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ABSTRACT:  

The aim of this research was to develop an understanding of how mountainous forests function in relation to forest phytomass and
carbon accumulation in the terrestrial vegetation pools which will help develop options for climate change. In this study, the forest 
phytomass has been assessed in range of subtropical and temperate forest dominated by tree species of Quercus semicarpifolia Sm. 
and Pinus roxburghii Sarg in Himalayan region Purola tehsil in Uttarkashi district of Uttarakhand state of India. In-situ 
measurements of the phytomass were taken with clustered sampling approach on a total of 40 plots (0.1 ha each), i.e. in 10 MODIS 
pixels with 4 plots laid in an individual pixel. The field measured phytomass was found in the range of 67.76 - 1,108 t ha-1. 
Weighted-area phytomass was estimated at an individual MODIS (MOD13Q1, 250m) pixel where in-situ measurements varied from 
207.93 t ha-1 - 1,042 t ha-1.  The best fit equation of pixel phytomass values was regressed on red, infra-red and vegetation indices
(NDVI) derived from the MODIS data. The correlation between the measured phytomass and NDVI was found significant and 
maximum in the month of December (R value   -0.71, p < 0.01). However, such a relationship was not persistent throughout the year. 
The R2 value between observed phytomass and predicted phytomass was 0.53. The predicted phytomass based on 250×250 m 
MODIS data varied from 216.88 - 1,011 t ha-1. The average phytomass density in study area was 470.42 t ha-1 and carbon density
221.09 t ha-1. 

1. INTRODUCTION 

Climate is an important factor for living organisms on earth. 
Due to continuous growth of population, industries and 
urbanization, forest cover is continuously decreasing and 
resulting in high negative impact on climate (IPCC, 2007a; 
Vitousek et.al., 1997; Dadhwal et.al., 2009).  Human induced 
changes are supplementing greenhouse gases and changing the 
earth’s atmosphere (IPCC, 2003; 2007a). Hindu Kush 
Himalayan (HKH) forests, which serve a large part of south
Asia, are among the most fragile environments on earth. HKH 
forests are rich repositories of phytomass, biodiversity, water, 
providers of ecosystem goods and services which many living 
organisms, both regional and global, depend on (Hamilton, 
2002; Korner, 2004; Shrestha et al. 2004; Viviroli and 
Weingartner, 2004). Phytomass is one of the important 
indicators for understanding of how forest ecosystems in 
mountainous region functions and their role in terrestrial
vegetation carbon pools and global carbon cycle under climate 
change (Darke et. al., 2002; Xiao et.al., 1997). Forest phytomass
varies widely by types, site conditions, environment, and human 
interference, natural or planted forests and closed or open 
forests (Brown et.al., 1991; Naeem and Thompson, 1994). In 
the recent past, forest phytomass-related studies have become 
highly significant across the globe due to growing concern of 
the global warming and forest carbon credit system (Houghton, 
1991; Dadhwal et.al., 2009).  

Direct measurement of forest phytomass in the field would be a 
destructive method (Lu, 2005), which is not economic in case of 
old growth forests, especially in the protected and restricted
areas. Therefore, the field observations of phytomass are 
normally based on allometric equations that approximate 
phytomass of the tree component or the total phytomass of 
single standing tree according to easily measured variable, such

as diameter at breast height (dbh) and tree height (FSI, 1996; 
Lu, 2005; Whittaker, 1966). However, an initial harvesting of 
entities over a varied range of size and girth classes may be 
required for establishing a functional relationship between 
phytomass and easily measurable plant parameters, such as
diameter/ girth and/or height (Kale et.al., 2004; Kale and Roy, 
2012; Patil et.al., 2012; Tiwari, 1994). Non-destructive 
approach involves application of component-wise equations for 
different species, through sampling of tree components like 
bole, branch, twigs and leaves (Tiwari, 1994). In the last couple 
of decades, satellite remote sensing has been successfully used 
for phytomass and productivity estimation at local and regional
level (Foody et.al., 2003; Muukkonen and Heiskanen, 2007; 
Patil et.al., 2012; Prince and Goward, 1995). There are three 
main approaches for phytomass assessment viz., ground 
measurements, remote sensing and geographic information 
system (Lu, 2005). The wide arrays of earth observation 
systems have opened a number of opportunities for quick and 
consistent assessments for monitoring above ground standing 
phytomass and carbon pools. Recently many efforts have been 
made to take full advantage of high, medium and coarse 
resolution remote sensing data in assessing vegetation 
phytomass and carbon (Kale et.al., 2004; Kale and Roy, 2012; 
Patil et.al., 2012; Tiwari, 1994). A vegetation index, particularly
NDVI, is a good indicator of canopy cover, which in turn is 
positively correlated to phytomass and productivity (Kale et al., 
2002; Patil et.al., 2012; Prince and Goward, 1995). Using 
satellite data and field measurements, this study primarily aims 
to estimate the phytomass and carbon pools in selected study
area of HKH forests in Himalayan region in Purola tehsil of 
Uttarkashi district Uttarakhand state in India. The other 
important objective was to develop spectral models to produce 
geospatial distribution of forest phytomass and carbon stock in 
the study area. 
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2. MATERIALS AND METHODS 

2.1 Study Area 

The study area, located in Purola tehsil of Uttarkashi district of 
Uttarakhand state, is situated within 31° 00' to 31° 16' N latitude 
and 78° 00' to 78° 38' E longitude (Fig. 1). An area of 10×10
km was selected and representative field plots were laid. The 
area is mountainous and its altitude varied from 1200 - 6387m 
asl. The climate of this area varies from subtropical monsoonal 
at lower elevations to temperate and alpine at higher elevations. 
Substantial area remains covered with snow and glaciers most 
of the year. Annually the rainfall varies from 1000 to 1500 mm. 
Heavy snowfall occurs during the winter.  The spring season 
(mid-March to mid-June) is characterized by occasional 
showers of rain and is sometimes accompanied with thunder 
storms and hail. The highest rainfall occurs during July and 
August.  Snowfall occurs in the upper reaches as early as
September but generally it takes place after mid-December.  
Strong winds are not common in the area.  However, high and 
exposed ridges do experience strong winds at times. Dominant 
tree species are Pinus roxburghii, Picea smithiana and Quercus
leucotrichophora. 

Figure 1. Location of the study area 

2.2 Description of MODIS Data 

Six scenes of 8-day composite satellite images of MODIS
Surface Reflectance Product (MOD09Q1) were downloaded
from GLCF site (http://glcf.umiacs.umd.edu/data/ modis/) for 
the months of February, March, May, October, November and 
December in 2007 having spatial resolution of 250 m in band 1 
and band 2.  In addition, forest density map for the study region 
was procured from Forest Survey of India (FSI, 2003).  

2.3 In-situ Measurements 

Ground sampling was conducted for mapping vegetation cover 
type and density. Two stage nested clustering approach was
followed for collecting the in-situ data. Four sample plots of 0.1
ha were laid within an area of 250×250 m, which is equivalent 
to the size of one pixel of MODIS 250m (Dadwal et.al., 2009;
Patil et.al., 2012). A total of 40 sampled plots at 10 sites of 
different forest types, topography or aspects were laid out.  The 
phytomass parameters such as dbh (cm) at 1.37 m above ground 
and tree height (cm), compositions, density, percent canopy
covered were recorded for each sampling units. 

2.4 Phytomass Estimation 

A standard conventional nondestructive method was followed to
estimate phytomass (Dadhwal et.al., 2009; Patil et.al., 2012).
This method involves estimation of phytomass of individual
trees using allometric equations using dbh and height of the 
trees. The site and species-specific allometric equations for 
Uttarkashi and adjacent areas were gathered from the literature 
(Rana, 1985; Rana et.al., 1989). A total number of 12 allometric 
equations of trees were found. The phytomass of each of the 
four components, bole, branch, twig and leaf, was estimated by
using allometric equation. The phytomass of all trees within a 
plot was aggregated and total plot phytomass  estimated. Mean 
site phytomass was obtained by taking mean phytomass of the 
four plots at each site. The overall methodology is given below 
(Fig. 2). 

Figure 2. Flow chart showing the broad steps for phytomass 
estimation 

2.5 Weighted Area Phytomass Estimation 

MODIS data was used to create vector-boxes around the 10 
sampling sites in GIS domain. These vector-boxes of 250×250 
m were then overlaid on density map. Visual interpretation of 
data within each vector-box for mapping for vegetation cover 
type/ land use and density was carried out using field points.
Proportionate area of each land use/land cover occurring within 
the vector boundary was obtained by getting the ratio between 
the area occupied by the respective land-use/cover class within 
the pixel and total area of the MODIS pixel i.e. 6.25 ha-1. The 
classes such as water body and settlement were given zero 
weight. The forested area was multiplied by respective 
phytomass to obtain total phytomass for that type for that area. 
Subsequently, area weight of each land use/ land cover classes 
were multiplied with the corresponding phytomass of the 
respective class. Thus phytomass obtained for all the vegetation 
types belonging to different forest type-wise  density classes 
occurring within the vector boundary of 250×250m area was 
summed up to get weighted phytomass (t ha-1) within the 
respective pixels. Area weighted phytomass was obtained for 
each sample site (Fig. 3).  
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Figure 3. Steps followed in estimating the phytomass at pixel 
level. 

2.6 Spectral Modeling 

Spectral modeling was carried out for the mapping of 
phytomass and up-scaling of plot observations into regional 
scale by correlating it with reflectance of multi-season MODIS
data. Correlation coefficients were obtained for phytomass
estimation as a function of satellite derived parameters viz., red
and infrared reflectance and NDVI. In the spectral modeling, 
multi-season images of February, May, October and December 
months were used for establishment of correlation between area 
weighted phytomass and satellite derived parameters. Statistical
models such as linear and nonlinear, i.e., logarithmic, 
exponential and power functions, to relate phytomass to the data 
from different bands and indices (Red, Infrared and NDVI) 
were obtained. The best fit model was selected on the basis of 
high R2 values (also called coefficient of determination) and its 
significance. The best fit model thus obtained was used to
estimate phytomass and carbon for the entire study area. Carbon 
content in vegetation was taken as 47 per cent of the above 
ground phytomass as followed in the National Carbon Project 
(Dadhwal et.al., 2009, Patil et.al., 2012). The overall
methodology adopted for the spectral modeling for present 
study has been depicted (Fig. 4). 

Figure 4. Steps followed spectral modeling of phytomass 

3. RESULTS AND DISCUSSION

3.1 Phytomass Based on Field Measurements 

Field measured phytomass ranged between 67.77 - 1,108 t ha-1

in different vegetation types in the mountainous forests in the 
region. The lowest phytomass range 67.77 - 386.53 t ha-1 
occurred in mixed conifer forests. In the alpine pastures, 
pytomass was 415.1 - 556.97 t ha-1 while in temperate broad
leaves forest, pytomass varied from 397.5 - 1,108t ha-1. These 
estimates are within the range reported for the phytomass
estimates for certain Himalayan forests. Rana et.al., (1989) 
estimated phytomass in the central Himalayas as 199 - 787 t ha-

1, where the tree species were Shorea robusta Gaertn.F., Pinus
roxburghii, Quercus leucotrichophora and mixed oak (Quercus
sp.). Sundriyal et.al., (1996) estimated phytomass in eastern 
Himalaya about 368 - 682 t ha-1. In central Himalaya, Garkoti 
and Singh, (2009) estimated phytomass in the range 40 - 308 t
ha-1.  In the present case, within 4 plots at a one site in 
temperate broad leaves forest, phytomass in this site was found 
up to 1,108t ha-1 which is higher than the comparable estimates
reported in different earlier studies.  

3.2 Regression Analysis of Phytomass and Satellite Derived 
Parameters 

Regression analysis of observed phytomass in weighted area 
phytomass of 10 sampling sites were evaluated with multi-
season MODIS SR data using linear, power, exponential and 
logarithmic functions. Highest correlation was observed
between weighted area phytomass and NDVI data of December 
month with logarithmic function (R = - 0.71) followed by IR 
band (R2 = 0.26) in May month with linear function and Red
band with logarithmic function (R2 = 0.12). Therefore, the 
model based on NDVI data of December month with
logarithmic function was used for modeling of phytomass in the 
area.  

The logarithmic regression model with NDVI (x) gave the 
equation, Y= -267.85 * ln (x) + 302.18 with R of -0.71 and 
residual standard deviation (SD) = ± 231.79 with 8 degrees of 
freedom (Fig. 5).  

Figure 5. Regression of field based phytomass estimate (t ha-1) 
on December month NDVI (x) 

This model has been used to find the extrapolated predicted
phytomass (Fig. 6). Agriculture, water bodies and settlements
were not considered for estimating predicted phytomass and 
masked out.  

y = -267.9 ln(x) + 302.18
R = - 0.71;  p < 0.01
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Figure 6. Satellite derived phytomass map of 250 m resolution 

3.3 Predicted versus Estimated Phytomass  

A comparative assessment was made to estimate regression of 
the estimated phytomass, i.e., field based phytomass estimate 
using sample observations (N=10) on the predicted phytomass
obtained through spectral modeling. The squared correlation 
between observed and estimated phytomass, R2, was 0.53. 
Predicted phytomass varied from 216.9 - 1011 t ha-1.The 
average phytomass density in the study area was 470.4 t ha-1 
and the average carbon density 221.1 t ha-1. The major 
contributors to the difference between predicted and estimated
phytomass values were due to density and phenological 
conditions of the trees or forest types existing in the study area.  

4. CONCLUSIONS 

In this study, we observed a very large quantity of ground 
measured phytomass (1,108 t ha-1), within 4 plots at one site in 
temperate broad leaves forest.  This estimate is larger than those 
reported in comparative studies. At this site, we noted that the 
trees were of very large size and the forest patch was
undisturbed. On excluding the 4 plots at this, phytomass 
estimates were found within the range given in earlier reports.  
The observed negative correlation (R = -0.71), may be due to 
the dynamics of leaves (LAI and chlorophyll) in relation with
phytomass. Since NDVI is highly associated with
chlorophyllian activity, which characterizes  the photosynthesis
process, rather than phytomass. Therefore, an old mature forest 
will have lower NDVI values than that of earlier stages of the 
succession when a stronger growth gives a stronger NDVI 
basically. When the forest gets mature in a stable environment, 
the mean annual NDVI should become relatively constant at 
some point.  When a forest grows further old, the carbon 
dynamics goes towards equilibrium between its uptake and 
release at the ecosystem level. Thus a full grown natural forest 
releases as much carbon dioxide as it takes up on a yearly basis, 
both for tropical as well as non-tropical forest ecosystems. It is
pertinent to observe that the NDVI is not correlated with wood
and trunk phytomass of a forest, but only with the dynamics of 
its green leaves.  

Furthermore, in case of dense and humid rainforests, NDVI has
to be used with caution because the index saturates on such 
areas.  We observed that majority of the trees were old and large 
in size, and were infested with trunk rot or hollow trunk. 
Dealing with the hollow trunk is still a challenging area of 
active research in forest carbon dynamics. 
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