
REVIEW ARTICLE 
 

CURRENT SCIENCE, VOL. 105, NO. 3, 10 AUGUST 2013 309 

*For correspondence. (e-mail: paldilip2001@yahoo.com) 

Zeolitic soils of the Deccan basalt areas in  
India: their pedology and edaphology 
 
D. K. Pal*, S. P. Wani and K. L. Sahrawat 
Resilient Dryland Systems, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502 324, India 

 

Zeolites play an important role in modifying the chemis-
try, physics and biology of soils. Here we review the 
status of the pedology and edaphology of the zeolitic 
soils of the Deccan basalt areas of India. Research has 
been mainly conducted with clinoptilolite (a potas-
sium-rich zeolite). However, some basic research has 
been conducted on zeolitic (heulandites, calcium-rich 
zeolites) soils of India developed from the Deccan  
basalts. The results of such research have added to 
basic understanding of the pedology of tropical soils; 
and have enhanced our understanding of edaphology 
related to the use of zeolitic sodic and non-sodic 
shrink–swell soils (Vertisols) for cultivating crops with-
out causing any degradation in soil properties, but 
with an improvement in organic carbon status. Res-
earch is needed on the specific role of heulandites in 
the presence of K

+
 and NH

+
4 fixing clay minerals in soil 

environments. Identification of soil zeolites by deter-
mining cation exchange capacity and extractable bases 
is possible when sophisticated instrumental facilities 
are not available. The need for future research on the 
pedology and chemistry of zeolitic soils for their  
sustainable use for agricultural production and envi-
ronmental management is emphasized. 
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ZEOLITES have been known for over a century for their 

prominent role in cation exchange in the soils
1,2

. The 

presence of zeolites in soils was established with the  

development of modern X-ray diffraction (XRD) methods
3
. 

During the last three decades, reports on zeolite minerals 

have been appearing with increasing frequency, as com-

mon constituents of Cenozoic volcanogenic sedimentary 

rocks and altered pyroclastic rocks
4
. 

 Zeolites are hydrated aluminosilicates of alkali and al-

kaline earth cations that possess a three-dimensional 

structure (i.e. tektosilicates). The negative charge created 

where Al
3+

 replaces Si
4+

 in the structural tetrahedra is 

counter-balanced by cations (e.g. Na
+
, K

+
, Ca

2+
 and 

Mg
2+

). These charge sites are located in large structural 

channels and cavities throughout the structure and are  

referred to as cationic exchange sites. Small ions and 

molecules can pass through these channels, but large ones 

are excluded. This ion selectivity, based on size, is known 

as ion sieving. Zeolites have high cation exchange capa-

city (CEC) (100–300 meq/100 g), depending upon the 

amount of A1
3+

 that replaces Si
4+

 in the structure. 

 Several reviews have been published on the occurrence 

and properties of zeolites in soils
5–9

. Zeolites have also 

been reported as secondary minerals in the Deccan flood 

basalts of the Western Ghats in Maharashtra, India
10,11

. 

Among the commonly occurring species of zeolites, heu-

landite is widely distributed both in time and space
11

. 

Zeolites have the ability to hydrate and dehydrate  

reversibly and to exchange some of their constituent 

cations and thus, can influence the pedochemical envi-

ronment during the formation of soils. 

 Over the past few decades, natural zeolites have been 

examined for a variety of agricultural and environmental 

applications, especially for their cation exchange, adsorp-

tion, and molecular sieving characteristics because of 

their abundance in near-surface, sedimentary deposits. 

Natural zeolites are being used as soil conditioners, slow-

release fertilizers, carriers of insecticides and herbicides, 

remediation agents in contaminated soils, and dietary 

supplements in animal nutrition
3,12–14

. These applications 

can result in direct or indirect incorporation of natural 

zeolites into soils. There are, however, very few studies 

on the role of zeolites in soil environments in expanding 

the basic knowledge in pedology and edaphology, except 

for some pioneering work reported from India. These per-

tain to (1) persistence of high-altitude Alfisols, Mollisols 

and Vertisols of the humid tropical Deccan basalt areas of 

the central and western peninsular India
15–17

; (2) the role 

of zeolites in redefining the sodic soils
18

 and (3) mitiga-

tion of Holocene climate change by the zeolitic Sodic 

Haplusterts
18–20

. However, no attempt has been made to 

establish a link between zeolite and adsorption and  

desorption behaviour of nutrients in soils. Because zeo-

lites can be effective slow-release fertilizers and soil con-

ditioners
3
, it would be useful to understand better the role 

of soil zeolites in nutrient availability and management. 

Hence, a review is in order to place recent research re-

sults which will provide a better understanding of soil 

characteristics influenced by zeolites. This review is 

aimed towards better management of zeolitic soils deve-

loped in the Deccan basalt areas in the central and west-

ern peninsular India and elsewhere for agricultural 

development. 
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Factors and processes in the formation of  
Mollisols, Alfisols and Vertisols in the humid  
tropics 

Major part of the land area in India is between the Tropic 

of Cancer and Tropic of Capricorn, also known as the 

Torrid zone, and the soils therein may be defined as 

‘tropical soils’. Many, however, consider of tropical soils 

as the soils of the hot and humid tropics only, exempli-

fied by deep red and highly weathered soils
21

. But, in the 

humid tropical (HT) climatic environments of India,  

occurrence of Mollisols, Alfisols and Vertisols is com-

mon. Therefore, factors and processes of formation and 

persistence of such soils in adverse HT climate need an 

explanation in the light of the existing conceptual models 

for tropical soil formation. 

Red (Ferruginous Alfisols) and black soil (Vertisols)  
complex on zeolitic Deccan basalt of HT climate 

Vertisols in micro-depressions are spatially associated 

with red ferruginous soils (Alfisols) and are seen as dis-

tinct entities under similar topographical conditions on 

the zeolitic Deccan basalt plateau in the HT climate
15

.
 

The red ferruginous soils can be comprehended as having 

formed in the prevailing HT, but it is difficult to recon-

cile this hypothesis with the associated occurrence of 

Vertisols because smectite, which is mainly responsible 

for the formation of shrink–swell soils, is ephemeral in 

such environment. The Alfisols are mildly acidic and 

their clays are dominated by the 0.7 nm clay mineral (KI–

HIS), which is an interstratified mineral of kaolin (KI) 

and hydroxy interlayered smectite (HIS). Additional min-

erals are HIS (in moderate amount) and mica. These soils 

are non-gibbsitic
15

 in spite of a prolonged weathering 

since the early Tertiary
15,16

. The formation of HIS is  

accompanied at the expense of smectite and is an ephem-

eral stage in an acid weathering environment in HT cli-

mate. Transformation of HIS to kaolinite is inhibited 

because of continuous supply of bases from zeolites (heu-

landites), counteracting the impoverishment of bases by 

leaching in HT climate (Table 1). The enrichment of 

bases provides a chemical environment that prevents the 

formation of kaolinitic and or/ oxidic clay minerals repre-

senting the advanced stages of weathering in soils, and 

fulfils the requirement of base saturation of soils (>
 
35%) 

dominated by KI–HIS even in the present-day HT cli-

mate. 

 The genesis of both red ferruginous soils (Typic 

Hapludalfs
16

 and Vertisols Typic Haplusterts
22

) in ad-

verse HT climate has been explained through the land-

scape-reduction process
15,23

, as in similar soils elsewhere
24

. 

In the initial stage of soil formation, smectite-rich pro-

ducts of weathering from the hills were deposited in  

micro-depressions, as evident from the general occurrence 

of lithic/paralithic contacts of such Vertisols
20

. Over time, 

these sites were gradually flattened and internal drainage 

dominated over surface run-offs. After peneplanation, the 

Alfisols on relatively stable surfaces continued to 

weather, forming KI–HIS. In contrast, the zeolite reserve 

stabilized the characteristic smectite mineral in the form 

of KI–HIS and HIS minerals and thus made possible the 

persistence of slightly acidic Vertisols in microdepres-

sions (Table 1) even in a HT climate
15

 (Figure 1). Sig-

nificance of zeolites in the formation and persistence of 

slightly acidic to acidic Vertisols (Typic Haplusterts) has 

been realized in the HT climatic environments not only in 

central and western India
22

, but elsewhere also
25

. 

Formation of Mollisols on zeolitic Deccan basalt of  
HT climate 

In contrast to the general occurrence of non-acidic,  

calcareous and less weathered Mollisols in temperate 

semi-arid and humid climate, acidic, non-calcareous and 

fairly weathered Mollisols (Vertic Haplustoll and Vertic 

Argiustoll) on Deccan basalt are observed in hills of  

central (Satpura Range, Madhya Pradesh) and western 

(Western Ghats, Maharashtra) India under forest in the 

present HT climatic conditions
17

. The dominant clay min-

eral identified at 0.7 nm is not discreet kaolinite, but is 

KI–HIS associated with sub-dominant amount of HIS
17

. 

Such soil development has been due to the presence of 

zeolites (heulandites) in Deccan basalt, which as soil 

modifiers, provide bases to prevent complete transforma-

tion of smectite to kaolinite and maintain high base satu-

ration level (>
 
50%) of these acidic Mollisols (Table 1). 

Favourable base status and greater water retention help in 

accumulation of organic carbon required for soils to qual-

ify as Mollisols even under HT climate
17

. 

Tropical soil formation 

Mollisols, Alfisols and Vertisols are the members of  

Mollisol–Alfisol–Vertisol association
17,22

 on the zeolitic 

Deccan basalt areas. The associated Alfisols were formed 

in HT climate and are persisting since the early Terti-

ary
16

. The transformation of smectite (the first weathering 

product of the Deccan basalt)
26

 to kaolin (KI–HIS) during 

HT weathering began at the end of the Cretaceous and 

continued during the Tertiary
27

, and thus Alfisols date 

back to the Tertiary and Cretaceous
28

. With a combina-

tion of high temperature and adequate moisture, the HT 

climate of the Western Ghats and Satpura Range provided 

a weathering environment that should have nullified the 

effect of parent rock composition in millions of years, re-

sulting in kaolinitic and/or oxidic mineral assemblages 

consistent with either residua
29

 or haplosoil
30

 models of 

tropical soil formation like in Ultisols and Oxisols
31

.
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Table 1. Selected properties of Mollisols, Alfisols and Vertisols of HT climate (adapted from Bhattacharrya et al.17,22) 

 Extractable bases 

     Ca Mg Na K 

   Organic     Cation exchange Base Available K 

Depth (cm) Texture pH (1 : 2) carbon (%) cmol(+) kg–1 capacity saturation (%) (kg ha–1) 
 

Vertic Argiudolls 

 0–15 Clay 5.7 2.0 9.2 2.5 0.4 0.5 18.6 68 429 

 15–40 Clay 5.7 1.2 10.3 2.7 0.4 0.4 18.5 75 343 

 40–70 Clay 5.7 0.7 10.3 2.8 0.4 0.2 18.7 73 172 

 74–108 Clay 6.1 0.4 12.0 3.0 0.4 0.2 18.6 85 172 

 108–146 Clay 6.1 0.3 12.0 4.6 0.5 0.2 18.7 92 72 

 

Typic Haplustalfs 

 0–9 Clay 5.7 1.3 6.7 3.0 0.6 0.4 8.4 127 343 

 9–31 Clay 5.3 1.2 7.1 1.5 0.5 0.3 9.8 96 257 

 31–60 Clay 5.3 1.0 6.8 1.6 0.4 0.3 9.8 93 257 

 60–107 Clay 5.6 0.91 9.1 3.3 0.3 0.3 8.6 151 260 

 

Typic Haplusterts 

 0–15 Clay 6.6 0.9 17.3 6.1 0.5 0.4 30.7 79 343 

 15–35 Clay 6.4 0.7 17.4 6.3 0.5 0.4 28.8 85 343 

 35–82 Clay 6.8 0.6 17.8 11.1 0.7 0.5 28.9 104 429 

 82–125 Clay 6.7 0.5 18.4 11.9 0.8 0.4 30.3 104 343 

 

 

Instead, the soils of the zeolitic Deccan basalt have KI–

HIS and represent Mollisols, Alfisols and Vertisols.  

 The models of Chesworth
29,30

 were based on the hypothe-

sis that (a) the effect of parent rock will be overshadowed 

and nullified with time; (b) its effect will be evident only 

in younger or relatively immature soils and (c) time is  

the only independent variable of soil formation or any 

other process occurring spontaneously in nature. How-

ever, the formation of Mollisols, Alfisols and Vertisols 

and their pedogenic threshold at this time supports that 

steady state may exist in soils developed over a long  

period of time not spanning a few hundreds to thousands 

of years
32–34

, but also millions of years
15,16

. Therefore, the 

formation and persistence of Mollisols, Alfisols and Ver-

tisols provides an example that in an open system such as 

soil, the existence of a steady state appears to be a more 

useful concept than equilibrium in a rigorous thermo-

dynamic sense
16,34

. Due to the presence of zeolites, the 

adverse effect of HT climate was overcome and thus the 

zeolitic Deccan basalt could produce Mollisols, Alfisols 

and Vertisols. The hypothesis of Chesworth
29,30

 on soil 

formation in HT climate cannot explain the persistence of 

these soils, because the stability of zeolites over time was 

not considered in his models. However, the models on the 

formation and persistence of Mollisols, Alfisols and Ver-

tisols from zeolitic parent rock expand the basic knowl-

edge on the formation of soils in HT climate. The 

knowledge gained on the role of zeolites in the persis-

tence of soils not only provides a deductive check on the 

inductive reasoning on the formation of soil in the HT 

climate, but also throws light on the role of these minerals 

in preventing loss of soil productivity even in an intense 

leaching environment. This indeed may be the reason 

why crops do not show response to liming in acid soils of 

the tropical Western Ghats
35

. 

Mitigation of adverse Holocene climate change in  
zeolitic Vertisols 

Amidst neotectonics and the global warming, rising tempe-

rature and shrinking annual rainfall with erratic distribu-

tion pose threats to soil quality, not only for the Indian 

subcontinent but also to soils under similar climatic con-

ditions elsewhere
36

. In India, a change in climate has 

been recorded from humid to semi-arid in rainfed areas 

only during the Holocene period
37,38

. It is observed that 

the major soil types of India under semi-arid tropical  

environments (SAT) are becoming calcareous with the 

concomitant increase of exchangeable sodium percentage 

(ESP) in the subsoils. This indicates a climatically con-

trolled natural degradation
39

. This type of degradation  

ultimately modifies the physical, biological and chemical 

properties of the soils. Such modifications resulting from 

regressive pedogenesis
40

 restrict the entry of rain water 

and reduce the storage and release of soil water
41

. The 

lack of soil water impairs the possibility of growing both 

rainy and winter crops in a year, especially in vast areas 

under Vertisols of the SAT with mean annual rainfall 

(MAR) <
 
1000 mm (ref. 19). Not only the Vertisols with 

ESP >
 
15 (Sodic Haplusterts), but also the soils with ESP 

>
 
5 and <

 
15 (Aridic Haplusterts) cease to be sustainable 

for growing agricultural crops under the SAT environ-

ments
19,36

. Many productive Vertisols (Typic Haplusterts) 

under rainfed conditions have been rendered unproductive
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Table 2. Adverse effect of irrigation on zeolitic Typic Haplusterts during sugarcane cultivation (adapted from Pal et al.59) 

   CaCO3   Base Available K 

Depth (cm) pH (1 : 2) ECe (dSm–1) (< 2 mm)% ESP sHCa (mmh–1) saturation (%) (kg ha–1) 
 

0–20 9.0 0.77 16.0 4.2 18 107 686 

20–42 9.2 1.01 17.0 10.4 17 119 343 

42–68 9.3 0.99 17.0 18.8 5 94 343 

68–102 9.0 1.25 15.0 13.7 10 105 343 

102–131 9.0 1.09 25.3 12.1 13 103 343 

131–150 9.0 1.02 16.1 8.0 12 109 421 

ECe, Electrical conductivity of the saturation extract; ESP, Exchangeable sodium percentage; sHC, Saturated hydraulic conductiv-

ity. a13 mm h–1 is the weighted mean sHC in 0–100 cm depth of soil. 

 

 

for agriculture under irrigated conditions in the longer 

term. However, some zeolitic Vertisols (Typic Haplus-

terts) of the semi-arid moist parts of western India are 

under irrigated sugarcane production for the last 20 years. 

These soils lack salt efflorescence on the surface and are 

not waterlogged at present, suggesting that they are not 

degraded due to their better drainage. However, these 

soils are now Sodic Haplusterts in view of their pH, ECe 

and ESP values, but their saturated hydraulic conductivity 

(sHC) is >
 
10 mm h

–1
 (weighted mean in the 0–100 cm; 

ref. 19; Table 2). Continuous supply of Ca
2+

 ions from 

Ca-zeolites in these soils helps maintain a better drainage 

system. Because of such natural endowment with a soil 

modifier, no ill-effects of high ESP (>
 
15) in crop produc-

tion in the Vertisols of Gezira in Sudan
42,43

 and in Tanza-

nia
44

 were observed. In addition, some Vertisols of the 

arid dry climate of western India are used to grow crops 

such as cotton under rainfed conditions comparable to 

those of the Typic Haplusterts of the semi-arid moist cli-

mate of central India
45

. The sHC (weighted mean, 0–

100 cm) of these soils is >
 
15 mm h

–1
, despite being Sodic 

Calciusterts
38

 (Table 2). In view of the present good agri-

cultural practices, these soils show potentiality to miti-

gate the adverse effect of climate. However, the 

sustainability of crop productivity amidst the ill-effects of 

the pedogenic threshold of dry climates
38,46

 depends on 

the solubility and supply of Ca
2+ 

ions from zeolites. Such 

situations are unique in nature; but predicting how long 

will it take for these soils to run out of zeolites is diffi-

cult, unless a new research initiative in this direction is 

taken up. 

Zeolites in redefining sodic soils 

Researchers
47,48

 envisaged that the threshold of ESP > 15 

may need reconsideration because soil degradation can 

take place even at low ESP in dilute solutions. Northcote 

and Skene
49

 reported serious structural degradation of 

some Australian soils at ESP as low as 6. Subsequently, 

many researchers in Australia
50,51

, Italy
52

 and India
53

  

advocated that an ESP much lower than 15 should be 

used to denote the value above which a noticeable reduc-

tion in crop yields is observed as a result of deterioration 

of physical properties of soils. However, sodicity toler-

ance ratings of crops in loamy textured soils of the Indo-

Gangetic Plains (IGP) indicate that 50% reduction in rela-

tive rice yields was observed when ESP was above 50; 

and for wheat it was around 40 (ref. 54). The reason for 

these apparently contrasting findings lay in the different 

values of solution concentration of the soils. Therefore, 

Sumner
50

 opined that the establishment of a critical ESP 

threshold may be arbitrary because properties exhibited 

by the so-called classic sodic soils are simply the upper 

end of a continuum of behaviour that extends across the 

full range of sodium saturations. Sumner
50

 made a strong 

case to develop criteria based on soil dispersibility  

to characterize and predict the behaviour of soils with  

respect to infiltration, hydraulic conductivity and hard 

setting, which indicates the mechanisms of swelling and 

dispersion
47,48

. Dispersibility of soils is a result of the  

interactive effects of soil properties, such as clay content, 

nature of clay, cation suite, nature of soil solution compo-

sition and organic matter
51

. However, Gupta and Abrol
55

 

highlighted the importance and contribution of swelling 

and dispersion to hydraulic properties of soils in terms of 

clay mineralogy at the species level, the ESP of the soil, 

the electrolyte concentration and nature of electrolytes in 

the soil solution. Although soils containing all other clays 

swell with changes in moisture content, changes are par-

ticularly extreme in smectite-rich soils
56

. The importance 

of smectite in impairing the hydraulic properties of soils 

through swelling and dispersion was also highlighted when 

Vertisols (ESP < 15, 491 g kg
–1

 smectite in soil control sec-

tion, SCS) and soils of the IGP (ESP 50, 46 g kg
–1

 smec-

tite in SCS) were compared for their agricultural 

productivity
57

. Even low sodicity (ESP  5 and <
 
15) is 

enough to impair the hydraulic properties of the highly 

smectitic Vertisols. However, naturally occurring zeolites 

in some soils of sub-humid, semi-arid and arid climates 

showing high ESP (>
 
15) avoided a rise in pH, but  

favoured an increase in exchangeable Ca/Mg, and hydraulic 

properties
18

 (Tables 2 and 3). Therefore, fixing a lower 

limit of either ESP 5–15 (ref. 18) or ESP > 15 (ref. 31) 

for sodic shrink–swell soils may have no practical rele-

vance to their use and management. In contrast, sodic
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Table 3. Selected soil properties of zeolitic Chromic/Sodic Haplusterts cultivated to rice crops (adapted from Pal et al.59) 

   CaCO3 Organic   Base Available K 

Depth (cm) pH (1 : 2) ECe (dSm–1) (< 2 mm)% carbon (%) ESP sHCa (mm h–1) saturation (%) (kg ha–1) 
 

Sakka soils – Chromic Haplusterts 

 0–15 5.2 0.26 1.6 0.73 0.9 18 93 429 

 15–34 5.3 0.16 1.7 0.54 0.9 36 109 343 

 34–59 5.3 0.26 1.9 0.40 0.9 35 106 343 

 59–93 5.4 0.10 2.0 0.38 1.1 10 93 343 

 93–141 7.3 0.12 4.1 0.39 1.2 15 115 429 

 141–155 7.9 0.21 10.0 0.22 0.8 16 107 343 

 

Teligi soils – Sodic Haplusterts 

 0–10 7.9 0.4 10.5 1.55 1.5 62 103 515 

 10–25 8.0 0.3 10.7 0.81 1.7 27 113 343 

 25–44 8.0 0.4 12.2 0.76 1.8 29 109 343 

 44–69 7.8 0.4 10.3 0.73 4.0 21 117 257 

 69–97 7.6 0.3 5.9 0.69 3.4 11 108 515 

 97–123 8.6 0.4 15.1 0.50 16.8 3 110 257 

a23 mm h–1 is the weighted mean sHC in 0–100 cm depth of Sakka soils and 24 mm h–1 is the weighted mean sHC in 0–100 cm depth of 

Teligi soils. 

 

 

Vertisols with zeolites as modifiers indicate that despite 

having high ESP, these soils support rainfed crops
18,45

. 

Therefore, fixing a lower limit for sodic subgroup of Ver-

tisols either at ESP 5–15 or at ESP >
 
15 may not reflect 

the impairment of drainage of soils. Characterizing such 

soils as sodic only on the basis of ESP may also mislead 

the end-users of these soils. In view of the pedogenetic 

processes that ultimately impair the drainage of soils, 

evaluation of Vertisols for deep-rooted crops on the basis 

of sHC alone
41

 showed that an optimum yield of cotton 

on Vertisols of the semi-arid part of central India can be 

obtained when the soils are non-sodic (ESP < 5) and  

have sHC  20 mm h
–1

. These authors also reported 50%  

reduction in yield in the sodic (ESP > 5) soils with 

sHC < 10 mm h
–1

. The study shows that sHC as a single 

parameter can indicate dispersibility, the most influenc-

ing factor of soil sodicity
50

. Therefore, characterization of 

soil sodicity on the basis of sHC alone appears to be an 

incontrovertible parameter compared to ESP or SAR; and 

thus Pal et al.
18

 advocated a value of sHC < 10 mm h
–1

 in 

distilled water (weighted mean in 0–100 cm depth of soil) 

for defining a sodic soil. 

Zeolites sustain rice productivity in Vertisols 

Vertisol use is not confined to a single production sys-

tem. In India, major combinations of rainfed crops under 

semi-arid climatic environments are sorghum/pigeon pea, 

cotton/pigeon pea and cotton/sorghum/pigeon pea. Mixed 

cropping usually combines crops with different maturity 

lengths, drought-sensitive with drought-tolerant crops, 

cereals with legumes, and cash crops with food crops
58

. 

In semi-arid western India (<
 
1000 mm MAR), sugarcane 

and rice are grown under irrigated conditions, whereas 

rice is grown under rainfed conditions in areas of sub-

humid moist climatic conditions of central India (with 

MAR >
 
1400 mm)

19,59
. The sHC decreases rapidly with 

depth in Vertisols, but the decrease is sharper in non-

zeolitic Sodic Haplusterts; and the weighted mean of sHC 

in 0–100 cm depth is <
 
10 mm h

–1
. In non-zeolitic Typic 

Haplusterts, the sHC is >
 
10 mm h

–1
. But in zeolitic Typic 

Haplusterts (Kheri soils at Jabalpur
60

, and Sakka soils at 

Dindori, Madhya Pradesh
59

) sHC is >
 
20 mm h

–1
, and 

these soils are cultivated to rice as rainfed crop in areas 

with >
 
1400 mm MAR. Interestingly, zeolitic Sodic 

Haplusterts (Teligi soils in Bellary, Karnataka
59

) in areas 

with <
 
700 mm MAR also have sHC >

 
20 mm h

–1
; and 

rice is cultivated in these soils under canal irrigation. The 

enhanced sHC (>
 
20 mm h

–1
) in zeolitic Vertisols due to 

the presence of zeolite appears to be just adequate for the 

period of submergence required for the rice crop, and 

post-rainy season crops are successfully grown with good 

yields. Morphological examination of such soils showed 

no sign of gleyed horizons and soil moisture regime does 

not reach aquic conditions. Such situations are unique in 

nature and pose a great challenge to the soil mappers to 

classify them according to the US Soil Taxonomy, as 

they have good productive potential despite being sodic 

in nature. Sustainability of rice cropping system in such 

soils will, however, depend on rate of dissolution of  

Ca-zeolite on a timescale, and a new research initiative 

on this topic is warranted. 

Zeolites in adsorption and desorption of major  
soil nutrients  

Several potential applications of natural zeolites have 

been examined as soil conditioners, slow-release fertili-

zers and many other uses
3,13

. Among the zeolites, K-rich 

clinoptilolite has been the focus of most researchers 
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probably because of its widespread abundance in near-

surface deposits
3
. But the report of its role as a modifier 

in natural soil environments has been rare, unlike that of 

heulandite (a Ca-rich zeolite)
15–17,18–20

. Both clinoptilolite 

and heulandite are effective natural cation exchangers 

and have CECs that commonly range from 200 to 

300 cmolckg
–1

. The experimental results obtained with 

clinoptilolite as soil conditioner, efficient substrate for 

fertilizer use, to prevent nutrient leaching and slow-

release fertilizers by several researchers (see ref. 3) pro-

vide hints about the possible role of heulandite in the  

adsorption and desorption of major nutrients in Vertisols 

containing smectite, vermiculite and micas. 

Organic carbon 

Zeolites improve hydraulic properties of soils by enrich-

ing soil exchange complex with Ca
2+

 ions in arid to HT 

climate
18,38

. Long-term experiment on Vertisols at 

ICRISAT, Patancheru with improved management sys-

tem
61

 indicates that the improvement of physical proper-

ties causes an enhanced soil water status for better 

vegetation and higher organic carbon sequestration
19

. The 

benefit of better physical properties caused by Ca
2+

 ions 

through dissolution of zeolites is realized with the forma-

tion of organic matter-rich, dark-coloured, soft, clayey, 

smectitic acidic Mollisols and Alfisols with 1–2% or-

ganic carbon (in the 0–30 cm depth) even in HT cli-

mate
17,22

 (Table 1). In order to follow the decomposition 

resistance of soil organic matter under high-temperature, 

experiments with Ca-zeolite and organic manure showed 

a slight increase in C/N ratio in soils of the Philippines, 

Paraguay and Japan. In addition, carbon accumulation in 

humic fractions as well as the degree of humification and 

aromacity of humic acids increased
62

. In semi-arid dry 

region of India, zeolitic (heulandite) Vertisols (Teligi 

soils, Bellary, Karnataka; Jhalipura soils, Kota, Rajast-

han; Jajapur, Mehboobnagar, Andhra Pradesh)
59

, under 

wetland rice–rice/rice–wheat system showed wider C/N 

ratio (Table 4), indicating enough potential to sequester 

atmospheric carbon
63

. This suggests that the presence of 

zeolites could be beneficial for soil organic matter con-

servation under global warming
62

. 

Nitrogen 

One of the forms of mineral nitrogen (N) is fixed NH4–N, 

and several reports indicate that many tropical Vertisols 

are endowed with large amounts of fixed ammonium
64

. 

Vermiculites, illites and smectites are often considered 

able to fix NH4–N (ref. 65). Smectites have no selectivity 

for non-hydrated monovalent cations such as K
+
 because 

of their low-level charge
66

. NH
+
4 ion, also a non-hydrated 

monovalent cation with almost the same ionic radius as 

K, is not expected to be fixed in the interlayers of smec-

tites. It is equally difficult to understand the NH4 ion-

fixing capacity of illites, because they do not expand on 

being saturated with divalent cations
67

. Earlier reports  

indicate that Vertisols developed in the basaltic alluvium 

of the Deccan basalt of Peninsular India, do not contain 

vermiculite
68,69

. However, a recent report indicates that 

vermiculite content in such soils ranges from 2.0% to 

3.5% in the silt, 3.5% to 10% in the coarse-clay and 5.0% 

to 9.5% in the fine-clay fractions
70

. Zeolites are known to 

have pronounced selectivity for NH
+
4–N over Ca

2+
, Mg

2+
 

and Na
+4

; and it is difficult to remove NH
+
4 from zeolite 

exchange sites by these less selective cations. Therefore, 

NH
+
4 is slowly released, however its rate of release from 

vermiculite and zeolite in a zeolitic Vertisols is not yet 

known. Thus, it would not be prudent to attribute the  

observed NH4–N fixation in Vertisols
64

 entirely to the 

presence of vermiculite only
20

. A new research initiative 

in this direction is thus awaited. Zeolites have the ability 

to protect NH
+
4 on zeolite exchange sites from microbial 

conversion of NH
+
4 to NO

–
3 because nitrifying bacteria are 

too large to fit into the channels and cages within zeolite 

structure where NH
+
4 resides on exchange sites

3
. This way 

the protection of NH
+
4 suggests that emission of N2O from 

organic (farmyard manure) and inorganic N fertilizers 

would amount to a small fraction of the total world 

greenhouse gas emissions from zeolitic soils, because out 

of 500,000 km
2
 Deccan basalt area in the Indian subcon-

tinent
71

, zeolitic soil is expected to cover a considerable 

part
59

. However, a map showing areas under zeolitic  

soils is awaited. Such basic understanding is essential  

to include fixed NH4–N for assessing the potentiality  

of N available in zeolitic soils, especially as N2O emis-

sion from Indian agricultural soils is a small fraction 

(about 1%) of the global warming caused by CO2 emis-

sions
72,73

. 

Phosphorus 

It has been observed that the dissolution of apatite-rich 

phosphate rock is enhanced by the exchange of dissolved 

Ca
2+

 onto zeolite exchange sites. The addition of NH
+
4-, 

H
+
-, or Na

+
-exchanged, clinoptilolite-rich tuff signify-

cantly increased solution P concentration when compared 

with phosphate rock without zeolite additions (see ref. 3). 

Soils occurring in the Deccan basalt areas under semi-

arid and HT climate, contain heulandite [(Na, K)Ca4 

(Al9Si27O72) 24H2O], which is rich in Ca
2+

 ions, and thus 

the soils are highly base-saturated. Therefore, the scope 

of P fertilization by dissolution and ion exchange with 

zeolite in such soils is expected to be limited. In smectitic 

Vertisols of the Deccan basalt areas, P adsorption is not a 

major problem and all the adsorbed P is easily exchange-

able by P
32

 and a small amount is adsorbed in the non-

exchangeable form
74,75

. The rate of dissolution of Ca–P 

under the prevailing management system is adequate to 

meet the demand of crops
20

. 
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Table 4. Selected properties in surface (0–30 cm) soil samples of zeolitic Vertisols under rice cultivation (adapted from Sahrawat et al.63) 

Benchmark 

soil series District/state Soil taxonomya pH (1 : 2) Clay CEC SOC (%) Total N (%) SOC : N 
 

Jhalipura Kota/Rajasthan Typic Haplusterts 8.1 77 0.53 0.0443 12 :  1 

Jajapur 1 Mehboobnagar/Andhra Pradesh Sodic Haplusterts 8.5 62 0.88 0.082 11 :  1 

Teligi  Bellary/Karnataka Sodic Haplusterts 8.0 90 1.03 0.062 17 :  1 

Teligi 1 Bellary/Karnataka Sodic Haplusterts 7.8 99 0.88 0.0551 14 :  1 

aAdapted from Pal et al.59 . 

 

 

 
 

Figure 1. Schematic diagram of the pedon site of red soils (Alfisols) 
and black soils (Vertisols) showing the landscape reduction process ex-
plaining the formation of spatially associated red and black soils 
(adapted from Pal81). 

Potassium 

Soils (Mollisols, Alfisols and Vertisols) developed on the 

zeolitic Deccan basalt or in its alluvium, are stated to be 

adequately supplied with potassium (K), and therefore, 

responses to applied K are not generally obtained
20

. 

These soils have high to very high available K status even 

in the subsurface (Tables 1–3). Potassium release in soils 

is primarily controlled by biotite mica, which constitutes 

approximately 1% in the <
 
2 mm fine earth fraction in 

Vertisols; and thus available K may not be sustainable 

over a longer term
20,76

. The apparent incompatibility  

between medium to high available K status in surface  

horizons (
 
250 kg K ha

–1
; Tables 1–3) and low biotite 

mica in soils of the Deccan basalt areas, need further  

insight in view of pronounced selectivity of zeolites for 

K
+
 and NH

+
4 ions. Contribution of zeolites to available K 

of soils is not uncommon
77,78

. 

 Potassium adsorption/fixation in Vertisols does not  

appear to be sufficiently severe to conclude that K  

becomes unavailable to plants. The observed moderate 

amount of K adsorption in the Vertisol fine clays (25–

30 mg K/100 g clay) has been attributed to the presence 

of vermiculite
20

. However, in the presence of zeolites K 

adsorption should not be totally attributed to vermiculite 

as zeolites also have strong selectivity for K
+
 ion. 

 In view of the role of zeolites in adsorption and desorp-

tion of K
+
 and NH

+
4 ions alongside vermiculite, a fresh  

research initiative is warranted to pinpoint the selective 

contribution of zeolite, biotite and vermiculite on a time-

scale when they co-exist in soil environments. 

Identification of zeolites in soils 

Soil is a complex system. At times it is difficult to detect 

and identify small quantities of zeolite minerals in soils. 

Therefore, special care needs to be taken while preparing 

zeolitic soil samples for subsequent mineralogical analyses. 

Removal of cementing agents (e.g. carbonates, organic 

matter and iron oxides) to enhance dispersion of soil 

sample before particle-size fractionation and subsequent 

mineralogical analyses, chemical pre-treatments (1 N 

NaOAc buffered to pH 5 for CaCO3, 30% H2O2 for  

organic matter, and dithionite-citrate-bicarbonate for free 

Fe2O3) are generally followed. Zeolites react differently 

when subjected to various pH solutions. Clinoptilolite can 

withstand acid treatments to a pH below 2 before struc-

tural degradation is detectable; however, analcime tends 

to dissolve during acidic treatments around and below a 

pH of 5. During such chemical pre-treatments some zeo-

lite minerals may be destroyed
3
. Sand, silt and clay-sized 

zeolites can be conveniently identified by XRD technique 

and sand zeolites by scanning electron microscope 

(SEM), but only after ascertaining their optical characters 

under optical microscope
15,16

. 

 The CEC procedure described by Ming and Dixon
6
 was 

developed to only quantify clinoptilolite. But the authors 

felt that the procedure needs further modification to quan-

tify zeolites other than clinoptilolite, because there are 

more than 60 zeolites that occur in nature and each has 

unique crystal structures, ion-sieving properties, cation 

selectivity and cation-exchange capacity. As of now, 

there is no selective method to quantify the heulandite 

content in soils which carry other clay minerals. How-

ever, specific chemical methods were used by Bhat-

tacharyya et al.
16

 to determine the CEC and extractable 

bases that provide indications for the possible presence of 

zeolites in soils. Bhattacharyya et al.
16

 determined the 

CEC of acidic and zeolitic soils using 1 N NaOAc (pH 7) 

for saturating the soils and 1 N NH4OAc (pH 7) for  

exchanging the Na
+
 ions; and the CEC was determined by 
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estimating the adsorbed Na
+
 ions

79
. For calcareous, and 

slight to moderately alkaline Vertisols, determination of 

extractable Ca and Mg is done following 1 N NaCl solu-

tion extraction method
80

 and for Na and K, 1 N NH4OAc 

(pH 7) is used
18,38,59

. Results indicate that base saturation 

exceeds more than 100 either throughout the pedon or in 

the subsoils, confirming the presence of heulandite. The 

base saturation in excess of 50 for acidic soils and 100 for 

calcareous and slightly to moderately alkaline Vertisols 

(Tables 1–3) provides an insight into the chemical envi-

ronment of zeolitic soils even when facilities of XRD and 

SEM are not easily available or during difficulty in iden-

tifying the heulandite by XRD because of their small 

amounts
59

, or if they are destroyed during the chemical 

pre-treatments. 

Concluding remarks 

The occurrence of acidic Mollisols, Alfisols and Vertisols 

in the Deccan basalt areas under HT climatic conditions, 

provides a unique example of tropical soil formation, 

which is not easily comprehensible unless the role of zeo-

lites was highlighted by the Indian soil scientists during 

the last two decades. Persistence of these soils in HT cli-

mate for millions of years has provided a deductive check 

on the inductive reasoning of the conceptual models on 

the formation of soils in HT climate. Zeolitic Vertisols 

(both sodic and non-sodic by definition) are being used 

for cultivation of rice and sugarcane because they do not 

remain waterlogged for a longer time and they also sup-

port winter crops. At present these soils are mitigating the 

adverse effect of Holocene climate change to aridity and 

also sequestering carbon from the atmosphere. Experi-

mental results obtained on the use of zeolites (other than 

heulandites) as soil conditioners and slow-release fertiliz-

ers provide important clues to address the possible role of 

soil heulandite in minimizing the conversion NH
+
4 ions to 

gaseous phases of N and adsorption and desorption of 

major nutrients in natural soil environments. Research is 

needed for delineating areas under zeolitic soils and also 

for understanding the selective role of zeolites in the  

adsorption and desorption reactions of N, P and K. Identi-

fication of soil zeolites is generally done by XRD and  

SEM. It also seems possible to identify zeolites by deter-

mining CEC and extractable bases when the base satura-

tion exceeds 50% in acidic soils and more than 100% in 

calcareous and slight to moderate alkaline soils. We hope 

this review will help in developing management practices 

for an efficient use of zeolitic soils for enhancing agricul-

tural productivity under wet and dry climatic conditions. 
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