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a  b  s  t  r  a  c  t

Lentil  (Lens  culinaris  Medikus  subsp.  culinaris)  is an  important  staple  pulse  and  rich  source  of  protein,
especially  to  the  economically  resource-poor  consumers  of the  developing  world.  Experimental  and  ana-
lytic technology  and  statistical  tools  are  needed  to  enhance  lentil  breeding  progress.  One  of  the concerns
of field  experimentation  is to  design  experiments  in  suitable  block  designs  and  model  the data  to  account
for  any  left-over  trend  in  the  field  layout  and  for correlations  in  the  plot  errors.  Elite  breeding  lines  of
lentil  developed  through  conventional  breeding  methods  at ICARDA  were  evaluated  in  three  contrasting
environments  in  northern  Syria  and  Lebanon  during  1999–2005.  This  study  examines  the  data  on  seed
and  straw  yields  from  226  trials  conducted  in  randomized  complete  block  (RCB)  and  in  square  lattice
designs.  Suitable  models  incorporating  blocking  structures,  linear  trends  and spatially  correlated  plot-
errors were  fitted  to  the  individual  datasets.  The  results  indicated  that  the spatial  analysis  model,  which
accounts  for  the  spatial  pattern  of the field,  was  better  than  the  commonly  used  RCB design  model.  The
spatial  analyses  gave  substantial  increases  in precision  of  predicted  means  for the  genotypes.  An  average
efficiency  of  pairwise  genotype  means  comparison  over  RCB was  141%  for  seed  yield  and  158%  for  straw
yield  from  the trials  conducted  in  incomplete  blocks  and  where  found  superior  to  RCB.  It also  enhanced
estimates  of  broad  sense  heritability  on mean-basis,  with  an  average  of 72% for  seed  and  70%  for  straw
yield  under  the  superior  models,  compared  to  62  and  55% for RCB  model,  respectively.  The  percentage

genetic  gain  due  to selection  at 10%  intensity  was  26%  for seed  and  20%  for straw  yield  based  on those
models,  which  were  2–3%  higher  than  those  from  the  RCB  model.  In general,  it is  recommended  to  con-
tinue  the  use  of  incomplete  block  designs  for variety  trials  in  lentils  and  use  the  most  suitable  spatial
pattern  for  statistical  analysis  to assist  field  crop  breeders  to  enhance  precision  in  selection  of  desirable
genotypes.  These  results  are  consistent  with  findings  of a number  of other  variety  trials  in lentil.

© 2015  The  Authors.  Published  by Elsevier  B.V. This  is  an open  access  article  under  the  CC BY  license
. Introduction

Lentil (Lens culinaris Medikus subsp. culinaris) is among the
mportant pulse crops contributing to food and nutritional security
f people in Asia and Africa. Its seeds contain high levels of protein,
acronutrients, micronutrients and vitamins that provide nutri-

ional security to poor consumers who cannot afford animal prod-
cts due to high prices. Additionally, lentil straw is valuable feed for

nimals. Growing lentils in rotations provides sustainable cereal-
ased cropping systems. The International Center for Agricultural
esearch in the Dry Areas (ICARDA) has the world mandate for lentil
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improvement and is running an international breeding programme
to deliver International Public Goods in the form of genetic mate-
rials. It uses diverse genetic resources in commissioning crosses
and subsequent development of genetically fixed lines to deliver to
national programmes through an international nursery network. In
this process, a large number of genotypes are developed by cross-
breeding and evaluated under various yield trials in contrasting
locations. Different designs, like randomized complete block (RCB),
lattice, alpha-lattice and augmented designs are used to evalu-
ate these genetic materials. These designs have been found useful
in controlling for field variation by taking into account between-
block variation (Fisher, 1935; Yates, 1936; Cochran and Cox, 1957;

Patterson and Williams, 1976; Kempthorne, 1983; Hinkelmann and
Kempthorne, 2005). Incomplete blocks in one or in two directions
can be obtained using some popular software including GenStat
(Payne, 2014) and CycDesigN (VSN International, 2015).
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where all the fixed effects are written as vector  ̨ and associ-
ated matrix X*, and the random factor effects (other than random
A. Sarker, M. Singh / Field C

Although the placement of incomplete blocks in a field layout
s guided by experience and understanding of the experimental
eld, there is still scope to account for local fertility trends and
he dependence of plot errors, which are not accounted for by the
lassical methods of experimental design and analysis. A number
f approaches are available in the literature to address various such
ssues arising in field conditions. Papadakis (1937) measured local
ertility status of a field plot using means of neighbouring plot
esiduals and performed covariate adjustment to adjust the geno-
ype effects. This concept of nearest-neighbour adjustment and
se of plot residuals was  exploited by a number of researchers in

mproving precision of selection and the inferences for genotypes
Wilkinson et al., 1983; Pearce, 1998; also see, Piepho et al., 2008
or review). Statistical inferences were further enhanced by mod-
lling the statistical behaviour of plot residuals in one dimension in
he form of an autoregressive integrated moving average (ARIMA)

odel (Gleeson and Cullis, 1987) or two dimensions in the form of
 separable ARIMA model (Cullis and Gleeson, 1991), while other
pecific forms of spatial dependence can be found in Cressie (1991).

 number of other factors accounting for variation, such as fertility
rends described as random smoothing cubic splines (CS) in row
nd column directions, in addition to the dependence of plot errors
n row and column directions are given in Gilmour et al. (1997).
he spatial error models with block effects and trends have been
pplied and their performance studied on various sets of data by
rondona et al. (1996) in cereals, Sarker et al. (2001) in lentil, Singh
t al. (2003) in cereals and legumes, and Malhotra et al. (2004) in
hickpea.

A set of 18 models examined by Singh et al. (2003) involved first
rder autocorrelated error structures and were believed to provide

 good coverage of spatial patterns in short layouts. While autocor-
elated error structures were found useful, the model with extra
easurement error or a nugget term could have been included in

auzing the spatial variability, besides the use of simple models in
erms of random rows and columns effects (Leiser et al., 2012). In
n evaluation of a number of field trials in sorghum in Mali, West
frica, Leiser et al. (2012) explored the large number of 91 models

n each trial and found that the spatial models, in form of auto-
orrelated error structures along rows and columns, explained the
ata more effectively than the classical models under RCB and lat-
ice designs. The due spatial adjustment lead to a higher genetic
ain due to selection and also resulted in change in the genotypes
anks.

Singh et al. (2003) used a model selection method using AICD,
kaike Information Criterion (Akaike, 1974) expressed as residual
aximum likelihood (REML) deviance, which can be used to com-

are two models based on the same set of fixed effect terms. The
est model was screened out of 18 models in the case of incom-
lete block designs and nine in the case of RCB designs. In all these
odels, the plot error variances were assumed constant. Singh et al.

2010) examined heterogeneity among the error variances in addi-
ion to the spatial error models discussed by Gilmour et al. (1997)
nd Singh et al. (2003). Competition effects (Durban et al., 2001)
nd spatial variability and within-row interplot competition mod-
ls (Stringer et al., 2011) have been introduced for field trials.

Application of various spatial models has led to substantial
ncreases in efficiency of pairwise comparison of genotypes in cere-
ls and legumes. This study examines historical data on seed and
traw yields from 226 lentil field trials conducted in three con-
rasting locations with objectives of (1) identifying spatial patterns
escribing the experimental fields in northern Syria and Lebanon,
2) reduction in the coefficient of variation from the standard com-
lete block analysis method and (3) efficiency of the methods used

n Singh et al. (2003). Further, (4) we examine the changes in

he estimates of heritability and genetic gain when selecting the
enetic material from different maturity groups.
esearch 179 (2015) 26–34 27

2. Materials and methods

2.1. Environments, genetic material and experimental designs

A total of 226 experiments were conducted over seven years
during 1999–2005 at three locations: (1) Breda in Syria (35◦56′N,
37◦10′E) with an elevation of 300 m and a long-term average annual
rainfall of 266 mm;  (2) Tel Hadya in Syria (36◦01′N, 36◦56′E) with
elevation of 284 m,  and rainfall of 334 mm;  and (3) Terbol (33◦49′N,
35◦59′E), in the Beqaa valley in Lebanon, with elevation of 950 m
and rainfall of 515 mm.  The number of genotypes in these trials var-
ied from 11 to 30 over the different years (Table 1). The set-ups of
the experiments are presented in Table 1. The experimental designs
were square lattices with 2–4 replicates when the number of geno-
types was 16 and 25; and RCB designs with 2–4 replicates were used
for all other numbers of genotypes. In most of these experiments,
details of the field layouts were available and the spatial position of
the plots could be determined. The genetically fixed materials were
organized as preliminary yield trials (PYT) and advanced yield tri-
als (AYT). The PYT materials were in the F7 generation while that
in AYT were in the F8 generation. Data from a total of 226 trials
were available on grain yields, out of which 191 trials were in lat-
tice designs with spatial position of the plots available for 167 trials
and 35 trials in RCB where spatial positions of plots were available
for 33 trials. For straw yields, there were 199 trials with spatial
position of the plots available for 146 out of 166 trials conducted in
lattices and for 32 out of 33 trials conducted in RCB.

The agronomic practices followed were as appropriate for the
local conditions. The harvested areas in the centre of the plots
were 4.8 m2 (2 m × 8 rows × 0.3 inter-row distance) in the advanced
trials, and 3 m2 (2 m × 5 rows × 0.3 inter-row distance) in the pre-
liminary trials, and were used for yield assessment in kg/ha.

2.2. Statistical methods

We present here the method for model screening given in Singh
et al. (2003) and the expressions for estimation of efficiency of
experimental design, heritability and genetic advance. Consider a
resolvable incomplete block design to evaluate v genotypes in b
incomplete blocks in each replicate and R replicates. The block size
would be k = v/b. Let Yijl be the response (i.e. yield) from the plot
under genotype i, block j of replicate l; i = 1, 2, . . .,  v, j = 1,2, . . .,  b,
and l = 1,2, . . .,  R. This response can also be indexed by the plot posi-
tion [r, c] where the above plot is in row r and column c of the p × q
layout, where r = 1, 2, . . .,  p, and c = 1, 2, . . .,  q.

The general model assumed to explain the variation in Y is:

Y = � J + X� + Zu + � + ε

where Y is the vector of observed responses written as (Yijl) or
(Y[r,c]); � is the general mean; J is vector of unity; X is the incidence
matrix associated with fixed effects assumed for factors such as
genotype effects and a linear fertility trend and the vector of these
unknown effects is �; Z is the incidence matrix associated with
factors with random effects, such as replicates and blocks within
replicates, with effects denoted by u; � is the vector of random cubic
smoothing spline (CS) effects; and ε is the vector of random errors
with a correlation structure.

The above model can more compactly be written as three terms:

Y = X∗
 ̨ + Z∗

 ̌ + ε
errors) are written as vector  ̌ and with matrix Z*. This model form
accounts for: (1) with or without incomplete blocks (replicate effect
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Table 1
Distribution of number of experiments according to experimental design, locations, maturity and generation of genetic material.

Locations Genotypes Replicates Layout (sub-total)

Number of experiments under the two experimental designs and over the locations

Experimental Designs Breda Tel Hadya Terbol ng Rows × Columns
RCB  14 (0) 16 (2$) 5 (0) 11, 12, 13, 14, 15, 18, 19, 21, 23, 25@, 30 2–4 2–4 × ng 35 (2)
Square lattice 9 (0) 16(5) 9(0) 16 2–4 2–4 × 16, 6 × 8 34 (5)
Square lattice 57 (3) 64 (14) 36(2) 25 2–4 2–4 × 25, 9 × 10 157 (19)
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$ Cases with no spatial information (i.e. rectangular layout was not available).
There were eight trials in RCB with 25 genotypes, which were otherwise evaluate

s always included); (2) a linear trend along rows is assumed in
he form of a linear function of the column number (shows a gra-
ient along rows), or a random CS around the line or is assumed
bsent; (3) plot errors are assumed to follow either first-order
uto-correlation (Ar) along rows, or independently first-order Ar
long rows and columns (i.e. separable Ar along rows and Ar along
olumns, ArAr) or to be independent. The combinations of blocking
ptions, linear trend and plot errors gave rise to 18 models in Singh
t al. (2003), which were seen likely to cover most of the spatial pat-
erns prevailing in a crop variety evaluation field. The model details
nd method of selecting the best out of them have been given in
ingh et al. (2003). We describe those models with their notations
ere in brief:

(1) Rcb: Randomized complete block design (RCB), (2) RcbAr:
cb with first-order Ar errors along rows, (3) RcbArAr: RCB with Ar
rrors in plots along rows and along columns, (4) RcbL: RCB with

 linear trend (L) along rows, (5) RcbAr: Rcb with a linear trend (L)
long rows and first-order Ar errors along rows, (6) RcbArAr: RCB
ith with a linear trend (L) along rows and Ar errors in plots along

ows and along columns, (7) RcbLCS: Rcb with a linear trend along
ows and random cubit smoothing spline (CS) in column numbers,
8) RcbLCSAr: RCB with a linear trend along rows, a random CS in
olumn numbers, and Ar errors along rows, (9) RcbLCSArAr: RCB
ith a linear trend along rows, a random CS in column numbers,

nd Ar errors along rows and columns. For the data from an incom-
lete block, another nine models were constructed by introducing

ncomplete blocks within replicates. An abbreviation Lat, denot-
ng lattice design, comprises random replicate effects and block
ffects within replicates. For instance, LatL: Lattice with a linear
rend along rows, LatArAr: Lattice with Ar errors in plots along rows
nd along columns, etc. The models with Ar terms were also added
ith an extra independent error terms, i.e., ‘*Units*’ in the notation

f Genstat software (Payne, 2014, Chapter 5, page 650) to account
or a nugget effect. In majority of the trials, a replicate comprises

 row, another simple model with random row effects and column
ffects, denoted by RowCol, was fitted. Thus on data from lattice
esigns, 31 models (18 models as in above, 12 models with an extra
erm for nugget effect, and 1 rows and columns effect model) were

xplored. The models with nugget effects will be denoted with end-
ng in Ng. Similarly for data from RCB, a total number of 16 models

ere fitted.
Selection of the best model was carried out as follows. Each of

he 18 models was fitted assuming fixed genotype effects and ran-
om replicate effects and block effects within replicates was carried
ut following Singh et al. (2003). The REML method and associated

Efficiency% = Average 

Average v
irectives of GenStat were used to estimate the model parameters.
he log-likelihood was computed in terms of a statistic, called the

deviance’ which is minus twice the REML log-likelihood ignoring
 constant dependent on the fixed terms. Comparison of models
tly in lattices at Breda (3), Tel Hadya (3) and Terbol (2).

with the same set of fixed effects is generally carried out using
the AIC which was expressed in terms of the deviance values as
AICD = deviance + twice the number of linear and non-linear vari-
ance components of the models. Among the models having the
same set of fixed effect terms, the model with the lowest AICD
value was  considered to be best. Using this method, the best model
for each trial was  obtained. The significance of a fixed effect was
assessed using the Wald test statistic produced by the REML direc-
tive. These 18 models were grouped into the models with linear
trend (L) term (12 models) and those without (6 models). The best
model from the group with linear trend was chosen using the AICD
criterion. If the linear trend was significant (using the Wald test)
then the selected model was  considered best of the 18 models.
If the linear trend was not significant, then the AICD was used to
select the best out of the remaining 6 models without trend. If the
selected model, out of 9 models for an RCB design or 18 models for
an incomplete block design, had an autocorrelation structure, then
it was fitted again by including a nugget effect. The difference of
the deviances obtained by fitting models with and without nugget
effect was  tested as a chi-square distribution on one degree of free-
dom. In detection of a non-zero variance component of a nugget
effect in the model, the limitation of likelihood ratio tests based on
deviances may  be addressed by introduction of a more appropriate
test based on a mixture of chi-square distributions as presented
in Stram and Lee (1994) and Visscher (2006). If the difference was
significant then the model with nugget effect was considered for
screening against RowCol model using the AIC values.

The current version of the Genstat software also provides AIC
values, so the above models can equivalently be compared by
directly using the AIC values, smaller the AIC value, better is the
model irrespective of the fixed and random terms included in the
models (Wolfinger, 1996). Thus using AIC values, selection of the
best models can be carried out of 31 or 16 models for lattice or RCB
data, respectively.

Efficiency of a given design and analysis duo (‘the method’) rela-
tive to RCB, and analysis based on independent errors and absence
of any fertility trend (RCB) was obtained in terms of pairwise vari-
ance and was  given by the expression:

nce of pair-wise contrasts of genotype effects under RCB analysis
nce of pair-wise contrasts of genotype effects under ’the method’

In order to estimate the broad sense heritability (h2) on mean-
basis and genetic advance/gain due to selection, we assumed the
genotype effects to be random with variance �2

g and plot-error vari-
ance �2

ε . The h2 on mean-basis is given by h2 = �2
g /(�2

g + �2
ε /r)

and has been used by Singh et al. (2013). Singh and Ceccarelli
(1995) evaluated the bias of the heritability on plot-basis using,
�2

g /(�2
g + �2

ε ), for data from incomplete blocks and reported bias
below 10% for heritability level above 50%. This expression of
heritability, h2, is based on the genotypic variance and the error

variance resulting from the fit of the spatial or non-spatial model
and therefore are adjusted for the design and error correlations.
This expression does not include the variance component of control
factors with random effects. Piepho and Möhring (2007) discussed
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imitations of this estimate of heritability, h2, when the data arise
rom heterogeneous or correlated error structures and suggested
better) alternatives including a proposed “ad hoc” estimator of
eritability, another using simulations, and that due to Cullis et al.
2006). For various challenges associated with definition and esti-

ation of heritability from experiments on plants, one may refer
o Holland et al. (2003) and Nyquist (1991). Besides the h2, we
lso computed, for comparison, two other estimates of heritability
hich adjust for incomplete blocks and error structures to a dif-

erent degree are given by: h2
Ad hoc = �2

g /(�2
g + v̄BLUE/2) (Piepho and

öhring, 2007) and h2
C = 1 − v̄BLUP/(2�2

g ) (Cullis et al., 2006), where
¯BLUE and v̄BLUP are respectively the average variance of pair-wise
ifferences between the best linear unbiased estimates (BLUE) and
est linear unbiased predictors (BLUP). The genetic gain or advance
ased on mean over replicates and for a selection intensity of p

s C�gh∗/Ȳ where C is a constant given by C = 1
p
√

2�
e−z2

p /2 and zp

s the upper p quantile of standard normal distribution, h* is the
quare root of the heritability used (h2, h2

Ad hoc or h2
C ), Ȳ is mean

esponse and r is the number of replicates (Kempthorne, 1983). The
uantity C is 2.063, 1.755 and 1.4 for 5, 10 and 20% intensity of selec-
ion, respectively. Furthermore, the above genetic gain expression
s based on the means of independent observations with a constant
ariance, i.e. the case of standard model for RCB data, this expres-
ion of genetic gain will also comprise of an additional limitation in
he approximate gain for the other models. The genetic gain expres-
ions may  be denoted by GAh, GAAd hoc and GAC for the heritability
xpressions, h2, h2

Ad hoc and h2
C , respectively. Using the estimates of

eritability, or the genetic gain, from various trials, a calibration of
stimates resulting from one expression in terms of the other can
e done using a linear regression if the correlation between them

s appreciably high. Closeness of a pair of the estimates, say h2 and
2
C , can also be examined in terms of slopes of regression line of

2
C on h2, passing through the origin, as described in standard texts
Kutner et al., 2004). Another statistics used was coefficient of vari-
tion between variables (CVV): (a) between the two  estimates (h2

nd h2
C ) to compare the pair, and (b) between the three estimates

Fig. 1. Coefficient of variation (CV) under the best model v
esearch 179 (2015) 26–34 29

(h2, h2
Ad hoc and h2

C ) to examine closeness among the triplet. The
CVV values were averaged over the trials for models other than the
standard RCB model. This approach was also applied to compare
the genetic gains from the three estimates of heritability.

3. Results

3.1. Coefficient of variation, efficiency, genetic advance and
heritability over all experiments

The analysis of the data using the best models that were
screened out of the 16 models for RCB data and 31 models for lattice
design data indicated a general reduction in the coefficient of vari-
ation (CV) values for the best model, except in a few cases where
CV increased (Fig. 1). As expected, the accounting for incomplete
blocks, linear trends in the field, Ar between the plot errors with or
without nugget effects, and rows and columns effects contributed
to the reduction of experimental errors. A large number of points
lying with CV < 20% on the 1:1 line (Fig. 1) show that the experi-
mental design and model used did not capture errors beyond the
RCB model. However, the efficiency and other parameters are func-
tions of genotypic variance, and error variance as well, and these
were affected differently due to presence of correlations in the plot
errors.

The correlations, slopes of the regression line passing through
origin, and average CVV between the three estimates of heritability
h2, h2

Ad hoc and h2
C , and the resulting gains are presented in Table 2

based the non-RCB models. For the RCB model, the three expres-
sions are same. High correlations indicated that h2

Ad hoc and h2
C can

be calibrated by a linear equation in terms of h2, correlations exceed
0.968 for heritability and 0.998 for genetic gains. However, the
slopes of the lines passing through origin were not significantly

different from 1 (P-value >0.07) for seed yield indicate that the esti-
mates h2 are approximating reasonably close to h2

C and h2
Ad hoc as

well as the associated genetic gains. Numerically, slope varied in the
range 0.999–1.005 over the four cases. For straw yield, the slopes

s. CV under the randomized complete block design.
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Table 2
Estimates of correlation, slope and coefficient of variation between estimators of broad sense heritability on mean-basis and genetic gain at 10% selection intensity for models
other  than RCB model.

Variable Correlation (X,Y) b$ SE&(b) tprob@ [|Slope -1|  > 0] Mean CVV#

(X,Y) (%)
Mean CVV (All the
three estimates)
(%)

Seed yield (N = 163) Y X = h2

h2
C

0.966 0.999 0.0078 0.873 6.4
h2

Ad hoc
0.965 1.001 0.0079 0.875 6.6

All  the three estimates 5.8
X  = GAh

GAC 0.998 1.004 0.0031 0.180 3.3
GAAd hoc 0.998 1.005 0.0030 0.075 3.4
All  the three estimates 3.0

Straw yield (N = 143) X = h2

h2
C

0.968 0.980 0.0083 0.020 8.5
h2

Ad hoc
0.967 0.982 0.0084 0.030 8.6

All  the three estimates 8.1
X  = GAh

GAC 0.999 1.006 0.0030 0.042 5.3
GAAd hoc 0.999 1.007 0.0031 0.034 5.4
All  the three estimates 5.3

N is the number of trials.
$ b is the least square estimate of the Slope in the regression equation: Y = Slope X.
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& SE: estimated standard error.
@ tprob(|Slope-1| > 0) is the probability of Slope differing from 1 using t-distributi
# CVV: Coefficient of variation between variables and GA: genetic gain (advance)

ere significantly different from 1 at 5% but not at 1% level of sig-
ificance, as the P-value was in the range 0.02–0.04 over the four
ases. In this case too, we can say the expressions resulted into val-
es close to h2 and similar for the associated gains. The CVV values
re also low, for genetic gains in the range 3.3–5.4 (for pairs with
2) and 3.0–5.3 (for all the three estimates). However, CVV values
or heritability were higher than those for the gains (6.4–8.6 for
airs with h2 and 5.8–8.1 for all the three expressions). Therefore,
he results of the three expressions were found reasonably close,
articularly those supported by the slope of the linear regression.

Table 3 presents the efficiencies of the experimental design and
nalysis model duo, estimated gain due to selection and h2 over all
he available trials for seed (225) and straw yields (199); also shown
s the number of experiments which resulted in a higher efficiency
r higher gain due to selection or higher broad-sense heritability
n mean basis in comparison to RCB, and the averages over such
ases.

.2. Efficiency

The best models gave on an average, over all trials, efficiency for
airwise comparison of the genotypes of 129% relative to RCB for
eed and 133% for straw yields. Thus in such trials a given precision
f a treatment difference that can be obtained from an RCB design
an also be obtained by around a 30% reduction in the number of
eplications if using either an incomplete block (IB) design, e.g. a
attice design, and/or one of the spatial methods. Computations for
he experiments, excluding those with RCB analyses, showed that
he gain for the non-RCB design/analysis experiment cases gave an
verage efficiency of approximately 141% for seed (159 trials) and
48% for straw yield (139 trials). Out of such cases, the average
fficiency where IB design data was analysed using spatial meth-
ds resulted in 145% for seed (116 trials) and 153% for straw yield
107 trials), indicating further reduction in resources was  possi-
le to achieve precision of genotype comparisons in contrast to
xperiments using an RCB design.
.3. Heritability

The average broad-sense heritability estimates on mean-basis
sing h2

C from the best models superior to RCB (in the sense of
 N-1 degrees of freedom.
scribed in the text.

efficiency exceeding 100%), RCB analyses and overall the trials were
72%, 62% and 67% for seed yield, respectively, and correspondingly
70%, 55% and 62% for straw yield. Thus under the spatial models, a
higher estimates of heritability was found compared to that under
RCB.

3.4. Gain due to selection

The average gain due to selection of the top 10% of genotypes
based on the best models superior to RCB were 26% for seed yield
and 20% for straw yield, compared to and 23% and 17% if RCB was
used, respectively. This showed an increase of 3% on each of the
two traits when using a more efficient model than RCB. Overall the
trials, the gain due to the selection was 24% for seed yield and 18%
for straw yield.

3.5. Spatial patterns and efficiency, genetic advance and
heritability

With a view to determining the type of spatial variability in fields
where various experiments were laid out, Table 4 gives the fre-
quencies of the models describing the field variability best, and the
average efficiency, heritability h2

C and genetic gain due to selection.
Of the 225 trials where seed yield was  analysed, the RCB model
was found best in 63 cases (which were designed either in RCB or
IB design and the spatial information of the plots was available).
In the 32 trials in RCB where spatial information was  available,
the best fitted models captured the spatial feature of the fields
such as first-order autocorrelation between plot errors along rows
(RcbAr) in seven cases (with average efficiency of 141%) and first-
order autocorrelations between plot errors along rows and along
columns (RcbArAr) in four cases (average efficiency of 171%), a lin-
ear trend along rows (RcbL) was detected in four cases (average
efficiency of 130%) and random rows and columns effects in seven
trials (average efficiency 119%) for seed yield.

In cases of lattices not only the incomplete blocks (seven trials
with average efficiency of 110% for seed yield) and models with ran-

dom rows and columns effects without any correlation structures
(13 trials with an average efficiency of 130% for seed yield) were
found useful, but also the spatial features of plots such as Ar, ArAr
and local trend along rows represented by random cubic smoothing
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Table  3
Number of trials and average efficiency, genetic gain for 10% selection intensity and heritability for various groups of trials.

Seed yield Straw yield

Best trials Experiments
superior to RCB@

Best trials Trials superior to RCB

Best  Model or RCB$ N Mean N Mean N Mean N Mean

Efficiency (%) IB 24 120.3 21 123.2 20 113.1 16 116.3
SPCB  32 125.7 22 137.4 32 122.4 16 144.7
SPIB  167 131.1 116 144.8 146 138.5 107 152.5
(over  trials superior to RCB)@ 159 140.9 139 147.5
(overall trials) 225 128.9 199 133.2

Heritability RCB  2 0.84 1 0.63
IB  24 0.62 12 0.70 20 0.56 10 0.65
SPCB  33 0.53 21 0.62 32 0.49 14 0.53
SPIB  167 0.71 107 0.75 146 0.66 95 0.74
(over  trials superior to RCB)@ 140 0.72 119 0.70
(overall trials) 226 0.67 199 0.62
(over RCBs only) 63 0.62 56 0.55

Genetic gain (%) RCB 2 54.6 1 28.9
IB  24 27.0 10 25.2 20 13.5 5 14.8
SPCB  33 23.2 20 28.3 31 14.2 13 13.4
SPIB  167 23.6 86 24.9 145 19.3 73 21.0
(over  trials superior to RCB)@ 116 25.5 91 19.6
(overall trials) 226 24.2 197 18.0
(over RCBs only) 63 22.5 56 16.8

$ RCB = randomized complete block design and analysis based on no trends in the layout and independent plot errors; IB = Incomplete block design and analysis based
o mode
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n  no trend in the layout and independent errors; SPCB = best model out of the 16 

ncomplete block design situations. N = number of experiments.
Based on the experiments superior to RCB in the sense of the efficiency % exceedi

pline (CS). In the trials which were laid out in lattices, the incom-
lete block effects appeared to have been marginalized in the light
f spatial features accounted for by autocorrelation between plot
rrors (Table 4). For example, the model RcbAr (i.e. a model without
ncomplete blocks) was found best in 31 of 167 fields/experiments
n IB designs with spatial information. The next two models that
requently occurred were RcbL (23 fields) and RcbArAr (16 fields)
ith average efficiencies of 115 and 153%, respectively, for seed

ield. For straw yield, the top three frequently occurring spatial pat-
erns were RcbAr (24 of 146 fields with spatial information) with
verage efficiency of 142%, RcbArAr (11 fields) with efficiency of
45% and RcbCS (nine fields) with efficiency 213%. The RowCol was
ound best in 22 fields with 120% efficiency. In a total of three fields
nder either RCB or lattice design, presence of nugget effects i.e.
n extra independent error term was also found significant, giving
odels RcbArNg, RcbArArNg and RcbLArArNg with efficiency 123,

54 and 321% respectively, for straw yield.
Over all the experiments, the average h2

C estimates for seed yield
or the five most frequent models were 62% (63 fields best described
y RCB models), 69% (38 fields under RcbAr models), and 62% (31
elds under Lat), 67% for the RcbL (27 fields) and 73% for RcbArAr
odels (21 fields), respectively. In the case of straw yield, the her-

tability under frequent models was 55% (56 fields described by
CB), 61% (28 fields under Lat model), 56% (RcbAr model in 27
elds), 59% from 26 fields with RowCol model and, 75% from 12
elds under RcbArAr model.

The genetic gain at 10% intensity of selection where RCB was
ound best was 14% (10 experiments in RCB) and 23% (in 51 exper-
ments with lattices) for seed yield; such values for straw yield

ere 16% (16 experiments in RCB) and 17% (39 experiments in
attices). For the most frequent spatial model, the gain was 40%
RcbAr models in seven experiments conducted in RCB) and 22%
RcbAr models in 31 experiments in lattices) for seed yield. A gain
f 38% was obtained from RcbLArAr model (10 experiments in lat-

ices). There were much higher gains of 41–76% where lattice blocks
ere present in the spatial models LtAr, LtArAr and LtCS but were

ound in only one field per model. For straw yield from experiments
ith lattices, the most frequent spatial model RcbAr gave 15% gain
ls explored for RCB situations; SPIB = best model out of the 31 models explored for

0. Heritability = h2
C

(Cullis et al., 2006). Genetic gain (%) was calculated using h2
C
.

(23 experiments), followed by the RcbArAr model giving 20% gain
(9 fields). The genetic gains were relatively low in the range of 5–8%
for the models with nugget effects.

3.6. Heritability and genetic gains due to selection for different
maturity groups

Table 5 gives the distribution of trials maturity group-wise. Over
all the trials, the average seed yield h2

C estimates were 75, 66 and
65% for early, medium and late maturing materials, respectively.
Corresponding figures for straw yield were 72, 62 and 52%, respec-
tively. This shows a declining trend in the heritability with maturity.
The gain due to the top 10% selection also followed a decreasing
trend with maturity in the range of 35–21% from seed yield and
32–11% for straw yield.

4. Discussion

In field trials, experimental error variability is controlled in a
number of ways, including by placement of blocks, use of possible
covariates and models describing spatial variability (Fisher, 1935;
Papadakis, 1937; Piepho et al., 2008; Singh et al., 2010). The effec-
tiveness of a component of error variability is specific to the field
where the experiment has been laid out. In relatively recent years,
investigations have incorporated spatial variability models with or
without blocks in comparison with using only blocks to account
for variability. Most of the experimental designs have been devel-
oped by minimizing the average variance of pairwise comparisons
of genotype effects which are assumed as fixed. However, it is more
pertinent to search for experimental designs with a view to max-
imize the general gain due to selection from field trials. With this
view, Cullis et al. (2006) have developed partially replicated (p-rep)
designs considering spatial correlation structure and with geno-
types effects and examined genetic gain using a simulation study.

Several classes of prep designs have recently been constructed
by using �-arrays (Williams et al., 2011, 2014). For generation of
randomized field plan for p-rep designs on a two-way layout, an R-
package (R Development Core Team, 2011) DiGGer due to Coombes
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Table 4
Model structures found best and average efficiency, heritability and genetic gain at 10% selection intensity.

Model$ Seed yield Straw yield

Experiments where spatial information was available Experiments where spatial information was available

Complete
blocks

Incomplete
blocks

All cases Complete
blocks

Incomplete
blocks

All cases

N Mean N Mean N Mean N Mean N Mean N Mean

Efficiency (%) Lat na na 7 109.9 31 117.9 na na 8 129.4 28 117.7
LatAr na na 1 106.5 1  106.5 na na 1 198.3 1 198.3
LatArAr na na 1 152.2 1 152.2 na na 3 163.4 3 163.4
LatCS na na 1 175.1 1 175.1 na na
LatCSArAr na na na na 1 225.2 1 225.2
LatL na na na na 1 188.7 1 188.7
RcbAr 7 140.7 31 144.7 38 143.9 3 123.2 24 141.5 27 139.5
RcbArAr 4 170.8 16 153.4 20 156.9 1 159.1 11 144.8 12 146
RcbArArNg 1 154.1 1 154.1
RcbArNg 1 122.6 1 122.6
Rcb 10 100 51 100 63 100 16 100 39 100 56 100
RcbCS 8 166.6 8 166.6 9 212.9 9 212.9
RcbCSAr 1 305.6 1 305.6 2 178.6 2 178.6
RcbCSArAr 2 328.6 2  328.6 3 253.9 3 253.9
RcbL 4 129.8 23 115.3 27 117.5 4 126.1 6 113 10 118.3
RcbLAr 2 158.2 2 158.2 7 169.2 7 169.2
RcbLArAr 10 170 10 170 3 191.8 7 169.9 10 176.5
RcbLArArNg 1 321.4 1 321.4
RowCol 7 119.4 13 129.9 20 126.2 4 146.2 22 119.7 26 123.7
(sub-total) 32 167 225 32 146 199

Heritability Lat na na 7 0.63 31 0.62 na na 8 0.73 28 0.61
LatAr na na 1 0.96 1 0.96 na na 1 0.96 1 0.96
LatArAr na na 1 0.93 1 0.93 na na 3 0.81 3 0.81
LatCS na na 1 0.96 1 0.96 na na
LatCSArAr na na na na 1 0.01 1 0.01
LatL na na na na 1 0.94 1 0.94
RcbAr 7 0.80 31 0.66 38 0.69 3 0.7443 24 0.53 27 0.56
RcbArAr 5 0.60 16 0.77 21 0.73 1 0 11 0.82 12 0.75
RcbArArNg 1 0.55 1 0.55
RcbArNg 1 0.4888 1 0.49
Rcb 10 0.44 51 0.65 63 0.62 16 0.4855 39 0.57 56 0.55
RcbCS 8 0.71 8 0.71 9 0.76 9 0.76
RcbCSAr 1 0.83 1 0.83 2 0.76 2 0.76
RcbCSArAr 2 0.90 2 0.90 3 0.86 3 0.86
RcbL 4 0.38 23 0.72 27 0.67 4 0.3045 6 0.73 10 0.56
RcbLAr 2 0.93 2 0.93 7 0.76 7 0.76
RcbLArAr 10 0.82 10 0.82 3 0.8214 7 0.87 10 0.86
RcbLArArNg 1 0.58 1 0.58
RowCol 7 0.44 13 0.74 20 0.63 4 0.3878 22 0.63 26 0.59

Genetic gain (%) Lat na na 7 17.3 31 24.8 na na 8 19.2 28 15.2
LatAr na na 1 63.7 1 63.7 na na 1 67.9 1 67.9
LatArAr na na 1 41.1 1 41.1 na na 3 15.3 3 15.3
LatCS na na 1 75.7 1 75.7 na na
LatCSArAr na na na na 1 0.1 1 0.1
LatL na na na na 1 21.1 1 21.1
RcbAr 7 39.8 31 22.2 38 25.4 3 22.27 23 15.4 26 16.2
RcbArAr 5 25.4 16 21.9 21 22.7 11 31.8 11 31.8
RcbArArNg 1 5.1 1 5.1
RcbArNg 1 7.7 1 7.7
Rcb 10 14.5 51 22.8 63 22.5 16 15.76 39 16.9 56 16.8
RcbCS 8 22.5 8 22.5 9 20.4 9 20.4
RcbCSAr 1 9.8 1 9.8 2 11.1 2 11.1
RcbCSArAr 2 26.7 2 26.7 3 37.0 3 37.0
RcbL 4 18.5 23 20.2 27 20.0 4 6.3 6 18.5 10 13.6
RcbLAr 2 35.1 2 35.1 7 20.8 7 20.8
RcbLArAr 10 38.5 10 38.5 3 20.69 7 28.3 10 26.0
RcbLArArNg 1 8.3 1 8.3
RowCol 7 20.3 13 21.2 20 20.9 4 6.65 22 16.7 26 15.1

$ Rcb: Randomized complete blocks (RCB) with independent errors. RcbAr: RCB with first-order auto-correlated (Ar) errors along rows. RcbArAr: RCB with first-order auto-
correlated errors in plots along rows and along columns. RcbL: RCB with linear trend along rows. RcbLAr: RCB with linear trend along rows and first-order auto-correlated
errors  in plots along rows. RcbLArAr: RCB with linear trend along rows and first-order auto-correlated errors in plots along rows and along columns. RcbCS: RCB with linear
trend  along rows and random cubic smoothing spline in column numbers. RcbCSAr: RCB with linear trend along rows, random cubic smoothing spline in column numbers,
and  Ar errors along rows. RcbCSArAr: RCB with linear trend along rows, random cubic smoothing spline in column numbers, and Ar errors along rows and columns. Lat:
Lattice blocks with independent errors. LatAr: Lattice blocks with first-order auto-correlated errors in plots along rows. LatArAr: Lattice blocks with first-order auto-correlated
errors  in plots along rows and along columns. LatL: Lattice blocks with linear trend along rows. LtCS: Lattice blocks with linear trend along rows and random cubic smoothing
spline in column numbers. LatCSArAr: lattice blocks with linear trend along rows, random cubic smoothing spline in column numbers, and Ar errors along rows and columns.
RcbArNg: RcbAr model with extra independent error term (nugget effect). RcbArArNg: RcbArAr model with extra independent error term. RcLArArNg: RcbLArAr model with
extra  independent error term. RowCol = Random rows and columns effects. N = number of experiments. na: not applicable. Blanks imply the model in the row was  not found
best  in any trial.
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Table  5
Heritability and genetic gain at 10% selection intensity using spatial methods in trials for various maturity groups.

Maturity Seed yield Straw yield

N Mean N Mean

Heritability$ Early 46 0.75 41 0.72
Medium 126 0.66 112 0.62
Late  54 0.65 46 0.52

Genetic gain (%) Early 46 35.2 41 32.1
Medium 126 21.6 112 15.5
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$ Heritability = h2
C

(Cullis et al., 2006). Genetic gain (%) was  calculated using h2
C
.

2009) has been gaining ground in many plant breeding programs
s well as GenStat software (Payne, 2014) and CycDesigN software
VSN International, 2015).

The spatial pattern being specific to a field, it is always a ques-
ion whether there is a model that could be used by default as

 contrast to the early days of models with independent errors
ith constant variance. A number of studies in lentils have shown

uitability of different models, e.g. of 47 trials in 25 genotypes in
imple/triple lattices in Sarker et al. (2001), 26 trials were better
xplained using spatially correlated errors on linear trends, while
omplete/incomplete blocks were suitable in 21 trials. The present
tudy, which is based on a much larger number of field trials (226),
lso supported the role of spatial models (Tables 3 and 4)—where
odels based on correlated errors were frequently found appropri-

te. We  also noted that models which used incomplete blocks were
uch less often appropriate, as it seemed the correlation structure

ompensated for the lattice blocks (Table 4), an observation also
oted by Sarker et al. (2001) in a lentil study involving 53 trials.
xperimental fields under these trials, exhibit a distribution of dif-
erent variability patterns including the presence of trends along
ows, permitting control of variability in one direction in terms
f incomplete blocks as well as trends in row and column direc-
ion. The results of these trials guide that a desirable experimental
esign strategy would be to choose a design which insures cap-
ure of trends in two directions and serves as a better alternative to
ncomplete block designs with one-way blocking. The row–column
esigns do not pose any particular operational inconvenience as the
rials generally are laid out on a rectangular field layout. For this
urpose, an efficient row–column design, including a resolvable
ow–column design, may  be implemented followed with a baseline
nalysis using a randomization based row–column model. There
s a vast literature on efficient row–column designs constructed
ince the early days of development of experimental designs
ncluding Yates (1940), Pearce (1975), Singh and Dey (1979),
onh and Eccleston (1986), Ipinyomia (1990), and standard texts
Hinkelmann and Kempthorne, 2005). Randomization plan of such
esigns can also be generated from the above software. Further-
ore, an add-on value to the data generated by the row–column

esigns can be achieved by spatial modelling of error structures
hich could not be perceived at design stage.

In evaluation of sorghum trials in Mali, Leiser et al. (2012) cov-
red a much wider envelop of spatial models including those with
utocorrelated errors of higher order than those being presented
n this study, and drew a similar conclusion that spatial models
an add further value to experiment over the classical complete
lock design model. The lattice designs used here were in moder-
te number of genotypes (25 or less) while in reality plant breeders
valuate much larger number of genotypes, e.g. 70 genotypes of
orghum in trials in Mali evaluated by Leiser et al. (2012). In such sit-

ations, a row–column design with most suitably identified spatial
odel would be expected to result in even further higher efficiency,

eritability and genetic gain over the conventional complete block
esigns.
20.8 46 10.6

Modelling field variability using the best of the 31 models led
to an improvement (increase) in heritability (h2

C ) compared to that
under RCB (62% on 63 trials for seed yield and 55% on 56 trials
for straw yield; Table 3). A better accountability of systematic fac-
tors clearly indicated higher genetic gain compared to RCB—this
implies more efficient breeding progress. The present study also
examined the effect of analyses for spatial models on the associa-
tion of heritability and genetic gain from trials with maturity class
of the genotypes.

ICARDA has developed a suite of Online BioComputing modules
which run on the Center’s dedicated machines. This computing sys-
tem requires a data file to be prepared specifically for an analysis
and to be submitted by email. In return is received an output file
containing results of the analysis. Spatial analysis, as presented in
this study, can be carried out by request to the authors.

5. Conclusion

The study summarizes results of 226 lentil trials using spatial
models. The statistical analysis, without any addition to the cost of
experimentation, adds value to the experimental results in terms
of substantial increase in precision of genotypes’ predicted means
and estimates of heritability and genetic gain due to selection. The
search for a suitable spatial pattern contributed to enhancing the
precision of the genotype means and breeding progress. Thus, field
crop breeders can improve the selection efficiency and select those
genotypes with genetic potential by applying appropriate statisti-
cal models without an extra cost.
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