to similar areas for 529

salinity mapping without relevant adaptation. Of higher repre- 530

sentativeness, the regional-scale models can be disseminated to 531

the similar environment for this purpose. 532

B. Assessment of the Integrated Processing Approach 533

Different from the other authors (e.g., [10], [17], and [18]), 534

we used multiyear imagery dataset to derive the multiyear 535

maxima of VIs and NonVIs for multiscale salinity model- 536

ing followed with an upscaling analysis. The above-mentioned 537

problematic issues that are commonly faced in salinity mapping 538

by remote sensing were successfully minimized, and salinity 539

maps with high reliability were produced. 540

Despite a number of authors [10], [17] have conducted salin- 541

ity mapping and best band combination studies, but they used 542

single or multiple single images and did not differently treat the 543

vegetated and nonvegetated areas. Especially, authors [17] did 544

not take into account the nonvegetated area. Their approaches 545

cannot avoid the influences from crop rotation/fallow, and 546

moisture, which are often problematic in large area (or scale) 547

mapping. Hence, our approach has evident advantages over and 548

its uniqueness different from others. 549

However, some imperfection was also noted. As a matter 550

of fact, salinity has strong spatial variability; even in a small 551

1× 1 m2 plot, salinity may change after each 20–30 cm inter- 552

val, not to mention in the 250 m pixels of MODIS data which 553

were used for regional-scale mapping in this study. That is to 554

say, it is unlikely to produce a regional salinity map with an 555

accuracy of 2–3 dS/m based on the proposed methodology. 556

What can be done is to approach the reality as much as possible 557

by increasing the sampling number and density with a relevant 558

spatial distribution if both time and fund are available. 559

C. Problems Confronted 560

Though great efforts have been made, problem related to salt- 561

tolerant vegetation has not been completely resolved yet. In the 562

pilot sites, field sampling was well conducted and halophytes 563

were noted. But in other areas where sampling was not covered, 564

salinity may have been underestimated as salt-tolerant crops 565
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such as barley or other halophyte vegetation were not identified566

out for specific analysis. As was revealed by the experiment567

[3], barley has a rather strong resistance to salinity, and can568

still grow well with good production (1.68–1.84 tons/ha) in the569

field where soil salinity reaches 8–16 dS/m if fertilizer (e.g.,570

nitrogen) is given.571

The second issue is related to swamps and their surroundings,572

e.g., in the governorates of Thi-Qar and Basrah of Southern Iraq573

(Fig. 1). Moisture is almost a permanent problem for salinity574

mapping in these areas. Swamps can be excluded out for any575

salinity analysis but their surroundings are mostly moist veg-576

etated area (locally cropland but mostly halophytes). In this577

mapping work, we tried to find the transitional part between578

moist (>345 dS/m, the false salinity as LST model loses its579

sensitivity with increase of moisture) and nonmoist zones580

(<345 dS/m), and then treated the moist part as normal water581

body or swamp.582

The third problematic issue is related to bareland. Due to583

security reasons, a number of sampling plots designed in the584

nonvegetated areas were not accessible. There were not enough585

samples from bare soil for model development and salinity map586

validation. Thus both salinity models and maps of the non-587

vegetated areas should be improved when security condition588

improves and more field data become available.589

IV. CONCLUSION590

In spite of challenges, this study demonstrates the possibility591

to map and quantify the spatial distribution of the salt-affected592

land at regional-level based on the development of local- and593

regional-scale salinity models in Mesopotamia, Iraq. The val-594

idated maps we produced can be tentatively provided as a595

reference to decision-makers for facilitating their future land596

use planning in Mesopotamia. The proposed method can mini-597

mize the problems related to crop rotation/fallow practices, and598

soil moisture, and hence is different from other approaches. The599

models can be applied for multitemporal salinity mapping to600

track the temporal and spatial changes in the Mesopotamian601

plain and even in the whole country.602

However, one weak point is noted, i.e., the approach can-603

not completely remove the influence from salt-tolerant crops604

such as barley, alfalfa, and cotton in the areas where no field605

survey was conducted. In addition, coarse resolution LST data606

(1000 m) is really not ideal for such quantification as spatial607

variability of salinity has been greatly homogenized. Merely,608

these issues can be sorted out or improved when new thermal609

data with higher resolution (e.g., 60–250 m) are available, and610

field accessibility is improved.611

In future work, as mentioned in the introduction, ET, as one612

of the indicators, can be taken into account together with others.613

In this way, remote sensing-based salinity models will be more614

comprehensive and relevant for both local- and regional-scale615

assessments.616
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